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INTRODUCTION

- Do you have a plan, Mr. Fix?
- Do I have a plan? Yes, I have a plan!

Movie ”80 Days Around the World”
Course: Scientific Computing,

CP SC 481/681
Instructor: Ilya Safro
Office hours: 228 McAdams Hall, TBD
Email: isafro@clemson.edu

Type of work How many? Time Points
Theoretical homework ≤ 8 2 weeks 20
Practical homework ≤ 8 2 weeks 20
Oral presentation or 1 2 weeks 20
Mid term exam 1 -
Final home project or 1 2 weeks 40
Final exam 1 -

Grading: A(≥ 92), B(80-91), C(65-79), D(55-64), F(0-54)

Extra work in class - up to 10 points. We do not want to miss the
next Turing and Fields laureates, so any submitted journal paper
or TR written during and as a result of this course - 100 points,
and new interesting ideas - up to 100 points (both are based on
instructor’s subjective judgement)
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INTRODUCTION

TYPES OF HOMEWORK

I (I)mplementation. You should implement the solution and submit
code, input, and output. You can use one of these: C/C++, Java,
Fortran, Python, Perl, Matlab, Scilab. Using C/C++/Java/Fortran
scientific libraries (such as LAPACK, BLAS, GNU Scientific
Library) is a plus and bonus. Recommendation: Python + SciPy,
NumPy.

I (T)heoretical. You should prove or compute something without
implementing it. Must be submitted in pdf or word formats.

I (Tns)heoretical. Do not submit.
I (R)eading. You should read the handout or paper. You don’t

submit anything but I can ask something similar at final/midterm
exam.
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LITERATURE

Section 2

LITERATURE
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LITERATURE
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TITAN

Section 3

TITAN
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TITAN

TITAN SUPERCOMPUTER

AT OAK RIDGE NATIONAL LABORATORY

FLOPs = Floating-point operations per sec
iPad: 1-2 GFlops
Desktop: 5-10GFlops (can be ≈ 100 GFlops)
Giga = 109, Tera = 1012, Peta = 1015, Exa = 1018
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MATHEMATICAL SOFTWARE

DESIRABLE CHARACTERISTICS OF MATHEMATICAL

SOFTWARE

I Reliability: works correctly for easy problems
I Robustness: usually works for hard problems, but fails gracefully

and informatively when it does fail
I Accuracy: produces results as accurate as warranted by the

problem and input data, preferably with an estimate of the
accuracy achieved

I Efficiency: requires execution time and storage that are close to the
minimum possible for the problem being solved

I Maintainability: is easy to understand and modify
I Portability: adapts with little or no change to new computing

environments
I Usability: has a convenient and well-documented user interface
I Applicability: solves a broad range of problems
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COMPUTER ARITHMETIC

Subsection 1

COMPUTER ARITHMETIC
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COMPUTER ARITHMETIC

FLOATING-POINT NUMBERS

In computers the reals (R) are usually represented by a floating-point
number systems. For example 12345 = 1.2345× 104, and
0.12345 = 1.2345× 10−1. Any floating point number has the form

x = ±
(
d0 +

d1

β
+

d2

β2 + ...+ +
dp−1

βp−1

)
βE, where

0 ≤ di ≤ β − 1 are integers (called mantissa), and
β base
p precision
E ∈ [L,U] exponent within range [L,U].

Sign, exponent, and mantissa are stored in separate fields of fixed width
in one structure (called f-p word). Usually β = 2, however, history
knows other examples such as β = 8, and 16.
Typical precision: IEEE single-, double-, and quadruple-precision.

13 / 337



COMPUTER ARITHMETIC

FLOATING-POINT NUMBERS

A floating-point system is normalized if d0 6= 0 unless the number is
zero. Advantages of normalization?

I unique representation
I no wasted digits
I for β = 2 the leading bit is always 1 (better precision with extra bit)
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COMPUTER ARITHMETIC

ROUNDING
Machine numbers are those that can be exactly represented by f-p. If x ∈ R
cannot be exactly represented by f-p then it is approximated by some nearby f-p
fl(x).

I Chop rounding rule (old): round to the next f-p number towards zero.

I Round to nearest rule (IEEE standard, more accurate and more
expensive): nearest f-p (tie→ round to even).

Machine precision: εmach = β1−p (chop), εmach =
1
2
β1−p (rounding to nearest).

Relative error is bounded
∣∣fl(x)− x

x
∣∣ ≤ εmach.

Potential sources of error: rounding, dec-bin/bin-dec conversion
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COMPUTER ARITHMETIC

FLOATING-POINT ARITHMETIC, SOURCE OF ERROR

Example of addition: 3.25× 103 + 2.63× 10−1

I Align decimal points
I Add
I Normalize (in this example already normalized)

3.250000× 103

+ 0.000263× 103

= 3.250263× 103

what if p = 2?

Example of multiplication: 3.0× 101 · 0.5× 102

I Multiply mantissas
I Add exponents

3.0 × 101

* 0.5 × 102

= 1.5 × 103
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COMPUTER ARITHMETIC

ONE MORE EXAMPLE OF εMACH PROBLEM

Consider harmonic series which are divergent

∞∑
n=1

1
n
.

What happens if we compute this series? Are they finite because
1
n

will
eventually underflow or the partial sum will overflow?

No. The sum will be finite before either of these occurs. The partial sum
ceases to change once 1/n becomes negligible relative to the partial
sum, i.e., when

1/n < εmach

n−1∑
k=1

1
k
.
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COMPUTER ARITHMETIC

F-P IS COMMUTATIVE BUT NOT ALWAYS

ASSOCIATIVE

Ideally, x flop y = fl(x op y). Indeed, this happens withing ranges of
IEEE f-p standard. However, some laws are not necessarily valid.
Consider ε slightly smaller than εmach

(1 + ε) + ε = 1, but 1 + (ε+ ε) > 1.
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COMPUTER ARITHMETIC

USE MATHEMATICALLY EQUIVALENT BUT SIMPLER

FORMULA

Given finite sequence of xi ∈ R,

Mean x =
1
n

n∑
i=1

xi; Standard Deviation σ =
( 1

n− 1

n∑
i=1

(xi − x)2)1/2

σ is computed by two passes for x and σ⇒ error is accumulated.

Thus
for better efficiency one can use

σ =
( 1

n− 1
(

n∑
i=1

x2
i − nx2)

)1/2

which can be computed in one pass.
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COMPUTER ARITHMETIC

BIG O NOTATION (LANDAU’S SYMBOL)

I Analysis of algorithms: given problem of size n, and
T(n) = 5n3 + 2n2 + n, we say T(n) grows at the order on n3 or
T(n) ∈ O(n3).

I Error term in approximation: in ex = 1 + x + x2/2 +O(x3), where
x→ 0 we express that the error is smaller in | · | than cx3 (c is
constant).

Definition.
Lef f (x), and g(x) are defined on R. We say that

f (x) ∈ O(g(x))

iff ∃ N,C, s.t. |f (x)| ≤ C|g(x)| for all x > N.
Intuition: f does not grow faster than g.

Edmund Landau 1877-1938
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COMPUTER ARITHMETIC

BIG O/o NOTATIONS (LANDAU’S SYMBOLS)

Definition.
If a ∈ R we write f (x) ∈ O(g(x)) for x→ a iff ∃ d > 0, C s.t.

|f (x)| ≤ C|g(x)| for all x s.t. |x− a| < d.

Definition.
We write f (x) ∈ o(g(x)) for x→∞ iff ∀C > 0 ∃ N s.t. ∀x > N we have

|f (x)| < C|g(x)|

f (x) ∈ o(g(x)) means that f grows much slower than g and is
insignificant in comparison.
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COMPUTER ARITHMETIC

MORE NOTATIONS FOR COMPARING FUNCTIONS
Notation Definition Analogy
f (n) ∈ O(g(n)) ... ≤
f (n) ∈ o(g(n)) ... <
f (n) ∈ Θ(g(n)) g(n) ∈ O(f (n)) ≥
f (n) ∈ ω(g(n)) g(n) ∈ o(f (n)) >
f (n) ∈ Θ(g(n)) f (n) ∈ O(g(n)) and g(n) ∈ O(f (n)) =

Homework 1 (T).

1. Prove or disprove that T(n) = 8n4 + 2n2 + 10 ∈ O(n2).

2. Prove or disprove that T(n) = 3n3 + 20n2 + 5n ∈ O(n3).

3. Prove or disprove that T(n) = n2 + 10n ∈ Θ(n2).

4. Prove or disprove that T(n) = n7 ∈ o(n8).

5. Prove or disprove that T(n) = n3 + n2 ∈ ω(n2).

6. Calculate the complexity of any matrix-matrix multiplication algorithm
for square matrices.
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SYSTEMS OF LINEAR EQUATIONS

Section 6

SYSTEMS OF LINEAR EQUATIONS
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SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS
A system of linear equations is represented by

Ax = b, where A ∈ Fm×n (usually field F will be either R or C)

An n× n matrix A is called nonsingular if it satisfies any of these
conditions:

1. ∃A−1 s.t. AA−1 = A−1A = I
2. det(A) 6= 0
3. rank(A) = n (rank is the maximum number of linearly independent rows or columns)

4. ∀z ∈ Fn if z 6= 0 then Az 6= 0
Otherwise it is singular. Existence and uniqueness is summarized in:

I Unique solution: A nonsingular, b arbitrary
I Infinitely many solutions: A is singular, b ∈ span(A)

I No solution: A singular, b 6∈ span(A)

span(A) = {Ax : x ∈ Rn}
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SYSTEMS OF LINEAR EQUATIONS

Subsection 1

SENSITIVITY AND CONDITIONING
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SYSTEMS OF LINEAR EQUATIONS

VECTOR NORMS

We define p-norm and ∞-norm of
vector x, p > 0 by

||x||p =
(∑n

i=1 |xi|p
)1/p

||x||∞ = max1≤i≤n |xi|

Unit 2-dim spheres in various
norms
What norms do we see here?

∀x, y ∈ Fn and p-norm the
following hold

1. ||x|| > 0 if x 6= 0
2. ∀γ ∈ F ||γx|| = |γ| · ||x||
3. ||x + y|| ≤ ||x||+ ||y||

(triangle inequality)
4. | ||x|| − ||y|| | ≤ ||x− y||

Some useful facts
1. ||x||1 ≥ ||x||2 ≥ ||x||∞
2. ||x||1 ≤

√
n||x||2

3. ||x||2 ≤
√

n||x||∞
4. ||x||1 ≤ n||x||∞
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SYSTEMS OF LINEAR EQUATIONS

MATRIX NORMS

Matrix norms are defined in terms of vector norms, namely,

||A|| = max
x6=0

||Ax||
||x||

Matrix norm measures the maximum stretching the matrix does to
vectors. Examples of matrix norms for A ∈ Fm×n:

||A||1 = max
j

m∑
i=1

|aij| and ||A||∞ = max
i

n∑
j=1

|aij| (1)

Check that matrix norms for A ∈ Fn×1 agree with vector norms.

Homework 2 (T).
Choose one equality in (1) and prove it.
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SYSTEMS OF LINEAR EQUATIONS

PROPERTIES OF MATRIX NORMS
For any two matrices A and B the following properties hold

1. ||A|| > 0 if A 6= 0
2. ∀γ ||γA|| = |γ| · ||A||
3. ||A + B|| ≤ ||A||+ ||B||
4. ||AB|| ≤ ||A|| · ||B|| (this norm is called multiplicative)
5. ∀x ||Ax|| ≤ ||A|| · ||x||

Note that in general case a matrix norm is any function that satisfies the first three properties. Properties 4 and 5 work for p-norms

but not necessarily for other norms.

Another useful norm is the Frobenius norm ||A||F

||A||F =
( n∑

i=1

m∑
j=1

|aij|2
)1/2

Homework 3 (I).
Generate matrices with random values form 0 to 100. Calculate their 1-,∞-, and
F-norms.
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SYSTEMS OF LINEAR EQUATIONS

SENSITIVITY OF MATRICES/SMALL PERTURBATIONS

Main idea: if A is invertible and B is close to A, i.e., ||A− B|| is small
enough wrt some multiplicative norm, then B is also invertible.

Theorem 1.
Let A,B ∈ Cn×n and A is invertible, such that ||A−1|| ≤ γ and
||B−A|| < 1/γ wrt to some multiplicative norm for some scalar γ > 0. Then:

1. B is invertible
2. ||B−1|| ≤ γ

1− γ||B− A||
.

Homework 4 (IT).

Given A =

1 2 3
0 1 5
5 6 0

, B1 =

1.01 2 3
0 1 5.01
5 6 0

, and B2 =

 1 2 3
0 1 5

0.5 1.5 4

. Calculate

A−1, and check if B1 and B2 are invertible by using Theorem 1. If one of them is
invertible compute an upper bound for ||B−1

· ||.
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SYSTEMS OF LINEAR EQUATIONS

SENSITIVITY OF MATRICES

Even if the difference between norms after some tiny perturbation is
small the difference between the solutions of systems of equations can
be large.52 78 86

36 11 76
30 44 50

 · x =

63
72
9



=⇒ x ≈ 104 ·

 3.4884
−0.5994
−1.56555


|| · ||1 = 212

52 78 86
36 11 76
30 44 50.0006

 · x =

63
72
9



=⇒ x ≈ 104 ·

 2.6123
−0.4489
−1.1723


|| · ||1 = 212.0006

Can we estimate how sensitive is our matrix? In particular, can the matrix
stretch or shrink the vector?
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SYSTEMS OF LINEAR EQUATIONS

MATRIX CONDITION NUMBER

Definition.
The condition number of a nonsingular square matrix A wrt to a given norm is

cond(A) = ||A|| · ||A−1|| =
(

max
x6=0

||Ax||
||x||

)
·
(

min
x6=0

||Ax||
||x||

)−1

Matlab example: condition_number.m

MCN measures the amount of maximum stretching of vectors vs maximum
shrinking. In the example we demonstrated the amount of distortion of unit
sphere under transformation.

I cond(A) ≥ 1
I cond(I) = 1

I cond(αA) = αcond(A)

I D = diag(di)⇒ cond(D) =
max |di|/min |di|

MCN is a measure of how close a matrix is to being singular.

31 / 337



SYSTEMS OF LINEAR EQUATIONS

MATRIX CONDITION NUMBER

Definition.
The condition number of a nonsingular square matrix A wrt to a given norm is

cond(A) = ||A|| · ||A−1|| =
(

max
x6=0

||Ax||
||x||

)
·
(

min
x6=0

||Ax||
||x||

)−1

Matlab example: condition_number.m

MCN measures the amount of maximum stretching of vectors vs maximum
shrinking. In the example we demonstrated the amount of distortion of unit
sphere under transformation.

I cond(A) ≥ 1
I cond(I) = 1

I cond(αA) = αcond(A)

I D = diag(di)⇒ cond(D) =
max |di|/min |di|

MCN is a measure of how close a matrix is to being singular.
31 / 337



SYSTEMS OF LINEAR EQUATIONS

SENSITIVITY OF LINEAR SYSTEMS
Homework 5 (R).
Read about condition estimation (SC pp. 58-59).

Let x and x̂ be the solutions of nonsingular Ax = b and Ax̂ = b + ∆b,
respectively. If ∆x = x̂− x then Ax + A∆x = b + ∆b, and ∆x = A−1∆b.

||b|| = ||Ax|| ≤ ||A|| · ||x|| ⇒ ||x|| ≥ ||b||/||A||
∆x = A−1∆b ⇒ ||∆x|| ≤ ||A−1|| · ||∆b||,

and
||∆x||
||x||

≤ ||A−1|| · ||∆b|| · ||A||
||b||

= cond(A)
||∆b||
||b||

, (2)

i.e., given relative change ∆b we can bound maximum relative change
in the solution.
Similar result holds for matrices. If (A + E)x̂ = b then

||∆x||
||x̂||

≤ cond(A)
||E||
||A||

(3)
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SYSTEMS OF LINEAR EQUATIONS

... CAN WE USE CALCULUS?
We define A(t) = A + tE and b(t) = b + t∆b, where t ∈ R is a parameter.
Solve the linear system A(t)x(t) = b(t) (*).

Differentiate (*) A′(t)x(t) + A(t)x′(t) = b′(t)

since A′(t) = (A + tE)′ = E we have Ex(t) + A(t)x′(t) = ∆b,
i.e., x′(t) = A(t)−1(∆b− Ex(t)),
and, x′(0) = A−1(∆b− Ex(0)).

By Taylor’s theorem we have x(t) = x(0) + tx′(0) +O(t2), i.e.,

If x ≡ x(0) we obtain from
x(t)− x(0) = tx′(0) +O(t2) = tA−1(∆b− Ex(0)) +O(t2)

||x(t)− x||
||x||

≤ ||A−1||
(
||∆b||
||x||

+ ||E||
)
|t|+O(t2)

≤ cond(A)

(
||∆b||
||A|| · ||x||

+
||E||
||A||

)
|t|+O(t2)

≤ cond(A)

(
||∆b||
||b||

+
||E||
||A||

)
|t|+O(t2)

(4)
relative change in the

solution

relative change in the problem data
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... CAN WE USE CALCULUS?
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GEOMETRIC INTERPRETATION

||x̂− x||
||x||

≤ cond(A) · εmach

(illustration from SC book)
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RESIDUAL

Definition.
The residual of an approximate solution x̂ to Ax = b is the difference

r = b− Ax̂

In theory if A is nonsingular then ||∆x|| = ||x̂− x|| = 0 iff ||r|| = 0. In practice,
the situation is more complicated.

Example (Scaling).
Multiplying Ax = b by α gives the same solution but r = α(b− Ax̂), i.e., r
depends on the scaling of the problem.

Definition.
Relative residual is defined to be

||r||
||A|| · ||x̂||

.

The error is ||∆x|| = ||x̂− x|| = ||A−1(Ax̂− b)|| ≤ ||A−1|| · ||r||

⇒ ||∆x||/||x̂|| ≤ cond(A)
||r||

||A|| · ||x̂||
, i.e., small relative residual implies small

relative error when A is well-conditioned.

35 / 337



SYSTEMS OF LINEAR EQUATIONS

RESIDUAL

Definition.
The residual of an approximate solution x̂ to Ax = b is the difference

r = b− Ax̂

In theory if A is nonsingular then ||∆x|| = ||x̂− x|| = 0 iff ||r|| = 0. In practice,
the situation is more complicated.

Example (Scaling).
Multiplying Ax = b by α gives the same solution but r = α(b− Ax̂), i.e., r
depends on the scaling of the problem.

Definition.
Relative residual is defined to be

||r||
||A|| · ||x̂||

.

The error is ||∆x|| = ||x̂− x|| = ||A−1(Ax̂− b)|| ≤ ||A−1|| · ||r||

⇒ ||∆x||/||x̂|| ≤ cond(A)
||r||

||A|| · ||x̂||
, i.e., small relative residual implies small

relative error when A is well-conditioned.

35 / 337



SYSTEMS OF LINEAR EQUATIONS

RESIDUAL

Definition.
The residual of an approximate solution x̂ to Ax = b is the difference

r = b− Ax̂

In theory if A is nonsingular then ||∆x|| = ||x̂− x|| = 0 iff ||r|| = 0. In practice,
the situation is more complicated.

Example (Scaling).
Multiplying Ax = b by α gives the same solution but r = α(b− Ax̂), i.e., r
depends on the scaling of the problem.

Definition.
Relative residual is defined to be

||r||
||A|| · ||x̂||

.

The error is ||∆x|| = ||x̂− x|| = ||A−1(Ax̂− b)|| ≤ ||A−1|| · ||r||

⇒ ||∆x||/||x̂|| ≤ cond(A)
||r||

||A|| · ||x̂||
, i.e., small relative residual implies small

relative error when A is well-conditioned.
35 / 337



SYSTEMS OF LINEAR EQUATIONS

What if the relative residual is large? Let x̂ be the approx sol of Ax = b

i.e., it satisfies (A + E)x̂ = b for some E

||r|| = ||b− Ax̂|| = ||Ex̂|| ≤ ||E|| · ||x̂|| ⇒ ||r||
||A|| · ||x̂||

≤ ||E||
||A||

,

i.e., ... ?

large relative residual implies a large error in the matrix.

Example (Small Residual).

Ax =

(
0.913 0.659
0.457 0.33

)
· x = b = (0.2540.127)T

x̂1 = (−0.0827 0.5)T, and x̂2 = (0.999,−1.001)T

||r1||1 = 2.1 · 10−4, and ||r2||1 = 2.4 · 10−2

||r1|| is smaller than ||r2|| but the exact solution is (1,−1). A is
ill-conditioned, i.e., large condition number and small resudual do not
imply small solution.
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PROBLEM TRANSFORMATIONS

Can we find an easier system to compute (instead of the original one)
which has the same solution?

Ax = b ⇒ M · Ax = M · b, M is nonsingular

Transformation 1: Permutation. Rows of A can be reordered without
changing x. 0 0 1

1 0 0
0 1 0

 ·
v1

v2
v3

 =

v3
v1
v2

permutation matrix P

Homework 6 (Tns).
Prove that for permutation matrix P the following holds P−1 = PT.
We will use this fact in the next example.
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Example (Permutation Matrix).

A =


0 0 3 5
0 9 1 0
0 0 0 4
1 0 2 3

 , Ax = b =⇒

PAz = Pb,


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

Az =


1 0 2 3
0 9 1 0
0 0 3 5
0 0 0 4

 · z = Pb

z = (AP)−1b = P−1A−1b = PTA−1b = PTx ⇒ x = Pz

Example (Diagonal Scaling).
D is diagonal⇒ DA does row scaling of A. Can affect accuracy of
numerical solution.

triangular matrix,
easy to solve
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FACTOR-SOLVE METHODS

To solve Ax = b, we rewrite A as

A = A1 · A2 · ... · Ak,

where each Ai is easy to solve, i.e., we solve (A1 · A2 · ... · Ak)x = b.

A1y1 = b
A2y2 = y1
...
Ak−1yk−1 = yk−2
Akx = yk−1

Complexity: total flops = flops(factorization) + flops(solve k systems)
Usually flops(factorization)� flops(solve k systems), i.e., same system
of equations can be solved much faster for different b.
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TRIANGULAR MATRICES
An upper triangular matrix is a matrix U with uij = 0 for i > j.

U =

u11 u12 u13
0 u22 u23
0 0 u33


Some properties of upper (and lower) triangular matrices

I U1 + U2, U1 ·U2, U−1
1 are upper triangular

I If U0 = U1U2 then u0(ii) = u1(ii) · u2(ii)

I u−1
ii = 1/uii

I Ux = b is easy to solve by recursive back substitution in O(n2)
flops.

xn = bn/unn, xi = (bi −
n∑

k=i+1

uikxk)/uii, i = n− 1 : 1
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LU FACTORIZATION: ELEMENTARY MATRICES

Elementary matrix = I + one off-diagonal entry. Example

E21 =

1 0 0
3 1 0
0 0 1


Let us apply Gaussian elimination [E21|I] → [I|E−1

21 ], i.e.,1 0 0 1 0 0
3 1 0 0 1 0
0 0 1 0 0 1

 row2 − 3row1−−−−−−−−−→

1 0 0 1 0 0
0 1 0 −3 1 0
0 0 1 0 0 1


In general, E−1

ij is easy to compute by negating (i, j) of Eij. Left
multiplication on Eij is equivalent to an elementary row operation.

Example: E21A =

1 0 0
3 1 0
0 0 1

row1
row2
row3

 =

 row1
3row1 + row2

row3


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LU FACTORIZATION
Claim: We can obtain upper triangular form by multiplying A by sequence of
elementary matrices Eij. Each Eij corresponds to one operation of Gaussian
elimination.

Homework 7 (T).

Let A =

 5 −1 2
10 3 7
15 17 19

. Find sequence of elementary matrices to obtain an

upper triangular form.
Since we can find a sequence of elementary matrices to obtain an upper
triangular form Ei1j1 Ei2j2 ...Einjn A = U and for each Eij we can find an inverse
E−1

ij we can find a factorization of A into multiplication of lower (L) and upper
(U) triangular forms:

Ei1j1 Ei2j2 ...Einjn A = U
(Ei1j1 Ei2j2 ...Einjn)

−1Ei1j1 Ei2j2 ...Einjn A = (Ei1j1 Ei2j2 ...Einjn)
−1U

A = E−1
injn ...E

−1
i2j2 E−1

i1j1 U
A = LU ⇐ (Ei1j1 Ei2j2 ...Einjn)

−1 = L has lower triangular form
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LU FACTORIZATION

Given non-singular A ...

Theorem: If row swaps are not needed to solve the linear system Ax = b
by Gaussian elimination, then A has the LU factorization.

Theorem: There is a permutation matrix P such that there exists LU
factorization of PA than can be carried without row swaps PA = LU.
For fixed P the factorization is unique.

Two steps of the algorithm for solving Ax = b
I Factorization PA = LU.
I Solution of the systems Ly = Pb and Ux = y.
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LU FACTORIZATION: GENERAL CASE

In the general case when A ∈ Rm×n of rank(A) = r ≤ min(m,n), it can be
shown that matrix PrAPc ∈ Rm×n can be factored into a product of a
unit lower trapezoidal matrix L ∈ Rm×r and an upper trapezoidal
matrix U ∈ Rr×n. Here Pr and Pc are permutation matrices performing
the necessary row and column permutations, respectively. The
factorization can be written in block form as

PrAPc = LU =

(
L11
L21

)(
U11U12

)
,

where the matrices L11 and U11 are triangular and nonsingular. Note
that the block L21 is empty if the matrix A has full row rank, i.e. r = m;
the block U12 is empty if the matrix A has full column rank, i.e. r = n.
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LU FACTORIZATION: GENERAL CASE

To solve the system

PrAPc(PT
c x) = LUx̃ = Prb = b̃, x = Pcx̃,

Using the factorization we set y = Ux and solve
(

L11
L21

)
y =

(
b̃1

b̃2.

)
which

determines y as the solution of L11y = b̃1, i.e., the system is consistent iff
L21y = b̃2. Next Ux̃ = y, i.e.,

(U11U12)

(
x̃1
x̃2

)
= y

For an arbitrary x̃2 this system uniquely determines x̃1 as the solution to
the triangular system U11x̃1 = y−U12x̃2. Thus, if consistent the system
has a unique solution only if A has full column rank.
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PIVOTING (
ε 1
1 1

)
·
(

x1
x2

)
=

(
1
0

)
If ε 6= 1 then the system has a unique solution x1 = −x2 = −1/(1− ε). If
ε = 10−16 then if we multiply row 1 by 1016 and subtract from the
second row then (1− 1016)x2 = −1016 and x2 = 1. If we use this x2 then
x1 = 0.

1: int main () {
2: double x;
3: std::cout.precision(64);
4: x = -1.0 * pow(10.0,16.0)/(1 - pow(10.0,16.0));
5: cout << x << endl;
6: return 0;
7: }

It is important to perform row (and/or column) interchanges not only
when a pivotal element is zero, but also when it is small.
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PIVOTING (MARKOWITZ)
Partial pivoting. The pivot is taken as the largest element in magnitude
in the unreduced part of the kth column, i.e., at the start of the kth stage
choose interchange rows k and r, where r is the smallest integer for
which

|a(k)
rk | = max

k≤i≤n
|a(k)

ik |.

Complete pivoting. The pivot is taken as the largest element in
magnitude in the whole unreduced part of the matrix, i.e., at the start of
the kth stage interchange rows k and r and columns k and s, where r and
s are the smallest integers for which

|a(k)
rs | = max

k≤i,j≤n
|a(k)

ij |.

Complete pivoting requires overhead in the complexity. Partial
pivoting is a standard choice in many solvers.

Homework 8 (Tns).
Handout: LU factorization with pivoting. Error analysis. SC pp 74-76.
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MINIMUM DEGREE PIVOTING

I If both aji and aij are nonzeros for all i, j then A has symmetric sparsity
structure.

I If A is diagonally dominant and has symmetric sparse structure then
MDP (special case of Markowitz) reduces the number of fill-ins in LU.

I Matrix A can be represented as a graph G = (V,E).

I Elimination algorithm for v: 1) remove v from V; 2) remove all uv ∈ E
(incident edges); 3) create clique from all nodes that were adjacent to v

I The added edges correspond to newly created nonzeros when row v is
eliminated

Main algorithm:

1. for all v ∈ V

2. choose v ∈ V that has minimum degree

3. eliminate v
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SUPERLU
SuperLU is a general purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations on high performance
machines. The library is written in C and is callable from either C or
Fortran. The library routines will perform an LU decomposition with
partial pivoting and triangular system solves through forward and back
substitution. The LU factorization routines can handle non-square
matrices but the triangular solves are performed only for square
matrices. The matrix columns may be preordered (before factorization)
either through library or user supplied routines. This preordering for
sparsity is completely separate from the factorization. Working
precision iterative refinement subroutines are provided for improved
backward stability. Routines are also provided to equilibrate the
system, estimate the condition number, calculate the relative backward
error, and estimate error bounds for the refined solutions.

I http://crd-legacy.lbl.gov/˜xiaoye/SuperLU/
I run example
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COMPLEXITY

Solving k systems of linear equations for the same A by

Gaussian elimination k · O(n3)
LU factorization O(n3) + k · O(n2)
Inverse (x = A−1b) O(n3) + k · O(n2)

Cramer’s rule (xi = detAi
detA ) k · O(n3) by LU or O(n!) by Laplace
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WHAT IF WE MODIFY A? IN SOME CASES

RE-FACTORIZATION CAN BE AVOIDED.
Example: rank-one modification, i.e., the new matrix is A + uvT.
Reminder: A has rank 1 ⇐⇒ A = uvT .

Simple case: only entry (j, k) changes from ajk to ãjk, i.e., A← A− αejeT
k .

The Sherman-Morrison formula,

(A− uvT)−1 = A−1 + A−1u(1− vTA−1u)−1vTA−1,

i.e., if we need to solve (A− uvT)x = b the S-M formula gives

x = (A− uvT)−1b = A−1b + A−1u(1− vTA−1u)−1vTA−1b.

Algorithm: rank-one updating of solution (requires only O(n2) work)
1: solve Az = u for z, i.e., z = A−1u
2: solve Ay = b for y, i.e., y = A−1b
3: x = y + ((vTy)/(1− vTz))z

For rank-k modification use Woodbury formula (A− UVT
)
−1

= A−1
+ A−1U(I − VTA−1U)

−1VTA−1
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S-M FORMULA

Homework 9 (I).

I Generate or download an invertible sparse (at least 5% sparse)
square matrix A of size at least 1000x1000.

I Generate one vector b (at least 25% sparse).
I Generate 100 random rank-1 changes.
I Solve (A + Ei)x = b for all random changes by using full Gaussian

Elimination or full LU scheme
I Solve (A + Ei)x = b for all random changes by using S-M formula

and keeping A−1

I Draw graph of total running time (y-axis) for all respective
iterations (x-axis). In the time of the first S-M iteration include
time(A−1)

I If A is too large for your computer’s performance try to decrease
it’s size.
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IMPROVING BY ITERATIVE REFINEMENT

Suppose we computed an approximate solution x0 by LU. The residual
is

r0 = b− Ax0

We can use the same LU factors to compute

As0 = r0

and improve x1 = x0 + s0 because

Ax1 = A(x0 + s0) = Ax0 + As0 = (b− r0) + r0 = b.

Note, that computing residual may require better precision.
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Section 7

SPECIAL TYPES OF LINEAR SYSTEMS
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SPECIAL TYPES OF MATRICES

I Symmetric: A = AT (or conjugate if A is complex)
I Positive definite: xTAx > 0 for all x 6= 0 (A � 0)
I Positive semi-definite: xTAx ≥ 0 for all x 6= 0 (A � 0)
I Banded: aij = 0 for all |i− j| > β (bandwidth of A)
I Sparse: most entries of A are 0

For these matrices one can save both space and time in comparison to
dense general matrices. Examples of applications include machine
learning, stochastic processes, Jacobians, Hessians, graphs,
optimization, etc.

Examples of sparse matrices UFL collection
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SPARSE MATRIX STORAGE

Matrices can be
I huge (tera-, peta-, exa-, zetta-, yotta-, ... bytes)
I structurally different at different resolutions
I collected in parallel, i.e., the data is mixed
I noisy, irregular, etc.

Challenges
I How to store the network efficiently?
I How to design an extremely fast access to nodes and links?
I How to minimize the number of cache misses?
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Find a compressed representation of a network.
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MATRIX REPRESENTATION: COMPRESSED ROW

FORMAT

Rows Sorted list of non-zero entries (with possible additional information)
1 2, 5, 6, 12, 18, 23, 103
... ...
1584 1585, 1592, 1600

Given a sorted list of non-zeros (x1, x2, x3, ...), represent it by a list of
differences (x1, x2 − x1, x3 − x1, ...) or (x1, x2 − x1, x3 − x2, ...).

Rows Sorted list of non-zero entries (with possible additional information)
1 1, 4, 5, 11, 17, 22, 102
... ...
1584 1, 8, 16
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THE MINIMUM LOGARITHMIC ARRANGEMENT
MLogA: minimize over all possible π ∈ s(n)∑

ij∈E

lg |π(i)− π(j)|.

MLogA is NP-hard.
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COMBINATORIAL SCIENTIFIC COMPUTING (CSC)

... is a research in an interdisciplinary field that spans scientific computing and
algorithmic computer science. Research in CSC comprises three key
components. The first component involves identifying a problem in scientific
computing and building an appropriate combinatorial model of the problem,
in order to make the computation effective and efficient. The second
component involves the design, analysis, and implementation of algorithms to
solve the combinatorial subproblem. The emphasis in this step is on practical
algorithms that are efficient for large-scale problems; an algorithm with a time
complexity quadratic in the input size could be too slow to be useful, if the
worst-case behavior is realized. The algorithm could compute an exact,
approximate, or heuristic solution to the problem, and it should run quickly
within the context of the other computational steps in the scientific
computation. The third component involves developing software.

Hendrickson, Pothen “Combinatorial Scientific Computing: The Enabling
Power of Discrete Algorithms in Computational Science”
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SPECIAL TYPES OF LINEAR SYSTEMS

POSITIVE DEFINITE SYSTEMS

Examples of positive definite matrices:
I covariance matrix (Σi,j = cov(Xi,Xj) = E[(Xi − µi)(Xj − µj]),

optimization, machine learning.

I If A = AT, aii > 0, and aii >
∑
j 6=i

|aij| then A is pd

I If for x 6= 0 Ax 6= 0 then ATA spd (xTATAx = (xTAT)(Ax) > 0).
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SPECIAL TYPES OF LINEAR SYSTEMS

SYMMETRIC POSITIVE DEFINITE SYSTEMS

Let A be any n× n matrix.
I A principal submatrix of A is any m×m submatrix obtained by

deleting n−m rows and corresponding columns.
I A leading principal submatrix of A of order m is obtained by

deleting the last n−m rows and columns.

Theorems
I If A is SPD then every principal submatrix is SPD.
I Diagonal entries of SPD are positive.
I Cholesky factorization. If A is SPD then LU factorization can be

arranged as A = LLT, i.e., U = LT. Matrix A can also be factorized
as LDLT where L is unit lower triangular, and D is diagonal matrix.
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SPECIAL TYPES OF LINEAR SYSTEMS

2X2 EXAMPLE OF CHOLESKY FACTORIZATION

(
a11 a21
a12 a22

)
=

(
l11 0
l21 l22

)
·
(

l11 l21
0 l22

)
l11 =

√
a11, l21 = a21/l11, l22 =

√
a22 − l221
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SPECIAL TYPES OF LINEAR SYSTEMS

SYMMETRIC POSITIVE DEFINITE SYSTEMS

Homework 10 (I).
Find SPD matrix at the UFL collection. Implement or run existing Cholesky
factorization on it.

64 / 337



LINEAR LEAST SQUARES

Section 8

LINEAR LEAST SQUARES
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LINEAR LEAST SQUARES

DEFINITIONS

If A ∈ Fm×n is not square then Ax = b has usually either no solution or
many solutions.

I if m > n then A is overdetermined (i.e., more equations than
unknowns)

I if m < n then A is underdetermined
Data fitting is one of the most common sources of overdetermined
systems. Instead of looking for an exact solution we will minimize
some norm of the residual

r = b− Ax, i.e., we seek x such that Ax ≈ b.
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LINEAR LEAST SQUARES

Example.
One need to predict price for stocks X, Y, and Z. Fundamental analysis
recommends X = 10, Y = 20, Z = 30. In previous years we found a
linear dependences X + 8 = Y, and X + 23 = Z.

1 0 0
0 1 0
0 0 1
1 −1 0
1 0 −1


X

Y
Z

 ≈


10
20
30
−8
−23


⇒ X = 9.75, Y = 18.875, Z = 31.375
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LINEAR LEAST SQUARES

DATA FITTING

Given m data points (ti, yi) we need to find the best model function
f (t, x) : Rn+1 → R in the lsq sense, where x = (x1, ..., xn) are the
parameters of f

min
x

m∑
i=1

(yi − f (ti, x))2

The fitting function f is linear if it is linear in x

f (t, x) = x1φ1(t) + ...+ xnφn(t).

Example of linear f : f (t, x) = x1t0 + x2t1 + ...+ xntn−1.
Example of nonlinear f : f (t, x) = x1

1t0 + x2
2t1 + ...+ xn

ntn−1.
If f is linear we can set A with aij = φj(ti), b with bi = yi and linear least
squares problems will be

Ax ≈ b
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LINEAR LEAST SQUARES

VANDERMONDE MATRIX
Vandermonde systems have several attractive properties. Applications in FFT,
interpolation, approximation, etc. Square systems of equations can be solved
in O(n log n) flops. Determinant of square system is

∏
i<j

(αj − αi).
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LINEAR LEAST SQUARES

DATA FITTING, 3 PARAMETERS, 5 POINTS

p(t) = 0.086 + 0.4t + 1.4t2
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LINEAR LEAST SQUARES

NORMAL EQUATIONS

We can solve LSQ by minimizing 2nd norm of the residual

φ(x) = ||r||22 = rTr = (b− Ax)T(b− Ax) = bTb− 2xTATb + xTATAx

Necessary condition for minimizing φ(x) is∇φ(x) = 0, where
∇φ(x) = 2ATAx− 2ATb
Sufficient condition for minimizer x is that the Hessian (2ATA) is pod.

Theorem 2.
ATA is pod iff columns of A are linearly independent, i.e., rank(A) = n.
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LINEAR LEAST SQUARES

Example.
One need to predict price for stocks X, Y, and Z. Fundamental analysis
recommends X = 10, Y = 20, Z = 30. In previous years we found a linear
dependences X + 8 = Y, and X + 23 = Z.

1 0 0
0 1 0
0 0 1
1 −1 0
1 0 −1


X

Y
Z

 ≈


10
20
30
−8
−23



ATAx =

 3 -1 -1
-1 2 0
-1 0 2

 x =

-21
28
53

 = ATb

⇒ X = 9.75, Y = 18.875, Z = 31.375
⇒ ||r||22 = 6.375

Homework 11.
Find overdetermined problem at UFL collection, generate random right hand
side b, and solve LSQ problem with normal equations.
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LINEAR LEAST SQUARES

WEIGHTED LINEAR LEAST SQUARES
Given m data points (ti, yi) we need to find the best model function
f (t, x) : Rn+1 → R in the weighted lsq sense, where x = (x1, ..., xn) are
the parameters of f

min
x

m∑
i=1

wi(yi − f (ti, x))2

I advantages: different interpretations of intervals for estimation,
prediction, calibration and optimization, factors of importance

I disadvantage: requires knowledge about wi, almost never the case
in real applications
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LINEAR LEAST SQUARES

Subsection 1

QR
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LINEAR LEAST SQUARES

ORTHOGONALITY AND PROJECTIONS

Recall cos(Θ) =
v1 · v2

||v1|| · ||v2||
=

∑
i(v1)i(v2)i√∑

i(v1)2
i

√∑
i(v2)2

i

. Vectors v1 and v2

are orthogonal if vT
1 v2 = 0.

For LSQ problem Ax ≈ b for m > n usually b 6∈ span(A), so r = Ax− b is
orthogonal to each column of A, i.e., 0 = ATr = AT(b− Ax) or
ATAx = ATb.
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LINEAR LEAST SQUARES

PROJECTORS

Definition.
Matrix P is called projector (or idempotent) if P2 = P. If P = PT it is called
orthogonal projector.
In general, for any projector P, any v ∈ range(P) is projected onto itself,
i.e., v = Px for some x then Pv = P(Px) = P2x = Px = v.

Example.

P =

(
c2 cs
cs s2

)
, where c = cos(Θ), and s = sin(Θ).

(
c2 cs
cs s2

)
·
(

c2 cs
cs s2

)
=

(
c2(c2 + s2) cs(c2 + s2)

cs(c2 + s2) s2(c2 + s2)

)

Matrix I − P is called complementary projector, namely,
(I − P)2 = (I − P)(I − P) = I − IP− PI + P2 = I − P.
If P is an orthogonal projector then P⊥ = I − P is an orthogonal
projector onto span(P)⊥
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LINEAR LEAST SQUARES

Any v ∈ Rm can be expressed as v = (P + (I − P))v = Pv + P⊥v.

Let P be an orthogonal projector onto span(A) then

||b− Ax||22 = ||P(b− Ax) + P⊥(b− Ax)||22
= ||P(b− Ax)||2 + ||P⊥(b− Ax)||2
= ||Pb− Ax||2 + ||P⊥b||2 (since PA = A, P⊥A = 0),

i.e., the LSQ solution is given by ... Ax = Pb because we need to
minimize only first term (no x in the second one). Multiplying both
sides by AT gives

ATAx = ATb

because ATP = ATPT = (PA)T = AT.
One way to obtain P (when ATA is nonsingular, i.e., A has full column
rank) is

P = A(ATA)−1AT, , i.e., y = Pb = A(ATA)−1b = Ax

Example: Matlab lsq example.m
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LINEAR LEAST SQUARES

SENSITIVITY AND CONDITIONING

Definition.
If A has full column rank, i.e., ATA is nonsingular then its pseudoinverse is
given by

A+ = (ATA)−1AT, i.e., A+A = I.

Definition.
The condition number of m× n matrix with rank(A) = n is

cond(A) = ||A||2 · ||A+||2.

If rank(A) < n then cond(A) =∞. The condition number of nonsquare
matrix measures closeness to rank deficiency.
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LINEAR LEAST SQUARES

I If b lies near span(A) then a small perturbation in b changes y = Pb
relatively little.

I If b is almost orthogonal to span(A) then y = Pb will be small and
any change in b can cause large perturbation in y.

⇒ large residual can be a reason of more sensitive system.

We measure closeness of b to span(A) by ratio
||Ax||2
||b||2

= cos(Θ).
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LINEAR LEAST SQUARES

Example.
One need to predict price for stocks X, Y, and Z. Fundamental analysis recommends
X = 10, Y = 20, Z = 30. In previous years we found linear dependencies X + 8 = Y,
and X + 23 = Z. 

1 0 0
0 1 0
0 0 1
1 −1 0
1 0 −1


X

Y
Z

 ≈


10
20
30
−8
−23


Example: Matlab pseudoinverse lsq example.m
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LINEAR LEAST SQUARES

LSQ: EXAMPLE OF INACCURATE RESULTS

Given A =

1 1
ε 0
0 ε

, where ε <
√
εmach. When we compute A+ we need

to calculate

ATA =

(
1 + ε2 1

1 1 + ε2

)
.

which is in f-p arithmetic singular because ATA = fl(ATA) =

(
1 1
1 1

)
.
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LINEAR LEAST SQUARES

AUGMENTED SYSTEMS

Based on the definition of r we need to find x s.t.

r + Ax = b

ATr = 0

which can be written and solved as the augmented systems(
I A

AT 0

)(
r
x

)
=

(
b
0

)
⇒
(
αI A
AT 0

)(
r/α

x

)
=

(
b
0

)
α is a scaling parameter which brings the gap between r and A.
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LINEAR LEAST SQUARES

TWO METHODS FOR NORMAL EQUATIONS

Normal Equations ATAx = ATb
I solve NE with Cholesky factorization (faster)
I QR factorization (more stable numerically)

Recall complexity of Cholesky:
I C = ATA (mn2 flops)

I Cholesky C = LLT (
1
3

n3 flops)

I y = ATb (mn flops)
I solve Lz = y (n2 flops)
I solve LTx = z (n2 flops)

Complexity = mn2 +
1
3

n3 flops
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LINEAR LEAST SQUARES

QR FACTORIZATION

Given A ∈ Rm×n left-invertible⇒ it can be factored A = QR, where R ∈ Rn×n is
upper triangular with rii > 0, and Q ∈ Rm×n is orthogonal (QTQ = I).
Complexity: O(mn2)

ATAx = ATb

RTQTQRx = RTQTb

RTRx = RTQTb (Q is orthogonal ⇒ QTQ = I)

Rx = QTb (R is nonsingular )

1. QR factorization: A = QR (O(mn2) flops)

2. form d = QTb (O(mn) flops)

3. solve Rx = d (O(n2) flops)
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LINEAR LEAST SQUARES

Homework 12 (R).
Read about Grahm-Schmidt orthogonalization (chapters 3.4.5 and 3.5.3)

Homework 13 (I).
Find large-scale overdetermined problem at the UFL collection,
generate random right hand side b, and solve LSQ problem with QR
and NE. Check what method is faster.
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LINEAR LEAST SQUARES

Subsection 2

SVD
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LINEAR LEAST SQUARES

SINGULAR VALUE DECOMPOSITION

Definition.
The singular value decomposition of A ∈ Rm×n has the form

A = UΣVT,

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices (their columns are called
left and right singular vectors), and Σ ∈ Rm×n is diagonal with σii ≥ 0 (called
singular values and ordered in descending order).
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LINEAR LEAST SQUARES

SVD: EXAMPLE
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LINEAR LEAST SQUARES

COMPRESSED REPRESENTATION

Given A ∈ Rm×n with rank(A) = n

A = UΣVT = [U1U2]

[
Σ1
0

]
VT = U1Σ1VT,

the solution of LSQ problem Ax ≈ b is given by

Ax = U1Σ1VTx = b ⇒ x = VΣ−1
1 UT

1 b.

For A of any shape and rank the solution of LSQ problem is given by

x =
∑
σi 6=0

uT
i b
σi

vi (5)

SVD is very useful for ill-conditioned, (nearly) rank-deficient systems
because small σi can be dropped from (5).
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LINEAR LEAST SQUARES

SVD: CONNECTIONS TO || · || AND cond()

SVD has many useful properties such as

I ||A||2 = max
x6=0

||Ax||2
||x||2

= σmax

I cond(A) =
σmax

σmin
I rank(A) = |{σi 6= 0}i|. Example of threshold/precision problem

with rank (rank(A) = 2⇒ rank(A) = 1).0.913 0.659
0.780 0.564
0.457 0.330

 =

(
-0.71042 0.60854 -0.35353
-0.60730 -0.78393 -0.12902
-0.35565 0.12304 0.92648

)
·

1.5850 0.0000
0.0000 0.00062107
0.0000 0.0000

·(-0.81065 -0.58554
0.58554 -0.81065

)
I Pseudoinverse A+ = VΣ+UT, where 1/σi = 0 if σi = 0
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LINEAR LEAST SQUARES

UNDERSTANDING SVD A = UΣVT

I The columns of U corresponding to σi 6= 0 form orthonormal basis for
span(A)

I The columns of U corresponding to σi = 0 form orthogonal basis for
span(A)⊥

I The columns of V corresponding to σi = (6=)0 form orthogonal basis for
null(A) (null(A)⊥)

Low-rank approximation: A = UΣVT = σ1E1 + σ2E2 + ...+ σnEn, where

Theorem 3 (Eckart-Young).

Given SVD A = UΣVT =

n∑
i=1

σiEi with rank(A) = r ≤ p = min(m,n) and

Ak =
k∑

i=1

σiEi then min
rank(B)=k

||A− B||F = ||A− Ak||F = σ2
k+1 + ...+ σ2

p .

In other words, Ak is the optimal approximation in terms of the approximation error
measured by the F-norm, among all matrices of rank k.
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LINEAR LEAST SQUARES

SVD: LATENT-SEMANTIC INDEXING

d1 d2 d3 d4 d5 d6 d7 d8
t1 car 1 3 1 1 0 0 0 0
t2 truck 3 1 0 1 0 0 0 0
t3 speed 0 2 6 1 0 0 0 0
t4 price 1 2 3 0 0 0 0 0
t5 insurance 4 1 1 1 2 0 0 0
t6 accident 0 0 0 1 1 3 1 2
t7 pain 0 0 0 0 1 0 1 1
t8 head 0 0 0 0 3 1 3 1
t9 doctor 0 0 0 0 1 1 0 2
t10 drug 0 0 0 0 4 4 1 1

Matlab example: svdsample.m
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LINEAR LEAST SQUARES

SVD EXAMPLES

Image compression
I ImageCompressionSVD.cdf
I ColorImageCompressionHOSVD.cdf
I Recommendation Systems
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EIGENVALUES

Section 9

EIGENVALUES
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EIGENVALUES

EFFECTS OF TRANSFORMATION, EIGENPROBLEMS
We study several complex effects of transformation on vectors

I rotation
I permutation
I reflection
I scalar multiplication

Some of the simple effects can serve as approaches to determine
stability of numerical methods, upper and lower bounds, convergence,
etc.

Definition.
Given A ∈ Fn×n matrix. If Ax = λx then x ∈ Fn and λ ∈ F are called
eigenvector and eigenvalue of A, respectively. All eigenvalues of A denoted by
λ(A) are called spectrum of A and ρ(A) = max{|λ| : λ ∈ λ(A)} is called
spectral radius.
More precisely x is a right eigenvector. We can define left eigenvector
with yTA = λyT. Note that left evec of A = right evec of AT.
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EIGENVALUES

EIGENPROBLEMS

Eigenvalues/eigenvectors determine

I direction of only expanding/shrinking the vectors
I expansion factor
I behavior of linear transformation by decomposing it into simpler

components

Example: evalsdemo.m, Wiki
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EIGENVALUES

Example.
Newton’s second law: the sum of the external
forces acting on an object at any instant in
time is equal to the product of the object’s mass
and acceleration (*). We consider the system of
springs with stiffness coefficients ki and masses
mi. According to (*) My′′ + Ky = 0, where

M = diag(m1,m2,m3), and K =

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3


Harmonic motion of the system is given by yk(t) = xkeiωt, where ω is
frequency, and xk is amplitude. Since y′′k (t) = −ω2xkeiωt we obtain

Kx = ω2Mx or Ax = λx with A = M−1K, λ = ω2 ⇒

frequency and amplitude are determined by solving eigenproblem.
97 / 337



EIGENVALUES

BASIC FACTS ABOUT EVECS/EVALS

I Ax = λx is equivalent to (A− λI)x = 0 which has a nonzero
solution iff A−λI is singular, i.e., when p(λ) = det(A−λI) = 0. p(λ)
is called the characteristic polynomial of A and its roots are evals.

I According to the Fundamental Theorem of Algebra (root existence

thm) p(λ) = α

n∏
i=1

(λ− λi)⇒ A always has n eigenvalues but some

of the can be complex and may not be distinct.

I Abel’s Impossibility Theorem. In general, polynomial equations
higher than 4th degree are incapable of algebraic solution in terms
of a finite number of arithmetic operations, and root extractions⇒
we will compute evals by iterative algorithms.

Niels H. Abel 1802-1829
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EIGENVALUES

MORE DEFINITIONS

I Algebraic multiplicity (AM) of λ is its multiplicity as a root of char.
poly.

I Geometric multiplicity (GM) of λ is the number of its
corresponding eigenvectors.

I GM≤ AM

I If A has n independent evecs x1, ..., xn corresponding to λ1, ...λn
then if D = diag(x1, ..., xn) and X = [x1...xn] then X is nonsingular
and

AX = XD ⇒ X−1AX = D

and A is called diagonalizable.
I Scaling: Ax = λx ⇒ γx is also an eigenvector of A.
I Sλ = {x|Ax = λx} is called eigenspace corresponding to λ.
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EIGENVALUES

LOCALIZING EIGENVALUES

I |λ| ≤ ||A|| for any vector induced matrix norm.

I More general localization is given by Gershgorin’s Theorem:

Theorem 4.
All eigenvalues of n× n matrix A are contained within the union of n disks,
with the kth disk centered at akk and having radius

∑
j6=k

|akj|.

Matlab demo: gershgorin.m
Intuition: Let λ be eval with its normalized evec ||x||∞ = 1. If xk is an

entry of x s.t. |xk| = 1 then from Ax = λx follows that

(λ− akk)xl =
∑
j 6=l

akjxj ⇒ |λ− akk| ≤
∑
j 6=k

|akj · |xj| ≤
∑
j 6=k

|akj|

I Example of conclusion: what happens with strictly diagonally
dominant matrices? Nonsingular! (Levy-Desplanques thm)
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EIGENVALUES

SENSITIVITY AND CONDITIONING OF EIGENPROBLEMS

We need to quantify the sensitivity of eigenvalues to small changes in
matrix.
Given A with n linearly independent evecs X = [x1, ..., xn] (X is
nonsingular), i.e., A is diagonalizable

X−1AX = D = diag(λ1, ..., λn)

We introduce a perturbation A + E, and F = X−1EX then

X−1(A + E)X = X−1AX + X−1EX = D + F,

so D + F and A + E have the same evals. If µ is one of these evals, i.e.,

(D + F)v = µv = Dv + Fv ⇒ (µI −D)v = Fv ⇒ v = (µI −D)−1Fv

Taking norms and dividing by ||v||2 we have ||(µI −D)−1||−1
2 ≤ ||F||2

⇒ ... ⇒ |µ− λk| ≤ cond2(X)||E||2, where λk is eval of D closest to µ
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EIGENVALUES

SENSITIVITY AND CONDITIONING OF EIGENPROBLEMS

|µ− λk| ≤ cond2(X)||E||2
Conclusion: the eigenvalues are sensitive if the eigenvectors are nearly linearly
dependent.

Since this bound depends on all of the evecs it can overestimate the sensitivity
of a particular eval. Let x, and y be right and left evecs of a simple eval λ.
Consider a perturbed matrix A + E eigen-problem

(A + E)(x + ∆x) = (λ+ ∆λ)(x + ∆x)
remove small terms⇒ A∆x + Ex ≈ ∆λx + λ∆x

yH·(·)⇒ yHA∆x + yHEx ≈ ∆λyHx + λyH∆x
yHA=λyH

⇒ yHEx =≈ ∆λyHx

⇒ ∆λ ≈ yHEx
yHx

⇒ |∆λ| ≤ ||y||2||x||2
|yHx|

||E||2 =
1

cos(Θ)
||E||2,

Θ is an angle between x and y. Example: evals of Hermitian matrices are
always well-conditioned because left and right eves are the same, i.e.,
cos(Θ) = 1.
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EIGENVALUES

EXAMPLE FROM SC BOOK

A =

−149 −50 −154
537 180 546
−27 −9 −25

 , spec(A) = {1, 2, 3}

A has different eigenvalues, i.e., A is diagonalizable but not normal
ATA = AAT.

X =

 0.31623 −0.40406 −0.13914
−0.94868 0.90914 0.97398

0.0000 0.10102 −0.17889

 , Y =

0.68103 −0.67627 −0.68825
0.22526 −0.22542 −0.22942
0.69675 −0.70132 −0.68825


cond(X) = 1.2889e + 03
x(:, 1)T ·y(:, 1) = 0.0017, x(:, 2)T ·y(:, 2) = −0.0025, x(:, 3)T ·y(:, 3) = −0.0046,i.e.,
right evecs are ill-conditioned, and right and left evecs are almost
orthogonal.
If we change a22 = 180.01 then spec(A) = {0.2073, 3.5019, 2.3008}.
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EIGENVALUES

PROBLEM TRANSFORMATION

What happens with evals if we ...
I Shift. If Ax = λx then (A− σI)x = (λ− σ)x.

I Inversion. If A is nonsingular, and Ax = λx then A−1x =
1
λ

x.

I Powers. If Ax = λx then Akx = λkx. Also if A is diagonalizable
A = XTDX then Ak = XTDkX.

I Polynomials. Let p(A) =

k∑
i=0

ciAi, and Ax = λx then p(A)x = p(λ)x.

What is the interpretation of powers of A?
I B is similar to A if there is nonsingular T s.t. B = T−1AT then

By = λy⇒ T−1ATy = λy⇒ ATy = λTy,

i.e., A and B have the same eigenvalues and A has evecs x = Ty.
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EIGENVALUES

SCHUR DECOMPOSITION

Not all matrices are diagonalizable with similarity transformation. (We
can find Jordan decomposition but it is not very useful.) If
A = (aij) ∈ Cm×n the adjoint of A is denoted by AH = (aji). A square
matrix A is called unitary if AHA = I.

Theorem 5 (The Schur Normal Form).
Given A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n s.t.

UHAU = T = D + N,

where T is upper triangular, N is strictly upper triangular,
D = diag(λ1, ..., λn) with λi are evals of A. U can be chosen so that the evals
appear in arbitrary order in D.
The advantage of the Schur normal form is that it can be obtained using
a numerically stable unitary transformation. The columns of U are
Schur vectors but they are not evecs.
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EIGENVALUES

SCHUR DECOMPOSITION

Theorem 6 (The Schur Real Form).
Given A ∈ Rn×n there exists a real orthogonal matrix Q ∈ Rn×n s.t.

QTAQ = T = D + N,

where T is real block upper triangular, D is block diagonal with 1× 1 and
2× 2 blocks, and where all the 2× 2 blocks have complex conjugate evals.
Normal matrix A (AHA = AAH) can be unitarily diagonalized, i.e.,
UHAU = D = diag(λ1, ..., λn). In particular, any Hermitian A

A = UΛUH =
n∑

i=1

λiuiuH
i ,

where λi are real.
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Section 10

Computing Eigenvalues and Eigenvectors
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Computing Eigenvalues and Eigenvectors

POWER ITERATION
Direct computation of evals and evecs is computationally difficult for
large-scale matrices. One way to solve the problem efficiently is to use
iterative methods.

A single largest eval can be computed with PI
1: x0 ← random nonzero vector
2: for k = 1 to K do
3: xk = Axk−1
4: end for

Let us express x0 =
n∑

j=1

αjvj, where vj are evecs of A. Then

xk = Axk−1 = A2xk−2 = · · · = Akx0

= Ak
∑

j

αjvj =
∑

j

αjAkvj =
∑

j

λk
jαjvj

= λk
1
(
α1v1 +

n∑
j=2

(λj

λi

)k
αjvj

)
note that

(λj

λi

)k → 0
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Computing Eigenvalues and Eigenvectors

NORMALIZED POWER ITERATION

Problems with power iteration:
I more than one maximum eval and PI converges to a linear

combination of them (see proof)
I given real matrix and real vector it cannot converge to complex

vector
I possible numerical problems (like fast growth of the vector, see

example)

1: x0 ← random nonzero vector
2: for k = 1 to K do
3: xk = Axk−1
4: xk = xk/||x||∞
5: end for

109 / 337



Computing Eigenvalues and Eigenvectors

NORMALIZED POWER ITERATION

Problems with power iteration:
I more than one maximum eval and PI converges to a linear

combination of them (see proof)
I given real matrix and real vector it cannot converge to complex

vector
I possible numerical problems (like fast growth of the vector, see

example)
1: x0 ← random nonzero vector
2: for k = 1 to K do
3: xk = Axk−1
4: xk = xk/||x||∞
5: end for

109 / 337



Computing Eigenvalues and Eigenvectors

GEOMETRIC INTERPRETATION

The convergence rate of power iteration depends on |λ2/λ1|. Smaller
ratio leads to faster convergence.
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Computing Eigenvalues and Eigenvectors

NORMALIZED INVERSE ITERATION

Eigenvalues of A−1 are the reciprocals of those of A. If we need a
smallest eval then we can use this fact. However, instead of applying PI
to A−1 we solve equivalent system (with LU or Cholesky).

1: x0 ← random nonzero vector
2: for k = 1 to K do
3: Solve Ayk = xk−1
4: xk = yk/||y||∞
5: end for
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Computing Eigenvalues and Eigenvectors

RAYLEIGH QUOTIENT ITERATION
If x is an approximate evec for a real matrix A, then finding λ can be
considered as LSQ problem xλ ≈ Ax which can be solved by normal
equation xTxλ = xTAx, i.e., the LSQ solution is

λ =
xTAx
xTx

called Rayleigh quotient.

In particular RQ
xT

k Axk

xT
k xk

at iter k gives a better approximation than NPI.

1: x0 ← random nonzero vector
2: for k = 1 to K do
3: σk = xT

k−1Axk−1/xT
k−1xk−1

4: Solve (A− σkI)yk = xk−1
5: xk = yk/||y||∞
6: end for

For complex matrices RQ is
xH

k Axk

xH
k xk

. The number of correct digits in the

approx evec is at least doubled.
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Computing Eigenvalues and Eigenvectors

DEFLATION, COMPUTING THE SECOND EVAL

If x1, λ1 are computed then we can compute λ2 by deflation, which
removes the known eigenvalue. Intuitively, the process is analogous to
obtaining p(λ)/(λ− λ1). Simple case: operation that eliminates eval λi
in real square diagonalizable matrix

A′i = A− λixiyT
i ,

where xi, and yi are the right and left eigenvectors, so λ(A) = λi ∪ λ(Ai).

113 / 337



Computing Eigenvalues and Eigenvectors

SIMULTANEOUS ITERATION

Let us consider computing of several evals/evecs at once. Let
X0 = [x(0)

1 , ..., x(0)
p ] be the matrix of p linearly independent columns, i.e.,

rank(X0) = p. Power iteration on X0:
1: X0 ← any n× p matrix of rank p
2: for k = 1 to K do
3: Xk = AXk−1
4: end for

Let S0 = span(X0), and let S be the invariant subspace spanned by evecs
v1, ..., vp corresponding to p largest evals λ1, ..., λp. If no nonzero vector in S is
orthogonal to S0 then for any k > 0, the columns of Xk = AkX0 form a basis for
p-dim space Sk = AkS0. One can show that Sk converges to S.
Problems: 1) normalization to avoid of overflow; 2) since converges to a
multiple of dominant evec of A, the columns of Xk are increasingly
ill-conditioned which requires orthonormalization by QR.

Homework 14 (R).
QR Iteration for eigenvectors, SC book Section 4.5.6
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Computing Eigenvalues and Eigenvectors

SIMULTANEOUS ITERATION

1: X0 ← any n× p matrix of rank p
2: Q0R0 = QR(X0)
3: for k = 1 to K do
4: W = AQk−1
5: QkRk = W
6: end for
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Computing Eigenvalues and Eigenvectors

COMPUTING EVALS/EVECS FOR LARGE MATRICES

I Computing all evals/evecs exactly is very difficult, usually
unrealistic.

I Very large matrices are almost always sparse. If the matrix is not
sparse then it is very difficult to store its entries. Example: size of
double-precision matrix of size 106 × 106 is approximately 8TB.

I Approaches that are based on the similarity transformation can
hardly work because they cause fill-in and after several
transformations the matrix will be dense.

I Solution: use mat-vec multiplications because their complexity is
proportional to the number of non-zeros. Building Krylov
sequence x,Ax,A2x, ... is easy.

I Moreover, if a subroutine Ax is provided for any x then there is no
need to store the matrix. In this case we can use Krylov subspaces.
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Computing Eigenvalues and Eigenvectors

KRYLOV SUBSPACE METHODS

Let A be an n× n matrix, x0 an arbitrary nonzero vector. We define
Krylov sequence xk = Axk−1 (i.e., power iterations). We define the n× k
Krylov matrix

Kk = [x0 x1 ... xk−1] = [x0 Ax0 ... Ak−1x0]

and the Krylov subspace is defined as Kk = span(Kk). For k = n

AKn = [Ax0 ... Axn−2 Axn−1] = [x1...xn−1xn] (6)

= Kn[e2 ... en K−1
n xn] = KnCn, (7)

i.e., K−1
n AKn = Cn, where Cn is the the Hessenberg matrix. It can be

reduced to a triangular form through QR and deflation steps.
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Computing Eigenvalues and Eigenvectors

KRYLOV SUBSPACE METHODS

Unfortunately, the convergence of columns of Kk to the dominant evec
of A means that Kn is likely to be ill-conditioned basis to span Kn but we
can apply QR, i.e., QnRn = Kn, and the columns of of Qn form form
orthonormal basis for Kn.

QH
n AQn = (KnR−1

n )−1AKnR−1
N = RnK−1

n AKnR−1
n = RnCnR−1

n ≡ H,

i.e., H is a Hessenberg matrix that unitarily similar to A. The columns of
Qn can be computed one at a time.

AQn = QnH ⇒ Aqk = h1kq1 + ...+ hkkqk + hk+1,kqk+1,

i.e., qk is computed by using the preceding q1, ..., qk−1, where

hjk = qH
j Aqk.
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Computing Eigenvalues and Eigenvectors

ARNOLDI ITERATION
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Computing Eigenvalues and Eigenvectors

HOW TO APPROXIMATE EVALS/EVECS

At a given step k of the Arnoldi process we can approximate
evals/evecs by using the Rayleigh quotient. Given Qk = [q1 ... qk] with k
Arnoldi vectors, and let Uk = [qk+1 ... qn] be the matrix with the
noncomputed Arnoldi vectors, i.e., Qn = [QkUk].

H = QH
NAQn = [QkUk]

HA[QkUk] =

(
Hk M
H̃k N

)
,

where M, N are not computed yet. The eigenvalues of Hk are called Ritz
values and vectors Qky, where y is evec of Hk are called Ritz vectors.
One can prove that Ritz vals/vecs converge to evals/evecs of A.

I Complexity: each new kth iteration requires mat-vec multiplication
Ax, and O(kn) work to orthogonalize vector against all previous.

I Symmetric matrices: Lanczos iteration.
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Computing Eigenvalues and Eigenvectors

COMPUTING SVD

Singular Value Decomposition of A is given by

A = UΣVT

where U and V are square orthogonal matrices, and Σ is diagonal
matrix with singular values of A.

Theorem 7.
The singular values of A are nonnegative square roots of eigenvalues of ATA
and columns of U and V are orthonormal evecs of AAT and ATA, respectively.
If ATA is given one can compute singular values A. Otherwise, SVD can
be computed by a variant of QR iterations/Jacobi/...
Complexity: mn2 + n3.
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Computing Eigenvalues and Eigenvectors

SOFTWARE REVIEW

I BLAS
I ARPACK
I LAPACK, LAPACK++
I SCALAPACK

122 / 337



Computing Eigenvalues and Eigenvectors

COMPUTING EIGENVALUES

Homework 15 (I).

I Download an n× n matrix at UFL matrix collection, n > 1000.
I Download and compile last version of LAPACK

(http://www.netlib.org/lapack/, including LAPACKE, and
BLAS). You can also use LAPACK++ interface.

I Browse the manual, see what functions for computing evals/evecs
are implemented in LAPACK. What data structures?

I Compute eigenvalues and eigenvectors.
I Bonus: compute singular values of the matrix.

123 / 337

http://www.netlib.org/lapack/


NONLINEAR EQUATIONS

Section 11

NONLINEAR EQUATIONS
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NONLINEAR EQUATIONS

DEFINITIONS

Definition.
A general system of m nonlinear equations in n unknowns has the form

f (x) = 0,

where f : Rn → Rm. We seek n-vector x s.t. all m component functions of f (x)
are zero simultaneously.

I The system can be overdetermined when m > n (usually no exact
solution, only approximate).

I The system can be underdetermined when m < n (usuallys has
infinitely many solutions))

I A solution x s.t. f (x) = 0 is called a root of the equation

Example.

f (x) =

[
f1(x)
f2(x)

]
=

[
x2

1 + 2x2 + 3
−2x3

1 + x3

]
=

[
0
0

]
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NONLINEAR EQUATIONS

EXAMPLE, 2-DIM

red - no solution, blue - 2 solutions, f (x) =

[
x2

1 − x2 + γ

−x1 + x2
2 + γ

]
=

[
0
0

]
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NONLINEAR EQUATIONS

EXAMPLES, 1-DIM, BASIC THEOREMS

I ex + 1 = 0 - no solution
I e−x − x = 0 - 1 solution
I x2 − 4 sin(x) = 0 - 2 solutions
I x3 + 6x2 + 11x = 0 - 3 solutions
I sin(x) = 0 - infinitely many solutions

Theorem 8 (Intermediate Value Theorem).
Let f (x) be a function which is continuous on closed interval [a, b] and let y0 be
a real number lying between f (a) and f (b), i.e. with f (a) ≤ y0 ≤ f (b) or
f (b) ≤ y0 ≤ f (a). Then there is at least one c with a ≤ c ≤ b such that
y0 = f (c).
Conclusion: if f (a) and f (b) differ in signs then there is at least one root
within [a, b]. This interval is called a bracket for a solution of 1-dim
nonlin equation f (x) = 0. Can be generalized for n-dim.
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NONLINEAR EQUATIONS

BASIC THEOREMS (CONT.)

Definition.
I The Jacobian matrix of f is defined by {Jf (x)}ij = ∂fi(x)/∂xj.

I A function g : Rn → Rn is contractive on a set S ⊂ Rn if ∃γ, with
0 < γ < 1, s.t. ||g(x)− g(z)|| ≤ γ||x− z|| for all x, z ∈ S.

I A fixed point of g is any x s.t. g(x) = x.
I If f is a function whose domain is X and range is Y then f is invertible is

there exists function g : Y→ X such that

f (x) = y ⇐⇒ g(y) = x
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NONLINEAR EQUATIONS

BASIC THEOREMS (CONT.)

Theorem 9 (Inverse Function Theorem).
For a continuously differentiable f if its J(f ) is nonsingular at point x∗ then
there is a neighborhood of f (x∗) in which f is locally invertible, i.e., f (x) = y
has a solution for any y in the that neighborhood.

Theorem 10 (Contraction Mapping).
If g is contractive on a closed set S ⊂ Rn and g(S) ⊂ S then g has a unique
fixed point in S, i.e., if f has the form f (x) = x− g(x), where g is contractive
on S, with g(S) ⊂ S, then f (x) = 0 has a unique solution in S, i.e., the fixed
point of g.
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NONLINEAR EQUATIONS

SENSITIVITY AND CONDITIONING
I We define the condition number of the problem to be the ratio of of

the relative change in the solution to the relative change in the
input,i.e.,

CN =
|(f (x̂)− f (x))/f (x)|
|(x̂− x)/x|

=
|∆y/y|
|∆x/x|

=
relative forward error

relative backward error

I Absolute forward error = f (x + ∆x)− f (x) ≈ f ′(x)∆x

I Relative forward error =
f (x + ∆x)− f (x)

f (x)
≈ f ′(x)∆x

f (x)

I CN ≈
∣∣∣∣ f ′(x)∆x/f (x)

∆x/x

∣∣∣∣ =

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣
Example.

f (x) =
√

(x), f ′(x) = 1/(2
√

x) ⇒ CN ≈
∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ =

∣∣∣∣x/(2
√

x)√
x

∣∣∣∣ = 1/2, i.e., a

relative change in input causes a relative change in the output of about half
that size.
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NONLINEAR EQUATIONS

SENSITIVITY AND CONDITIONING

I In root-finding problems f (x) at the solution is 0, so we will use
absolute CN instead of the relative CN for evaluating f that is

given by
|∆y|
|∆x|

≈ |f ′(x∗)|.

I The root-finding absolute CN is opposite to the evaluation of f , i.e.,
it is given by 1/|f ′(x∗)| ⇒ if for approximation x̂ we have
|f (x̂)| ≤ ε then the error |x̂− x∗| in the solution may be as large as

ε

|f ′(x∗)|
I The corresponding absolute CN in n-dim are ‖Jf (x∗)‖, and
‖J−1

f (x∗)‖, for f evaluation and root-finding, respectively

131 / 337



NONLINEAR EQUATIONS

SENSITIVITY AND CONDITIONING

I lines are curved, we seek for intersection with x-axis
I dashed curves - regions of uncertainty, the root should be between

dashed curves
I small (large) interval of uncertainty - steep (shallow) slope
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NONLINEAR EQUATIONS

EXAMPLE OF ILL-CONDITIONED SYSTEM
f (x) =

[
x2

1 − x2 + γ

−x1 + x2
2 + γ

]
=

[
0
0

]
, Jf (x) =

[
2x1 −1
−1 2x2

]

For γ = 0.25 there is a unique solution x∗ = (0.5, 0.5)T, and Jf is singular.
Indeed, for smaller γ there are 2 solutions, and for larger γ there is no solution.
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NONLINEAR EQUATIONS

CONVERGENCE RATES, STOPPING CRITERIA

Nonlinear equations are usually solved by iterative methods that produce
increasingly accurate approximations. The iterations are terminated when the
solution is accurate enough.

I ek = xk − x∗ is an error at iteration k

I iterative method converges with rate r is

lim
k→∞

‖ek+1‖
‖ek‖r = C, where C > 0 is finite

Interesting cases are

I r = 1, and C < 1 - convergence rate is linear
I r > 1 - convergence is superlinear
I r = 2, 3, ... - convergence is quadratic, cubic, etc.

I often ‖ek‖ is difficult to know/compute, so a reasonable surrogate is the
relative change in successive iterates ‖xk+1 − xk‖/‖xk‖. Example:
f (x1) = 0, f (x2) = ε, and ‖x1 − x2‖ is large.
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Nonlinear Equations in One Dimension

Section 12

Nonlinear Equations in One Dimension
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Nonlinear Equations in One Dimension

INTERVAL BISECTION

If one cannot find x∗ s.t. f (x∗)
exactly

= 0 (one reason - machine precision)
then an alternative is to seek a short interval where f changes the sign.

Easy to implement; sometimes hard to estimate the correct interval; can
be slow; r = 1, C = 0.5
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Nonlinear Equations in One Dimension

INTERVAL BISECTION
f (x) = x2 − 4 sin(x) = 0
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Nonlinear Equations in One Dimension

FIXED-POINT ITERATION
Reminder: given g : R→ R, a value x, s.t. x = g(x) is called a fixed point.

Fixed-point problems x = g(x) often arise in practice. Moreover,
nonlinear equations can usually be recast as f-p. For example in many
iterative scheme

xk+1 = g(xk),

where g is a function chosen so that fixed points are the solutions for
f (x) = 0. Such f-p representations of f (x) = 0 can be different. Not all of
them are iteration schemes.
Example: f (x) = x2 − x− 2 has roots x = 2, x = −1. Some f-p
representations are

I g(x) = x2 − 2, g(x) = x = x2 − 2⇒ f (x)

I g(s) =
√

x + 2, ...
I g(x) = 1 + 2/x, ...
I g(x) = (x2 + 2)/(2x− 1), ...

the idea is to release x out of f (x)
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Nonlinear Equations in One Dimension

FIXED-POINT ITERATION, EXAMPLE
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Nonlinear Equations in One Dimension

FIXED-POINT ITERATION, EXAMPLE
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Nonlinear Equations in One Dimension

MEAN VALUE THEOREM

Theorem 11.
If f : D→ R is continuous on closed D = [a, b], and differentiable on the open
interval (a, b) then ∃c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b− a
.
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Nonlinear Equations in One Dimension

FIXED-POINT ITERATION
Derivative of smooth g at x∗ is one way to characterize the iterative scheme (IS)

xk+1 = g(x)

I If x∗ = g(x∗) and |g′(x∗)| < 1 then the IS is locally convergent, i.e., x∗ is in
some interval [a, b], where f-p iteration converges.

I If |g′(x∗)| > 1 then g diverges for any starting point (6= x∗)

Sketch of Proof: if x∗ is a fixed point then the error at kth iter is

ek+1 = xk+1 − x∗ = g(xk)− g(x∗)

By the Mean Value Theorem there exists ak between xk and x∗ s.t.

g(xk)− g(x∗) = g′(ak)(xk − x∗) ⇒ ek+1 = g′(ak)ek.

ak is not known, but if |g′(x∗)| < 1 then by starting iterations close enough to
x∗, we know that ∃C s.t. |g′(ak)| ≤ C < 1, for k = 0, 1, ...⇒

|ek+1| ≤ C|ek| ≤ ... ≤ Ck|e0|
C<1⇒ Ck → 0, |ek| → 0.
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Nonlinear Equations in One Dimension

F-P ITERATION, EXAMPLE
Function f (x) = x2 − x− 2 has roots x = 2, x = −1. Some f-p
representations are

I g(x) = x2 − 2, g′(x) = 2x ⇒ g′(2) = 4, i.e., g diverges
I g(s) =

√
x + 2, g′(x) = 1/(2

√
x + 2) ⇒ g′(2) = 1/4, i.e., g converges

with C = 1/4. The positive sign of g′(2) causes the iterates to
approach the f-p from one side.

I g(x) = 1 + 2/x, g′(x) = −2/x2 ⇒ g′(2) = −1/2, i.e., g converges
with C = 1/2, sides of convergence are alternating.

I g(x) = (x2 + 2)/(2x− 1),
g′(x) = (2x2 − 2x− 4)/(2x− 1)2 ⇒ g′(2) = 0, i.e., g converges
quadratically (when g′(f-p) = 0).

Homework 16.
Find two different equivalent fixed-point problems for f (x) = x2 − 3x + 2 = 0.
Analyze the convergence properties. Confirm the analysis by implementing
each of them and verifying the convergence.
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Nonlinear Equations in One Dimension

TAYLOR SERIES
Theorem 12.
A function f (x), that has infinitely many derivatives at x0, can be represented by the
power series

f (x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

for all x within the interval of convergence of the series. If x0 = 0 then TS are known
to be Maclauren series.
TS have many theoretical and practical uses. If function is analytical then
everything is simpler, however in practice many functions are not infinitely
differentiable, and any actual computation can only include a finite number of
terms. Thus, in practice a small number of derivatives is used. Therefore, it is
important to know how accurately a function can be represented by its
truncated TS. An error estimation (Taylor reminder)

Rn(x) = f (x)− Tn(x)

where Tn(x), the nth partial sum of the Taylor series of f centered at x0.
Example: http://www.mathworks.com/help/symbolic/taylor.html
+ multivar handout 144 / 337
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Nonlinear Equations in One Dimension

NEWTON’S METHOD
A nonlinear function can be approximated by the truncated Taylor series

f (x + h) ≈ f (x) + f ′(x)h

that is a linear function of h that approximates f near given x. Zero of this
function is easy to compute when h = −f (x)/f ′(x) if f ′(x) 6= 0. “Zeros” of f and
its approximation are not exactly equal, so we will repeat the iteration. In
other words, we approximate f near xk by the tangent line at f (xk).

1: x0 ← initial guess
2: for k = 1 to K do
3: xk+1 = xk − f (xk)/f ′(xk)
4: end for
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Nonlinear Equations in One Dimension

NEWTON’S METHOD, EXAMPLE

f (x) = x2 − 4 sin(x) = 0, f ′(x) = 2x− 4 cos(x), initial x0 = 3

xk+1 = xk −
x2

k − 4 sin(xk)

2xk − 4 cos(xk)

The change at each iteration is hk = −f (xk)/f ′(xk)
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Nonlinear Equations in One Dimension

NEWTON’S METHOD

We can view Newton’s method as a way of transforming f (x) = 0 into
f-p problem x = g(x), where

g(x) = x− f (x)/f ′(x) (because hk → 0)

We need to estimate the convergence of the scheme with

g′(x) = f (x)f ′′(x)/(f ′(x))2.

If x∗ is a simple root (f (x∗) = 0, and f ′(x∗) 6= 0) then g′(x∗) = 0⇒ the
convergence is quadratic, r = 2⇒ the number of correct digits is
doubled at each iteration for simple root problem. For multiple roots
the convergence is linear (check at home!).
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Nonlinear Equations in One Dimension

SECANT METHOD

I Possible problem with Newton’s method: both f and f ′ must be evaluated
at each iteration; f ′ can be expensive to evaluate

I One way to cope with this problem is to replace f ′ with finite difference
approximation

f ′(xk) ≈
f (xk)− f (xk−1)

xk − xk−1
⇐ requires two evaluations of f

I Secant Method
1: x0, x1 ← initial guess
2: for k = 1 to K do
3: xk+1 = xk −

f (xk)(xk − xk−1)

(f (xk)− f (xk−1))
4: end for
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Nonlinear Equations in One Dimension

SECANT METHOD, EXAMPLE

f (x) = x2 − 4 sin(x) = 0, hk is the change at xk at each iteration.
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Nonlinear Equations in One Dimension

SECANT METHOD, CONVERGENCE

It can be shown that lim
k→∞

|ek+1|
|ek| · |ek−1|

= c > 0, i.e., the sequence is locally

convergent, and the rate is superlinear. We define for each k

sk = |ek+1|/|ek|r, r is the convergence rate that we need to determine

⇒ |ek+1| = sk|ek|r = sk(sk−1|ek−1|r)r = sksr
k−1|ek−1|r

2
,

|ek+1|
|ek| · |ek−1|

=
sksr

k−1|ek−1|r
2

sk−1|ek−1|r|ek−1|
= sksr−1

k−1|ek−1|r
2−2−1.

|ek+1|
|ek| · |ek−1|

→ c, and on the other hand |ek| → 0 then r2 − r− 1 = 0, i.e.,

r = 1.618.
Both Newton’s and Secant methods must be started close enough to the
solution in order to converge. The Secant method must have 2 starting
points.
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Nonlinear Equations in One Dimension

INVERSE INTERPOLATION

Secant method uses linear interpolation to approximate function when
the solution is close enough. A better convergence rate can be obtained
by using higher-degree polynomial interpolation.
Example: Muller’s method with convergence rate r ≈ 1.839.

Possible problems with polynomial interpolation
I interpolation polynomial may not have real roots
I not all roots are easy to compute (in particular, for high-order

polynomials)
I multiple roots, choice of root can be hard

Inverse Interpolation: we fit the values xk as a function of the values
yk = f (xk) by a polynomial p(y), so that the next approximate solution is
simply p(0).
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Nonlinear Equations in One Dimension

INVERSE INTERPOLATION

For quadratic interpolation we need 3 approximate values a, b, c with
corresponding evaluations fa, fb, fc. By using Lagrangian interpolation we fix
u = fb/fc, v = fb/fa, w = fa/fc.

p = v(w(u−w)(c−b)−(1−u)(b−a)), q = (w−1)(u−1)(v−1) ⇒ xk+1 = b+
p
q
.
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Nonlinear Equations in One Dimension

INVERSE INTERPOLATION, EXAMPLE

f (c) = x2 − 4 sin(x) = 0, a = 1, b = 2, c = 3, hk is the change in xk at each
iteration.

Homework 17 (R).
Linear Fractional Interpolation, SC book, Section 5.5.6
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Systems of Nonlinear Equations

Section 13

Systems of Nonlinear Equations
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Systems of Nonlinear Equations

FIXED-POINT ITERATION

Given g : Rn → Rn then a f-p iteration for g is to find x ∈ Rn s.t.

x = g(x), and xk+1 = g(xk) is the corresponding f-p iteration.

I In 1-dim the convergence is determined by |g′(x∗)|
I In n-dim the analogous condition is related to the spectral radius

ρ(G(x∗)) < 1, (8)

where G(x) is the Jacobian matrix of g at x, {G(x)}ij =
∂gi(x)

∂xj
. If (8) is

satisfied then then f-p iteration converges is started close enough to the
solution. Smaller ρ gives faster convergence.

I Often we don’t need to compute all evals, for example ρ(A) ≤ ||A||.
I If G(x∗) = 0 the convergence is quadratic or better.
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Systems of Nonlinear Equations

NEWTON’S METHOD

Not all methods for 1-dim can be generalized for n-dim. Given
f : Rn → Rn the truncated Taylor series is

f (x + s) = f (x) + Jf (x)s,

Reminder: f ′(a) = lim
h→0

f(a + h)− f(a)

h

where Jf is the Jacobian {Jf (x)}ij = ∂fi(x)/∂xj. If s satisfies the linear
system Jf (x)s = −f (x) then x + s is an approximate zero of f .

NM: replaces the system of nonlinear equations with the system of
linear equations at each iteration.

1: x0 ← initial guess
2: for k = 1 to K do
3: Solve Jf (xk)sk = −f (xk) for sk
4: xk = xk + sk
5: end for

Example: newton2ddemo.m
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Systems of Nonlinear Equations

NEWTON’S METHOD

I Convergence. If the corresponding f-p iterator is smooth then we can
differentiate it and evaluate its Jacobian

g(x) = x− Jf (x)−1f (x)

G(x∗) = I − Jf (x∗)−1Jf (x∗) +

n∑
i=1

fi(x∗)Hi(x∗) = 0,

where Hi(x) is a component matrix of the derivative of Jf (x)−1 (which is a
tensor), i.e., the convergence is usually quadratic (given nonsingular Jf at
x∗)

I Complexity. (1) Computing Jf (xk) (either in closed form or in finite
differences) can be done in O(m) operations, where m is a number of
nonzero elements in Jf based on its sparsity structure (n2 for dense). (2)
Computing Jf (xk)sk = −f (xk) by LU factorization (or similar) costs O(n3)
for dense structures.

I When partial derivatives are difficult to evaluate then use Secant
Updating Method. See handout Section 5.6.3
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Systems of Nonlinear Equations

ROBUST NEWTON-LIKE METHODS

Newton’s method may fail to converge when started far from a
solution.

I 1-dim hybrid fail-safe method: bisection and Newton (hard to
generalize for n-dim)

I Damped Newton Method: when sk is computed then

xk+1 = xk + αksk,

where αk is a scalar. One way to choose αk is to monitor ||f (xk)||2
and even minimize ||f (xk + αksk)||. Note that αk can vary for
different k.
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Systems of Nonlinear Equations

SOFTWARE

I http://www.netlib.org/toms/ (555, 617, 652, 777, 666, 681)

I http://www.neos-guide.org/content/nonlinear-equations
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INTRODUCTION TO OPTIMIZATION

INTRODUCTION

I Optimization problems arise in all areas of science and engineering.
Any design problem usually involves optimizing some figure of
merit such as cost or efficiency. Among all configurations in the
design space the goal is to fine one or more with the best objective.

I The objectives can be multiple, different, and mutually
contradictory.

I Optimization problems can include elements of randomness.
I Can contain many degrees of freedom
I Almost any scientific computing problem can be (re)formulated as

an optimization problem.
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INTRODUCTION TO OPTIMIZATION

EXAMPLE, ISING MODEL
The Ising model is a math model of ferromagnetism in statistical mechanics.

I The model consists of discrete variables that represent magnetic dipole
moments of atomic spins that can be in one of two states (+1 or 1). The
spins are arranged in a graph, usually, a lattice, allowing each spin to
interact with its neighbors.

I The model allows the identification of phase transitions.

We consider a
set of d-dim lattice states. In graph representation each node j correspond
to discrete variable σj ∈ {1,−1}. A spin configuration σ = {σi} is an
assignment of spin value to each node of the lattice.

I For any two adjacent nodes i and j we define interaction Jij, and each
node i has an external magnetic field hi. The energy of σ is given by the
Hamiltonian H(σ) = −

∑
i,j

Jijσiσj − µ
∑

j

hjσj, where µ is magnetic

moment.
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INTRODUCTION TO OPTIMIZATION

EXAMPLE, LAYOUT PROBLEM

Find an optimal layout of 2D objects such that
1. the total length of the given connections between these objects will

be minimal
2. the two-dimensional space will be well utilized and
3. the overlapping between objects will be as little as possible

(a) (b)
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INTRODUCTION TO OPTIMIZATION

TWO-DIMENSIONAL LAYOUT PROBLEM:
APPLICATIONS

I Facility location problem. In this class of problems the goal is to locate a
number of facilities within a minimized distance from the clients. In many
industrial versions of the problem there exist additional demands, such as the
minimization of the routing between the facilities and various space constraints
(e.g., the factory planning problem).could be located.

I Network visualization
I Wireless networks and coverage problems. These have a broad range

of applications in the military, surveillance, environmental monitoring, and
health care fields. In these problems, having a limited number of resources (like
antennae or sensors), one has to cover the area on which many demand points are
distributed and have to be serviced.

I Engineering VLSI systems.
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INTRODUCTION TO OPTIMIZATION

TWO-DIMENSIONAL LAYOUT PROBLEM

minimize Total edge length (quadratic objective)
subject to ∀ small squares s the amount of the material

inside s is less than its area
(linear inequality constraints).
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INTRODUCTION TO OPTIMIZATION

MATERIAL MOVEMENT PROBLEM FORMULATION

min
u,v

1
2

∑
ij∈E

wij

[(
x̃i +

∑
p∈c(i)

αpiup − x̃j −
∑

p∈c(j)

αpjup

)2

+

(
ỹi +

∑
p∈c(i)

αpivp − ỹj −
∑

p∈c(j)

αpjvp

)2]

 v

α

vertex i

square s

hs

rt(s) i

αrb(s) i

αlb(s) i

αlt(s) i

ws

u
1
 v

1 2 2

3 34 4

u

uu

 v

 v
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INTRODUCTION TO OPTIMIZATION

RESPONSE TO EPIDEMICS, CYBER ATTACKS
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INTRODUCTION TO OPTIMIZATION

DEFINITIONS

An optimization problem can be expressed as the problem of
determining an argument for which some function f has an extreme
value (min or max) on a given domain.
A general continuous optimization problem has the form

min
x

f (x) subject to g(x) = 0 and h(x) ≤ 0,

where f : Rn → R, g : Rn → Rm, and h : Rn → Rp.
I g : Rn → Rm, and h : Rn → Rp are called the constraints (i.e., some

set S called feasible set)
I any x that satisfies constraints (i.e., x ∈ S) is called feasible point
I x∗ is called minimizer if for all x ∈ S f (x∗) ≤ f (x)
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INTRODUCTION TO OPTIMIZATION

MAIN CLASSES OF OPTIMIZATION PROBLEMS

I Linear programming (LP): The objective function and constraints
are linear. The decision variables involved are scalar and
continuous.

I Nonlinear programming (NLP): The objective function and/or
constraints are nonlinear. The decision variables are scalar and
continuous.

I Integer programming (IP): The decision variables are scalars and
integers.

I Mixed integer linear programming (MILP): The objective function
and constraints are linear. The decision variables are scalar; some
of them are integers whereas others are continuous variables.

I Mixed integer nonlinear programming (MINLP): A nonlinear
programming problem involving integer as well as continuous
decision variables.
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INTRODUCTION TO OPTIMIZATION

MAIN CLASSES OF OPTIMIZATION PROBLEMS (CONT)

I Discrete optimization: Problems involving discrete (integer)
decision variables. This includes IP, MILP, and MINLPs.

I Optimal control: The decision variables are vectors.
I Stochastic programming or stochastic optimization: Also termed

optimization under uncertainty. In these problems, the objective
function and/or the constraints have uncertain (random) variables.
Often involves the above categories as subcategories.

I Multiobjective optimization: Problems involving more than one
objective. Often involves the above categories as subcategories.
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INTRODUCTION TO OPTIMIZATION

CLASSIFICATION OF OP PROPERTIES

I if f , g, and h are all linear then OP is a linear programming.
I if any of them is nonlinear then OP is a nonlinear programming.
I the minimum can be global or local (within some neighborhood

around x∗)

I under some restrictions on f , g, and h OP can be easier to solve (for
example convex problems)
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INTRODUCTION TO OPTIMIZATION

EXISTENCE AND UNIQUENESS
Some basic theorems

I If f is continuous on a closed and bounded set S ⊂ Rn, then f has a
global minimum on S. If S is not closed or is unbounded then f may
not have local and global minimum. Example: f (x) = x on (a, b).

I A continuous f is called coercive on unbounded S ⊆ Rn if

lim
||x||→∞

f (x) = +∞,

i.e., f (x) must be large whenever ||x|| is large⇒ if f is coercive on a
closed unbounded S then f has a global minimum on S.
Examples: f (x) = x2 is coercive on R - has global minimum;
f (x) = x3 is not coercive on R - has non global minimum.

I A level set for f : S→ R is the set of all points in S for which f has
has some given constant value. In R2 they are contours (like in
maps). We are interested in the interior regions whose boundary is
a level set, i.e., f (x ∈ IR) ≤ c
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INTRODUCTION TO OPTIMIZATION

CONVEXITY
For general optimization problem it is difficult to say something about
uniqueness of solutions, and local-vs-global solutions relationships without
some assumptions.

Definition.
A set S ⊆ Rn is convex if it contains the line segment between any two of its points,
i.e.,

∀x, y ∈ S {αx + (1− α)y | 0 ≤ α ≤ 1} ⊆ S.

A function f : S ⊆ Rn → R is convex on convex set S if its graph along any line
segment in S lies on or below the chord connecting the function values at the
endpoints of the segment, i.e., if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) ∀α ∈ [0, 1], and ∀x, y ∈ S.
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INTRODUCTION TO OPTIMIZATION

CONVEXITY

I If f is convex on convex S then f is necessarily continuous at any
interior point of S.

I Any sublevel set of a convex function is convex.
I Any local minimum of convex f on convex set S is a global

minimum on S. If f is strictly convex then the global minimum is
unique. Existence of minimum is not guaranteed. If S is closed and
bounded then existence is already assured.

I If f is strictly convex on an unbounded S ⊆ Rn tehn f has a
minimum on S iff f is coercive on S.
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INTRODUCTION TO OPTIMIZATION

UNCONSTRAINED OPTIMALITY CONDITIONS
If f : Rn → R is differentiable then the vector-valued function
∇f : Rn → Rn defined by

∇f (x) =


∂f (x)

∂x1
...

∂f (x)

∂xn


is called the gradient of f .

I If f is continuously differentiable then (-)∇f points toward points
with higher (lower) values than f (x). (Intuition: by Taylor’s
theorem for any s ∈ Rn f (x + s) = f (x) +∇f (x + αs)Ts for some
α ∈ (0, 1). Taking s = −∇f (x) we can see that f decreases along
−∇f (x) if∇f (x) 6= 0.)

I If x∗ is a local minimum then there is no downhill direction, so
∇f (x∗) = 0. Such an x∗ is called critical point (or stationary point,
or equilibrium point).
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INTRODUCTION TO OPTIMIZATION

UNCONSTRAINED OPTIMALITY CONDITIONS
The first-order necessary condition for a minimum:
If f : S→ R is continuously differentiable and x∗ is an interior point of S
at which f has local minimum, then x∗ must be a critical point, i.e.,
∇f (x) = 0.
If f is convex then any CP is a global minimum. However, in general it
could be min/max/saddle point, so we need a criterion for classifying
CP for their optimality.

If f is twice differentiable, then matrix Hf =

(
∂2f (x)

∂xi∂xj

)
ij

is called the

Hessian of f , i.e., the Jacobian of∇f . H is symmetric if second partial
derivatives are continuous. Let’s add one more term for Taylor’s
Expansion

f (x∗ + s) = f (x∗) +∇f (x∗)Ts +
1
2

sTHf (x∗ + αs)s, α ∈ (0, 1)

Since x∗ is CP→∇f (x∗), so the H-term determines if f (x∗ + s) Q f (x∗) .
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INTRODUCTION TO OPTIMIZATION

UNCONSTRAINED OPTIMALITY CONDITIONS

The second-order sufficient condition for a minimum:
If Hf is positive definite at CP x∗ then x∗ is a local minimum.

Classification of critical points: if∇f (x∗) = 0 and Hf (x∗) is
I positive definite⇒ x∗ is a minimum of f .
I negative definite⇒ x∗ is a maximum of f .
I indefinite⇒ x∗ is a saddle point of f .
I singular⇒ various situations can occur.

Test for convexity: if Hf (x) is positive definite at every x ∈ S⇒ f is
convex on S.
Reminder: How to test pod? 1. Cholesky factorization works iff pod;
2. Compute intertia of the matrix using LDLT.
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INTRODUCTION TO OPTIMIZATION

EXAMPLE

f (x) = 2x3
1 + 3x2

1 + 12x1x2 + 3x2
2 − 6x2 + 6, ∇f (x) =

[
6x2

1 + 6x1 + 12x2
12x1 + 6x2 − 6

]
Solutions of∇f (x) = 0 are [1,−1] and [2,−3] (by any method for solving
nonlinear equations).

Test for minimums: Hf (x) =

[
12x1 + 6 12

12 6

]

Hf (1,−1) =

[
12 12
12 6

]
, Hf (2,−3) =

[
30 12
12 6

]
Hf (1,−1) is not pod (saddle point), Hf (2,−3) is pod (local minimum).
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INTRODUCTION TO OPTIMIZATION

CONSTRAINED OPTIMALITY CONDITIONS

I In the unconstrained problems the minima are found in the interior
points of a feasible set.

I In the constrained problems the minima can often be found at the
boundary.

If S is a feasible set, a nonzero s is a feasible direction at a point x∗ ∈ S if
∃r > 0 s.t. x∗ + αs ∈ S ∀α ∈ [0, r]. Then the first-order necessary
optimality condition is that for any feasible direction s

∇f (x∗)Ts ≥ 0 i.e., f is non-decreasing near x∗.

The second-order necessary optimality condition is

sTHf (x∗)s ≥ 0 for any feasible direction s, Hf is pod in s
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INTRODUCTION TO OPTIMIZATION

LAGRANGE MULTIPLIERS

Consider a nonlinear optimization problem

min
x

f (x) subject to g(x) = 0, f : Rn → R, g : Rn → Rm (9)

A necessary condition for a feasible x∗ to be a solution is that the negative
gradient of f lies in span of the constraint normals, i.e., −∇f (x∗) = JT

g (x∗)λ∗ for
some λ∗, the Lagrange multipliers. We redefine (9) with Lagrangian function
L : Rn+m → R

L(x, λ) = f (x) + λTg(x)

with gradient and Hessians

∇L(x, λ) =

[
∇xL(x, λ)
∇λL(x, λ)

]
=

[
∇f (x) + JT

g (x)λ

g(x)

]
, and HL(x, λ) =

[
B(x, λ) JT

g (x)

Jg(x) 0

]

where B(x, λ) = ∇xxL(x, λ) = Hf (x) +

m∑
i=1

λiHgi(x).
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INTRODUCTION TO OPTIMIZATION

LAGRANGE MULTIPLIERS

... we are looking for a critical point of the Lagrangian function

∇L(x, λ) = 0

However, HL is symmetric but not positive definite (even if B is pod).
How to cope with this problem ...

I L can be augmented with the “penalty”, so that HL is pod.

I Sufficient condition for a constrained minimum us that B(x∗, λ∗) at
the critical point be pod on the tangent space to the constraint
surface, i.e., the Null(Jg(x∗)).
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INTRODUCTION TO OPTIMIZATION

EXAMPLE

Given f (x1, x2) = 2πx1(x1 + x2) and g(x1, x2) = πx2
1x2 − C ⇒

∇f (x) = 2π
[

2x1 + x2
x1

]
and Jg(x) = π

[
2x1x2 x2

1
]
.

∇L(x, λ) = π

2(2x1 + x2 + x1x2λ)

2x1x2
1λ

x2
1x2 − C/π

 = 0 ⇒ x1 = 5.4, x2 = 10.8, λ = −0.37.

To confirm the optimality of this the solution that can be obtained by
any method for nonlinear systems we need to compute Hf , and Hg, and

B. Let’s take C = 103 then B =

(
−12.6 −6.3
−6.3 0

)
⇒ B is not pod (check

evals!) ⇒ basis for 1d null space of Jg(x∗) = [369 92.3], i.e.,
z = [−0.243 0.97]T ⇒ zTBz = 2.23 > 0, i.e., the solution is minimum.
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INTRODUCTION TO OPTIMIZATION

INEQUALITY CONSTRAINTS

min
x

f (x) subject to g(x) = 0, h(x) ≤ 0, f : Rn → R, g : Rn → Rm, h : Rn → Rp.

I Constraint hi(x) ≤ 0 is said to be active at feasible x if hi(x) = 0
(otherwise it is inactive)

I Karush-Kuhn-Tucker first-order necessary conditions:
1. ∇xL(x∗, λ∗) = 0
2. g(x∗) = 0
3. h(x∗) ≤ 0
4. λ∗i ≥ 0, i = m + 1, ...,m + p
5. hi(x∗)λ∗i = 0, i = m + 1, ...,m + p

x∗ is a constrained local minimum, if there exist Lagrange
multipliers λ∗ such that 1-5 hold.
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INTRODUCTION TO OPTIMIZATION

EXAMPLE, INEQUALITY CONSTRAINTS, PART 1

f (x) = 0.5x2
1 + 2.5x2

2 s.t. h(x) = x2 − x1 + 1 ≤ 0
I the unconstrained infeasible minimum is at (0,0)⇒ the constraint

is active

I the Lagrangian is
L(x, λ) = f (x) + λTh(x) = 0.5x2

1 + 2.5x2
2 + λ(x2 − x1 + 1), (λ is scalar)

I ∇f (x) = (x1 5x2)T, and Jh(x) = [−1 1] ⇒

∇xL(x, λ) = ∇f (x) + JT
h (x)λ =

(
x1
5x2

)
+ λ

(
−1
1

)
.
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INTRODUCTION TO OPTIMIZATION

EXAMPLE, INEQUALITY CONSTRAINTS, PART 2
Let’s check for optimality conditions.

I

(
∇xL(x, λ

h(x)

)
= 0 ⇒

 1 0− 1
0 5 1
−1 1 0

 ·
x1

x2
λ

 =

 0
0
−1


x1 = 0.833, x2 = −0.167, λ = 0.833
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INTRODUCTION TO OPTIMIZATION

SENSITIVITY AND CONDITIONING

Homework 18 (R).
Chapter 6.3, Sensitivity and Conditioning
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INTRODUCTION TO OPTIMIZATION

OPTIMIZATION IN 1-DIM

Definition.
A function f : R→ R is called unimodal on [a, b] if there is unique value
x∗ ∈ [a, b], s.t.

I f (x∗) is the minimum on [a, b], and
I for any x1, x2 ∈ [a, b] with x1 < x2

x1 < x∗ ⇒ f (x1) > f (x2) and x1 > x∗ ⇒ f (x1) < f (x2)
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INTRODUCTION TO OPTIMIZATION

GOLDEN SECTION SEARCH
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INTRODUCTION TO OPTIMIZATION

GOLDEN SECTION SEARCH

f (x) = 0.5− xe−x2
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INTRODUCTION TO OPTIMIZATION

SUCCESSIVE PARABOLIC INTERPOLATION
Basic idea: the function f to be minimized is evaluated at 3 points and a
quadratic polynomial is fit to these points. The minimum of the parabola is
taken and then one of the points is dropped and the process repeated until
convergence (not guaranteed, but usually with r = 1.324).

I Given 3 points u, v, w with corresponding fu, fv, and fw.

I The minimum of the parabola is at v + p/q

p = ±(v− u)2(fv − fw)− (v− w)2(fv − fu)

q = ∓2((v− u)(fv − fW)− (v− w)(fv − fu)).

I u← w, w← v, and v← v + p/q
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INTRODUCTION TO OPTIMIZATION

NEWTON’S METHOD

This is another method to compute local quadratic approximation. We
use a truncated Taylor series

f (x + h) ≈ f (x) + f ′(x)h +
1
2

f ′′(x)h2, the minimum is at h = −f ′(x)/f ′′(x)

1: x0 ← initial guess
2: for k = 1 to K do
3: xk+1 = xk − f ′(xk)/f ′′(xk)
4: end for

Hybrid algorithms: slow-but-sure methods are combined with
fast-but-risky methods. Fast method is done at each iteration but then it
should be confirmed by bracketing.
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INTRODUCTION TO OPTIMIZATION

EXAMPLE OF NM

f (x) = 0.5− xe−x2 ⇒ f ′(x) = (2x2 − 1)e−x2
, f ′′(x) = 2x(3− 2x2)e−x2

The iteration is xk+1 = xk −
2x2

k − 1
2xk(3− 2x2

k)
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INTRODUCTION TO OPTIMIZATION

Subsection 1

MULTIDIMENSIONAL OPT, UNCONSTRAINED
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INTRODUCTION TO OPTIMIZATION

DIRECT SEARCH

I Similar to Golden Section Search in 1d
I No convergence guarantee (in contrast to GSS)
I Nelder-Mead method implemented in Matlab as fminsearch

Example:
� banana = @(x)100 ∗ (x(2)− x(1)2)2 + (1− x(1))2;
� [x, fval] = fminsearch(banana, [−1.2, 1])
x = [1, 1]
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INTRODUCTION TO OPTIMIZATION

STEEPEST DESCENT

Basic idea: the negative gradient points downhill for any x s.t.
∇f (x) 6= 0. Usually can improve at each step with linear convergence.

1: x0 ← initial guess
2: for k = 1 to K do
3: sk = −∇f (xk)
4: choose αk to minimize f (xk + αksk) // line search
5: xk+1 = xk + αksk
6: end for
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INTRODUCTION TO OPTIMIZATION

EXAMPLE OF SLOW ZIG-ZAG CONVERGENCE

f (x) = 0.5x2
1 + 2.5x2

2 ⇒ ∇f (x) =

[
x1
5x2

]

Ellipses represent contours on which f has the same constant value.
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INTRODUCTION TO OPTIMIZATION

NEWTON’S METHOD

Local quadratic approximation can be obtained from the truncated
Taylor series

f (x + s) ≈ f (x) +∇f (x)Ts +
1
2

sTHf (x)s,

where Hf is a Hessian matrix. The quadratic function in s is minimized
when Hf (x)s = −∇f (x). The convergence is usually quadratic if has
good starting point.

1: x0 ← initial guess
2: for k = 1 to K do
3: Solve Hf (xk)sk = −∇f (xk) for sk
4: xk+1 = xk + sk
5: end for
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INTRODUCTION TO OPTIMIZATION

TRUST-REGION METHODS
Sec 6.5.3: An alternative to a line search is a trust region method, in which an estimate
is maintained of the radius of a region in which the quadratic model is sufficiently
accurate for the computed Newton step to be reliable, and thus the next approximate
solution is constrained to lie within the trust region. If the current trust radius is
binding, minimizing the quadratic model function subject to this constraint may
modify the direction as well as the length of the Newton step. The accuracy of the
quadratic model at a given step is assessed by comparing the actual decrease in the
objective function value with that predicted by the quadratic model. Once near a
solution, the trust radius should be large enough to permit full Newton steps, yielding

rapid local convergence. 201 / 337



INTRODUCTION TO OPTIMIZATION

QUASI-NEWTON METHODS

One significant disadvantage of Newton’s method is a substantial
amount of work per iteration. For dense Hessians it requires O(n2)
scalar function evaluations and O(n3) operations the linear system
Newton step. Q-N methods make an attempt to reduce the complexity
and improve reliability (fast convergence when in a good initial point
only). The have a form

xk+1 = kl − αkB−1
K ∇f (xk),

where Bk is some approximation of Hessian. Many Q-N methods are
faster and more robust than the original Newton’s method.
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INTRODUCTION TO OPTIMIZATION

CONJUGATE GRADIENT METHOD
... is an effective alternative to Newton’s Method that does not require
second derivatives. Moreover, we don’t need to store approximation to
Hf , i.e., the method is suitable for large-scale problems.

1: x0 ← initial guess
2: g0 = ∇f (x0)
3: s0 = −g0
4: for k = 1 to K do
5: Choose αk to minimize f (xk + αksk)
6: xk+1 = xk + αksk
7: gk+1 = ∇f (xk+1)
8: βk+1 = (gT

k+1gk+1)/(gTgk)
9: sk+1 = −gk+1 + βk+1sk

10: end for
The method avaoid repeatedly searching the same directions by
modifying new gradient at each step to remove components in previous
direction. The info on Hf is accumulated in conjugate implicitly.
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INTRODUCTION TO OPTIMIZATION

CGM EXAMPLE

f (x) = 0.5x2
1 + 2.5x2

2 ⇒ ∇f (x) =

(
x1
5x2

)
.

I Starting with x0 = (5 1)T the initial search direction is the negative
gradient s0 = −g0 = −∇f (x0) = (−5 − 5)T

I the exact minimum along this dir is given by
α0 = 1/3 ⇒ x1 = (3.33 − 0.667)T

I compute new gradient g1 = ∇f (x1) =
(
3.33 − 3.333

)
I (here is the difference with steepest descent) new search direction

is given by computing β1 and then

s1 = −g1 + β1s0 =

(
−3.333
3.333

)
+ 0.444

(
−5
5

)
=

(
−5.556
1.111

)
I the minimum along this direction is given by α1 = 0.6 which gives

the solution
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INTRODUCTION TO OPTIMIZATION

MORE METHODS

Homework 19 (R).
Chapters 6.5.5, 6.5.7 on Secant Updating and Inexact Newton Methods
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INTRODUCTION TO OPTIMIZATION

NONLINEAR LEAST SQUARES

Given data points (ti, yi) we need to find vector x ∈ Rn of parameters
that gives the best fit in the LSQ sense to model f (t, x) : Rn+1 → R. So
far we considered only linear model functions.

Define residual function r : Rn → Rm is ri(x) = yi − f (ti, x), i = 1..m, and
minimize the function

φ(x) = 1/2r(x)Tr(x) (i.e., sum of squares of residual components)

The gradient and Hessian of φ are

∇φ(x) = JT(x)r(x), and Hφ(x) = JT(x)J(x) +
m∑

i=1

ri(x)Hri(x),

where J(x) is the Jacobian of r(x), and Hri is the Hessian of ri(x).
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far we considered only linear model functions.
Define residual function r : Rn → Rm is ri(x) = yi − f (ti, x), i = 1..m, and
minimize the function

φ(x) = 1/2r(x)Tr(x) (i.e., sum of squares of residual components)

The gradient and Hessian of φ are
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INTRODUCTION TO OPTIMIZATION

NONLINEAR LEAST SQUARES

Now we can apply Newton’s method to compute xk with the direction
sk defined by linear system

(JT(xk)J(xk) +

m∑
i=1

ri(xk)Hri(xk))sk = −JT(xk)r(xk). (10)
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INTRODUCTION TO OPTIMIZATION

GAUSS-NEWTON METHOD FOR NLSQ

Each of Hri in Hφ (Eq 10) is multiplied by small (if the data fits well)
term ri. In Gauss-Newton method for NLSQ, Hri terms are dropped.

(JT(xk)J(xk))sk = −JT(xk)r(xk) is an approx Newton step

This system is normal equations for m× n linear LSQ problem

J(xk)sk ≈ −r(xk)

that can be solved by orthogonal factorization or by something else.
The iterative solution will be

xk+1 = xk + sk,

i.e., we replace NLSQ by a sequence of LLSQ.
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INTRODUCTION TO OPTIMIZATION

Homework 20.
The concentration of a drug in the blood-stream is expected to diminish
exponentially with time. Fit the model function

y = f (t, x) = x1ex2t

to the following data
t 0.5 1 1.5 2 2.5 3 3.5 4
y 6.8 3 1.5 0.75 0.48 0.25 0.2 0.15
1. Perform exponential fit using NLSQ
2. Take logarithm of the model function. It will now be linear in x2.

The exponential fit can now be done using linear LSQ. (Do not
forget to take logs of data points). Use linear LSQ to compute x1,
and x2. Check if the values agree with those in (1).
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INTRODUCTION TO OPTIMIZATION

Subsection 2

Constrained Optimization
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INTRODUCTION TO OPTIMIZATION

LINEAR PROGRAMMING

One of several standard forms of LP is

min
x

f (x) = cTx subject to Ax = b and x ≥ 0

where m < n, A ∈ Rm×n, b ∈ Rm, and c, x ∈ Rn.
I The feasible region for LP is convex polyhedron in Rn, and the

global minimum occur at one of its vertices.
I The standard method for LP is called the simplex method. It

systematically examines a sequence of these vertices to find the
minimum. This is the most popular and practically efficient
method for LP.

I Another method: interior-point method which gives better worst
case complexity.
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INTRODUCTION TO OPTIMIZATION

LP EXAMPLE
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INTRODUCTION TO OPTIMIZATION

OPTIMIZATION SOFTWARE

I Important to distinguish: constrained/unconstrained,
1-dim/n-dim, types of derivatives for n-dim

I AMPL (see Wiki)
I List of software (see Wiki)
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INTERPOLATION

Section 15

INTERPOLATION
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INTERPOLATION

INTRODUCTION
Given the set of data points (ti, yi), i = 1, ..,m such as results of some
experiments, and scientific observations. We might want to ...

I draw a smooth curve through the data points
I infer the data values between these points
I determine parameters of functions that describe the data
I approximate its derivative, integral, etc.

We need to be able to represent the discrete data in terms of relatively simple
functions. For example, LSQ methods. Instead of capturing the ”trend” of the
data we will design functions that match data points. This is not always
suitable (for example when the data points are noisy).

The simplest interpolation problem in 1d: for given data (ti, yi), where
t1 < t2 < ... < tm we seek a function f : R→ R such that

f (ti) = yi, ∀i

f is called interpolant.
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INTERPOLATION

EXISTENCE, UNIQUENESS, AND CONDITIONING OF

INTERPOLANT

Intuition: Can we match the parameters in the interpolant to the data
points to be fit:

I too few parameters - the interpolant doesn’t exist
I too many parameters - the interpolant is not unique

Definition.
For a given set of data points (ti, yi)

m
i=1 an interpolant is chosen from the space

of functions spanned by a suitable set of basis functions φ1(t), . . . φn(t), and
f is expressed as linear combination

f (t) =

n∑
j=1

xjφj(t),

where xj are the parameters to be determined.
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INTERPOLATION

Requirement to interpolant f is ...

interpolation of all data points, i.e.,

f (ti) =

n∑
j=1

xjφj(t) = yi.

This we can rewrite as a system of linear equations Ax = y, where
aij = φj(ti).

I number of basis functions n = number of data points m⇒ square
lin system and all data points can fit exactly if A is nonsingular

I in LSQ approximation the number of bf and parameters is smaller
than number of data points⇒more equations than unknowns⇒
usually cannot fit the data exactly

I sometimes underdetermined systems are important if we need to
choose the parameter with particular properties
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INTERPOLATION

POLYNOMIAL INTERPOLATION
Denote by Pk the set of all polynomials of degree at most k on some
interval. (+,×,Pk) is a vector space, dim(Pk) = k + 1. The choice of the
basis for Pk is very important for complexity, performance, sensitivity,
etc.
To interpolate n points we need k = n− 1

I natural basis with n monomials φj(t) = tj−1, j = 1, ...,n, i.e.,
polynomial pn−1 ∈ Pn−1 has the form

pn−1(t) = x1 + x2t + ...+ xntn−1

So, we solve the Vandermonde system (nonsingular if all ti distinct)

Ax =


1 t1 · · · tn−1

1
1 t2 · · · tn−1

2
· · · · · · · · · · · ·
1 tn · · · tn−1

n




x1
x2
· · ·
xn

 =


y1
y2
· · ·
yn

 = y
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INTERPOLATION

MONOMIAL BASIS, EXAMPLE

We need to interpolate 3 data points (-2, -27), (0, -1), (1, 0). There is a
unique polynomial interpolating 3 points {(ti, yi)}3

i=1

p2(t) = x1 + x2t + x3t2 ⇒ Ax =

1 t1 t2
1

1 t2 t2
2

1 t3 t3
3

x1
x2
x3

 =

y1
y2
y3

 = y

1 −2 4
1 0 0
1 1 1

x1
x2
x3

 =

−27
1
0

 ⇒ x = (−1 5−4)T ⇒ p(t) = −1+5t−4t2.

219 / 337



INTERPOLATION

MONOMIALS, VANDERMONDE SYSTEM

It is possible to solve VS in O(n2) complexity. However, it is likely that
the system will be ill-conditioned on high-degree polynomials.

High-degree monomials are very close to each other.
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INTERPOLATION

MONOMIALS, VANDERMONDE SYSTEM

The conditioning of the monomial basis can be improved by shifting
and scaling

φj(t) =
( t− c

d

)j−1
, where c =

t1 + tn

2
, and d =

tn − t1

2

Now the variable will be in interval [−1, 1]. In monomial basis
pn−1(t) =

∑
xiti−1 can be evaluated efficiently by nested evaluation

pn−1(t) = x1 + t(x2 + t(x + 3 + t(...(xn−1 + xnt)...)))

with n additions/multiplications. Same principle can be applied in
forming VS.
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INTERPOLATION

LAGRANGE INTERPOLATION

Lagrange basis functions for Pn−1, called fundamental polynomials, are
given by

lj(t) =

∏n
k=1,k 6=j(t− tk)∏n
k=1,k 6=j(tj − tk)

, j = 1, ...,n

From definition it follows that

lj(ti) =

{
1 if i = j
0 if i 6= j

⇒ lj(ti) =

{
1 i = j
0 i 6= j

⇒

for this basis the matrix of system Ax = y is I, i.e., the polynomial
interpolating {(ti, yi)}i is

pn−1(t) = y1l1(t) + y2l2(t) + ...+ ynln(t).
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INTERPOLATION

LAGRANGE INTERPOLATION

The resulting parameter are conditioned much better. However, it is
more expensive for evaluation compared to the monomials.
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INTERPOLATION

LAGRANGE INTERPOLATION, EXAMPLE
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INTERPOLATION

NEWTON INTERPOLATION

Two previous methods were very different in terms of matrix creation,
complexity. NI is between these extremes. The Newton basis functions
for Pn−1 are

φj(t) =

j−1∏
k=1

(t− tk), j = 1, ...,n,

i.e., A is lower triangular because φj(ti) = 0 for i < j. The polynomial
has a form

pn−1(t) = x1 +x2(t−t1)+x3(t−t1)(t−t2)+ ...+xn(t−t1)(t−t2)...(t−tn−1).

Efficient evaluation form

pn−1(t) = x1 + (t− t1)(x2 + (t− t2)(x3 + (t− t3)(...(xn−1 + xn(t− tn−1))...)))
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INTERPOLATION

NEWTON INTERPOLATION
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INTERPOLATION

NEWTON INTERPOLATION, EXAMPLE
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INTERPOLATION

INCREMENTAL NEWTON INTERPOLATION

When successive data points are added (like in data streaming
algorithms). If pj(t) is a polynomial of degree j− 1 interpolating current
j points, then for any constant xj+1

pj+1(t) = pj(t) + xj+1φj+1(t)

has degree j and it interpolates the same j points. The free parameter
xj+1 can be chosen so that pj+1(t) interpolates (j + 1)st point, namely,
yj+1. Specifically,

xj+1 =
yj+1 − pj(tj+1)

φj+1(tj+1)
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INTERPOLATION

INCREMENTAL NEWTON INTERPOLATION, EXAMPLE

229 / 337



INTERPOLATION

NEWTON INTERPOLATION, DIVIDED DIFFERENCES
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INTERPOLATION

NEWTON INTERPOLATION, DIVIDED DIFFERENCES
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INTERPOLATION

ORTHOGONAL POLYNOMIALS

Homework 21 (R).
Section 7.3.4
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INTERPOLATION

INTERPOLATING CONTINUOUS FUNCTIONS
We have considered discrete data points without worrying about the behavior
of interpolant between these points. If the data points represent continuous
function then it is important to know how close the interpolant to the real
function in all points. For the polynomial interpolation we can use the
following result.

Theorem 13.
If f is smooth and pn−1 is an interpolant for f at n points {ti}n

i=1 then for each
t ∈ [t1, tn] there is Θ ∈ (t1, tn) such that

f (t)− pn−1(t) =
f (n)(Θ)

n!
(t− t1)(t− t2)...(t− tn).

Θ is usually not known but in many cases we can bound the derivative. The
results becomes very practical if we know that |f (n)(t)| ≤M for all t ∈ [t1, tn],
and h = max{ti+1 − ti}, then

max
t∈[t1,tn]

|f (t)− pn−1(t)| ≤ Mhn

4n
.
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INTERPOLATION

HIGH-DEGREE POLYNOMIALS, PROBLEMS
High-degree polynomials are expensive to determine and evaluate. Moreover,
in some bases the coefficients of the polynomial may be poorly determined as
a result of ill-conditioning of the linear system to be solved. A high-degree
polynomial necessarily has lots of ”wiggles” which may bear no relation to the
data to be fit. Although the polynomial goes through the required data points,
it may oscillate wildly between data points and thus be useless for many
purposes.
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INTERPOLATION

HIGH-DEGREE POLYNOMIALS, PROBLEMS

Why does this happen?

HDP’s derivative has n− 1 zeros, i.e., HDP has
n− 1 extrema or inflection points. One possible problem is equally
spaced data points. Solution: use Chebyshev points that distribute the
error more evenly.
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INTERPOLATION

PIECEWISE POLYNOMIAL INTERPOLATION

I Problems with polynomial interpolation: complexity, oscillating
behavior

I Possible solution: fit large number of data points with many low
degree polynomials

I For given points (ti, yi) with t1 < ... < tn, a different polynomial is
used at each subinterval. The simplest example is linear
interpolation with straight lines.

I Cubic Splines: formulate and solve linear system of equations with
fitting polynomial coefficients and also satisfying 1st and 2nd
derivative smoothness constraints.
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FAST FOURIER TRANSFORM

Section 16

FAST FOURIER TRANSFORM
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FAST FOURIER TRANSFORM

INTRODUCTION

Many functions represent cyclic behavior. In modeling cyclic data it is
better to use trigonometric basis functions instead of polynomials,
splines, etc. Resulting function will be represented as linear
combination of sin and cos which decomposes the function into its
components of various frequencies. This trigonometric interpolation
can be done efficiently using fast Fourier transform.

I Given a function of period T f (t) = f (t + T) choose N and sample
f (t) withing the interval 0 ≤ t ≤ T, at N equally spaced points, n∆t,
n = 0, 1, ...,N − 1, and ∆t = T/N.

I The result is discrete vector fn = f (n∆t) = [f0, f1, ..., fN−1]T.
I Inner product of two discrete functions is defined as

< f , g >=

N−1∑
n=0

f ∗n · gn
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FAST FOURIER TRANSFORM

INTRODUCTION

Reminder: complex exponential notation by Euler’s identity

eiΘ = cos Θ + i sin Θ,

where i =
√
−1. Since e−iΘ = cos Θ− i sin Θ easy to see that

cos(2πkt) =
e2πikt + e−2πikt

2
and sin(2πkt) = i

e−2πikt − e2πikt

2
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FAST FOURIER TRANSFORM

INTRODUCTION

For a given integer n we will use the notation

ωn = cos(2π/n)− i sin(2π/n) = e−2πi/n

for a given nth root of unity, i.e., ωn
n = 1. These roots of unity are called

twiddle factors, i.e., ωk
n and ω−k

n .

240 / 337



FAST FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM

Definition.
Given a sequence x = [x0, ..., xn−1]T, its discrete Fourier transform (DFT) is
the sequence y = [y0, ..., yn−1]T given by

ym =

n−1∑
k=0

xkω
mk
n for m = 0, 1, ...,n− 1.

We can write the DFT in matrix notation y = Fnx, where the Fourier
matrix is given by {Fn}mk = ωmk

n . Example of F4:

F4 =


1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


Note that Fn is complex Vandermonde matrix but not Hermetian.
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FAST FOURIER TRANSFORM

DFT

If f is not discretized (i.e., original signal) then it can be represented in a
space of trigonometric functions as

F(jω) =

∫ ∞
−∞

f (t)e−jωtdt

= f [0]e−j0+f [1]e−jωT+...+f [k]e−jωkT+...+f [N−1]e−jω(N−1)T,

i.e., F(jω) =
N−1∑
k=0

f [k]e−jωkT.

We could in principle evaluate this for any ω, but with only N data
points to start with, only N final outputs will be significant.
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FAST FOURIER TRANSFORM

DFT PERIOD
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FAST FOURIER TRANSFORM

DFT EXAMPLE
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FAST FOURIER TRANSFORM

DFT EXAMPLE
Let’s sample f 4 times per sec from t = 0 to t = 3/4. The values of the discrete samples
are given by f [k] = 5 + 2 cos(π/2 · k− 90) + 3 cosπk, with t = kT = k/4

i.e., f [0] = 8, f [1] = 4, f [2] = 8, f [3] = 0 ⇒ F[n] =
3∑

k=0

f [k]e−jπ/2·nk.
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FAST FOURIER TRANSFORM

DFT

The inverse of Fn is easy to find

i.e., F−1
n =

1
n

FH
n . Thus, the inverse DFT is given by

xk =
1
n

n−1∑
m=0

ymω
−mk
n .

Conclusion: if the components of x are sample values of function, then
DFT solves the trigonometric interpolation problem with mat-vec
multiplication in O(n2) steps. Fast FT can do better, namely, in
O(n log2 n) steps.
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FAST FOURIER TRANSFORM

FAST FOURIER TRANSFORM
Consider the case n = 4.

⇒we have 8 additions and 6 multiplications (instead of 12 and 16).
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FAST FOURIER TRANSFORM

FFT
Conclusion: Computing DFT if original 4 point sequence has been
reduced to computing the DFT of its 2 point even and odd
subsequences. This property hold in general for n point sequences.
Let’s see its pattern
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FAST FOURIER TRANSFORM

FFT
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FAST FOURIER TRANSFORM

FFT
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FAST FOURIER TRANSFORM

FFT
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FAST FOURIER TRANSFORM

FFT
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FAST FOURIER TRANSFORM

FAST POLYNOMIAL MULTIPLICATION

Complexity: every ai is multiplied with every bj in O(N2) operations.
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FAST FOURIER TRANSFORM

DFT FOR POLYNOMIALS
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FAST FOURIER TRANSFORM

FAST POLYNOMIAL MULTIPLICATION

Complexity: O(N · log N) operations.
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Homework 22 (I).
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Section 17

ITERATIVE METHODS FOR LINEAR SYSTEMS AND

MULTIGRID
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STATIONARY ITERATIVE METHODS
So far we learned direct methods which can be prohibitive for very
large systems of equations. Like IM for nonlinear systems, and for
optimization, IM for linear systems begin with initial guess and
successfully improve it until the solution is accurate enough.

Simplest type of IM for Ax = b has the form

xk+1 = Gxk + c,

where G and c are chosen so that fixed point of the function
g(x) = Gx + c is a solution to Ax = b. Such methods are called stationary
if G and c are constants for all iterations.

One way to obtain G is called splitting

A = M−N,

where M is nonsingular. Then we can rewrite G = M−1N and c = M−1b,
so that

xk+1 = M−1Nxk + M−1b or Mxk+1 = Nxk + b
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In other words at each iteration we solve a linear system with M. This
splitting scheme is a f-p iteration

g(x) = M−1Nx + M−1b

with Jacobian G(x) = M−1N.

Theorem 14.
This iteration scheme is convergent if the spectral radius

ρ(G) = ρ(M−1N) < 1

and smaller ρ(G) the faster the convergence.
Solution is always a tradeoff. Complexity per iteration = complexity of
solving ls with M. Extreme example M = A.
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EXAMPLE: ITERATIVE REFINEMENT OF GAUSSIAN

ELIMINATION SOLUTION

Iterative refinement has a form

xk+1 = xk + B−1(b− Axk),

where ideally B−1 is an inverse of A. This can be rewritten as

xk+1 = (I − B−1A)xk + B−1b.

This is a SIM with G = I − B−1A and c = B−1b. The scheme converges if

ρ(I − B−1A) < 1.

Iterative refinement can stabilize ”fast but risky” algorithms.
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JACOBI METHOD

In the matrix splitting A = M−N, the simplest choice for M is diagonal,
specifically the diagonal of A. If D = diag(A), L and U are lower and
upper triangular parts of A then the splitting is

M = D, N = −(L + U).

The Jacobi methods is defined as

x(k+1) = D−1(b− (L + U)x(k)) or x(k+1)
i =

bi −
∑

j 6=i aijx
(k)
j

aii
,

i.e., at each point the solution is the average of previous neighbors. In
other words the guess is diffused until the stable point is reached.
Doesn’t always converge. Converges for diagonally row dominant
matrices. Convergence is very slow.
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GAUSS-SEIDEL METHOD

Let’s use the latest information available at each point at the moment of
its computation

x(k+1) =
bi −

∑
j<i aijx

(k+1)
j −

∑
j>i aijx

(k)
j

aii
, or

x(k+1) = D−1(b− Lxk+1 −Ux(k)) = (D + L)−1(b−Ux(k))

The splitting is M = D + L, and N = −U. In addition to faster
convergence, another benefit of the Gauss-Seidel method is that
duplicate storage is not needed for the vector x, since the newly
computed component values can overwrite the old ones immediately .
On the other hand, the updating of the unknowns must now be done
successively, in contrast to the Jacobi method, in which the unknowns
can be updated in any order or even simultaneously.
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SUCCESSIVE OVER-RELAXATION

The convergence rate of the Gauss-Seidel method can be accelerated by
a technique called SOR, which the step to the next Gauss-Seidel iterate
as a search direction, but with a fixed search parameter denoted by ω.

x(k+1) = x(k) + ω(x(k+1)
GS − x(k))

We can think of SOR as taking a weighted average of the current iterate
and the next GS iterate

x(k+1) = (1− ω)x(k) + ωx(k+1)
GS .

In either case, ω is a fixed relaxation parameter chosen to accelerate
convergence. A value ω > 1 gives over-relaxation, whereas ω < 1 gives
under-relaxation. We always have 0 < ω < 2 (otherwise the method
diverges), but choosing a specific value of ω to attain the best possible
convergence rate is difficult.
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SOR

In matrix notation

x(k+1) = x(k) + ω(D−1(b− Lx(k+1) −Ux(k))− x(k))

= (D + ωL)−1((1− ω)D− ωU)x(k) + ω(D + ωL)−1b,

so the splitting is

M =
1
ω

D + L, N = (
1
ω
− 1)D−U
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CONJUGATE GRADIENT METHOD
CGM is one of the methods based on optimization. If A is symmetric pod then
minimizer of

φ(x) = 1/2xTAx− xTb

solves Ax = b, i.e., we can search for a direction sk, so that xk+1 = xk + αsk.

Note special features of QP optimization

I negative gradient is a residual −∇φ(x) = b− Ax = r

I for any search direction sk, we need not perform a line search, because the
optimal choice for α can be determined analytically. Specifically, the
minimum over α occurs when the new residual is orthogonal to the
search direction:

0 =
d

dα
φ(xk+1) = ∇φ(xk+1)T d

dα
xk+1 = −rT

k+1sk

if we express new residual in terms of old residual we get

rk+1 = b− Axk+1 = b− A(xk + αsk) = (b− Axk)− αAsk = rk − αAsk

i.e., α = (rT
k sk)/(sT

k Ask).
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CGM ALGORITHM
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CGM WITH PRECONDITIONER
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Subsection 1

Multiscale Methods, Multigrid
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In many cases, a big scale gap can be observed between micro- and
macroscopic scales of problem because of the difference in physical

(social, biological, mathematical, etc.) models and/or laws at different
scales.
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In many problems, notwithstanding the fact that elementary parts of the
system have a complicated (and even nondeterministic) behavior, their
ensembles represent much more structured systems.

low resolution

high resolution
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Even when differences between models at different scales are not
observed, an efficient approximation of the microscopic scale can be
achieved by looking at the macroscopic scale with its substantially
smaller number of elementary objects (such as variables and particles).
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THE MULTISCALE METHOD: A COARSE VIEW
Multiscale≈Multilevel≈Multigrid≈Multiresolution

I The Multiscale method is a class of algorithmic techniques for
solving efficiently large-scale computational and optimization
problems.

I A multivariable problem defined in some space can have an
approximate description at any given length scale of that space: a
continuum problem can be discretized at any given resolution,
multiparticle system can be represented at any given characteristic
length, etc.

I The multiscale algorithm recursively constructs a sequence of such
descriptions at increasingly larger (coarser) scales, and combines
local processing at each scale with various inter-scale interactions.
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HISTORY OF MULTIGRID METHODS
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THE BASIC OBSERVATION

Observation 17.1.
A suitable relaxation can always reduce the information content of the
error (by smoothing it), and quickly make it approximable by far fewer
variables (which are related to the smooth error modes).

original error k = 5 k = 10 k = 500

Reminder: Iterative relaxation for solving Ax = b

x(k+1) = Tx(k) + v
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CYCLES

Produces an initial

solution of Pi−1

 of P

Si−1 from P

the solution S  and

constructs final solution

i−1

 from

i i

B. Exact solution

P=P
0

P
1

P
k−1

P
k

S
0

S

S

S
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k−1

1

C. Interpolation
and

Relaxation

Defines the hierarchical

A. Coarsening

1 k0structure (P=P ,P ,...,P )
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COMPUTATIONAL WORK

Total complexity,
∑

i

cimi ≈ Hm0 , is linear, where ci is computational

work per variable and mi is a number of variables at level i.

Produces an initial

solution of Pi−1

 of P

Si−1 from P

the solution S  and

constructs final solution

i−1

 from

i i

B. Exact solution

P=P
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P
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P
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S

S

S

k
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C. Interpolation
and

Relaxation

Defines the hierarchical

A. Coarsening

1 k0structure (P=P ,P ,...,P )
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LITERATURE

(we will follow this book)

and many papers, surveys, and guides by Achi Brandt are available at
http://www.wisdom.weizmann.ac.il/˜achi
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TWO-LEVEL ALGORITHM
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TWO-LEVEL ALGORITHM
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GENERAL IDEA OF THE ALGEBRAIC MULTIGRID
Brandt, McCormick, Rudge, ”Algebraic Multigrid (AMG) for automatic
multigrid solution with application to geodetic computations”, 1982

I Given : A ∈ Rn×n positive definite, symmetric.
I Goal : solve Ax = b.
I Claim : If A is positive definite, then

x minimizes P(x) =
1
2

xTAx− xTb iff Ax = b.

I x̃ - current approximation
I e(rror) = x− x̃ (hard to estimate)
I b− Ax̃ = r(esidual) = A(x− x̃) = Ae
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GENERAL IDEA OF THE ALGEBRAIC MULTIGRID
At all levels : solve Ae = r, where e(rror) = x− x̃ and
r(esidual) = b− Ax̃

min
1
2

eTAe− eTr =

min
1
2

(ẽ+ ↑f
c ec)TA(ẽ+ ↑f

c ec)− (ẽ+ ↑f
c ec)Tr ↔ ... ↔

min
1
2

(ec)T
[
(↑f

c)
TA ↑f

c

]
ec − (ec)T(↑f

c)
T(r− Aẽ) =

min
1
2

(ec)TAcec − (ec)Trc

I ẽ - initial fine level error
I ec - coarse level error
I ↑f

c - coarse-to-fine interpolation operator
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WHAT WE MEAN BY A GRID: GEOMETRIC CASE

Variables are defined at known spatial locations (grid points)

image taken from http://users.ices.utexas.edu/˜hari
284 / 337

http://users.ices.utexas.edu/~hari


ITERATIVE METHODS FOR LINEAR SYSTEMS AND MULTIGRID

WHAT WE MEAN BY A GRID: ALGEBRAIC CASE
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HOW TO CHOOSE A GRID
Now that we can represent the fine grid, how do we select a coarse
grid? With standard multigrid methods, smooth functions are
geometrically or physically smooth; they have a low spatial frequency.
In these cases, we assume that relaxation smooths the error and we
select a coarse grid that represents smooth functions accurately. We
then choose intergrid operators that accurately transfer smooth
functions between grids.
With AMG, the approach is different. We first select a relaxation scheme
that allows us to determine the nature of the smooth error. Because we
do not have access to a physical grid, the sense of smoothness must be
defined algebraically. The next step is to use this sense of smoothness to
select coarse grids, which will be subsets of the unknowns. A related
issue is the choice of intergrid transfer operators that allow for effective
coarsening. Finally, we select the coarse-grid versions of the operator A,
so that coarse-grid correction has the same effect that it has in geometric
multigrid: it must eliminate the error components in the range of the
interpolation operator.
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ALGEBRAIC SMOOTHNESS

We also assume that A is a symmetric M-matrix: it is symmetric, pod,
has positive diagonal entries, and nonpositive off-diagonal entries.
These properties are shared by matrices arising from the discretization
of many scalar elliptic differential equations (not necessary for AMG to
work). We solve Au = f .

I Weighted point Jacobi v← v + ωD−1(f − Av)

I Error propagation is e← (I − ωD−1A)e
I WJ has slow convergence; When we reach an iteration at which no

progress is observed we say that current error is algebraically
smooth, i.e., 0 < ei − ei+1 < ε.

I More correct way to define it is by ||e||A = (Ae, e)
1
2 , i.e., we say that

current error is algebraically smooth if ||(I − ωD−1A)e||A ≈ ||e||A.
I It can be shown that WJ gives ri � aii|ei| and thus Ae→ (or ≈ ) 0.

Same can be done with GS, JAC, and other relaxations.
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INFLUENCE AND DEPENDENCE
Important implication: if error is smooth it can be well approximated
by its neighbors, i.e.,

aiiei ≈ −
∑
j6=i

aijej.

This principle is used by many different multiscale algorithms.

Second fundamental concept is strong dependence or strong influence.
Which uj are most important in the ith equation in determining ui?

Answer in classical AMG approach: if the coefficient, aij, which
multiplies uj in the ith equation, is large relative to the other coefficients
in the ith equation, then a small change in the value of uj has more
effect on the value of ui than a small change in other variables in the ith
equation.

Definition.
Given 0 < Θ ≤ 1, the variable ui strongly depend on the variable uj if
−aij ≥ Θ max

k 6=i
{−aik}.
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INFLUENCE AND DEPENDENCE
In other words, grid point i strongly depends on grid point j if the
coefficient aij is comparable in magnitude to the largest off-diagonal
coefficient in the ith equation.
With the concepts of smooth error and strong influence/dependence in
hand, we can return to the task of defining the multigrid components
for AMG. We begin by defining a two-grid algorithm, then proceed to
multigrid by recursion. Having defined the relaxation scheme, we have
several tasks before us:

I select a coarse grid so that the smooth components can be
represented accurately;

I define an interpolation operator so that the smooth components
can be accurately transferred from the coarse grid to the fine grid;
and

I define a restriction operator and a coarse-grid version of A using
the variational properties.
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COARSE VARIABLES: C-POITS SELECTION

SEEDS

I Choose a dominating set C ⊂ V s.t. all others from F = V \ C are
“strongly coupled”to C.

I Each chosen variable will be a seed of a coarse aggregate.
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COARSE VARIABLES: THE INTERPOLATION WEIGHTS

(↑f
c)iJ =


aij( ∑

k∈N(i)
aik

) i ∈ F, j ∈ N(i)

1 i ∈ C, j = i
0 otherwise

Belong to several aggregates

I Define the interpolation weights of all variables
I In some sense, the interpolation weights are the probabilities of a

variable to share a common property with the aggregates it belongs
to.
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INTERPOLATION OPERATOR
Precisely speaking we need to define interpolation operator ↑h

2h such
that the ith component will be

(↑h
2h e)i =


ei if i ∈ C∑
j∈CN(i)

wijej if i ∈ F.

Recall that the main characteristic of smooth error is that the residual is
small: r ≈ 0. We can write the ith component of this condition as

aiiei ≈ −
∑
j∈Ni

aijej

Splitting the sum into its component sums over the coarse interpolatory
set, Ci, the fine-grid points with strong influence, Ds

i , and the weakly
connected neighbors, Dw

i , we have

aiiei ≈ −
∑
j∈Ci

aijej −
∑
j∈Ds

i

aijej −
∑
j∈Dw

i

aijej
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INTERPOLATION OPERATOR
Interpolation weights are given by

wij = −
aij +

∑
m∈Ds

i

( aimamj∑
k∈Ci

amk

)
aii +

∑
n∈Dw

i
ain

I Selecting coarse grid. By examining the suitability of each grid point to
be a point of one of the Ci; sets, we make an initial partitioning of the grid
points into C- and F-points. Then, as the interpolation operator is
constructed, we make adjustments to this partitioning, changing points
initially chosen as F-points to be C-points in order to ensure that the
partitioning conforms to certain heuristic rules. Denote by Si the set of
points that strongly influence i.

I Rule 1: For each F-point i, every point j ∈ Si that strongly influences i
either should be in the coarse interpolatory set Ci or should strongly
depend on at least one point in Ci.

I Rule 2: The set of coarse points C should be a maximal subset of all points
with the property that no C-point strongly depends on another C-point.
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COARSE GRID

Although physical grids may not be present, they are usually denoted
by: h for fine-grid quantities; and 2h for coarse-grid quantities. Once the
coarse grid is chosen and the interpolation operator ↑h

2h h is constructed,
the restriction operator is defined using the usual variational property

↑2h
h = (↑h

2h)T

The coarse-grid operator is constructed using the Galerkin condition

A2h =↑2h
h Ah ↑h

2h .
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ADDITIONAL SOLUTIONS AT THE COARSEST LEVEL

Level 0

Level 1

Level 2

Level 3

Level 0

Level 1

Level 3

Level 2

Linear structurePyramidal structure

How to choose a set of solutions at the coarsest level ?
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MULTIPLE V-CYCLES

. . . . .

V−cycle V−cycle

new graph

  weights

new graph
  weights

21

details
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SCHEDULING SCALES

V−cycle

W−cycle FMG−scheme
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ADAPTIVITY
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STOCHASTICITY
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Subsection 2

Examples of Multiscaling
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LITERATURE
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DIMENSIONALITY REDUCTION PROBLEM

Problem 17.1.
Given a set of high dimensional data represented by vectors x1, ..., xn in Rm,
the task is to represent these with low dimensional vectors y1, ..., yn ∈ Rd with
d� m, such that nearby points remain nearby, and distant points remain
distant.
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MULTISCALE DIMENSIONALITY REDUCTION
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Fang, Sakellaridi, Saad, ”Multilevel Nonlinear Dimensionality Reduction for
Manifold Learning”, 2009
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MULTISCALE IMAGE SEGMENTATION

Sharon, Galun, Sharon, Basri and Brandt, ”Hierarchy and adaptivity in
segmenting visual scenes”, Nature, 2006
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THE PIXEL GRAPH

Low contrast - strong coupling
High contrast - weak coupling
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THE PIXEL GRAPH

Segmentation ≡ Low-energy cut

minimize Γ(u) =

∑
i>j wij(ui − uj)

2∑
i>j wijuiuj

Any boolean u that yields a low-energy Γ(u) corresponds to a salient
segment
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THE PIXEL GRAPH
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IMAGE SEGMENTATION

Spectral normalized cuts Multilevel normalized cuts
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MULTISCALE CLUSTERING

Problem 17.2.
Given a data set, clustering algorithms seek a partition of the data to coherent
groups, in a sense that data points in the same group share similar properties.
Many approaches try to solve the clustering problem by optimizing a global
cost function, expressed in terms of the local similarities between data points.
(*)

I Dhillon, Guan, Kulis, ”A Fast Kernel-based Multilevel Algorithm for Graph Clustering”

I Goldschmidt, Galun, Sharon, Basri, Brandt, ”Fast Multilevel Clustering”

I Karypis, Han, Kumar, ”Multilevel Refinement for Hierarchical Clustering”

I Oliveira, Seok, ”A Multilevel Approach for Document Clustering”

I Kushnir, Galun, Brandt, ”Fast multiscale clustering and manifold identification” (*)
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RESPONSE TO EPIDEMICS, CYBER ATTACKS
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RESPONSE TO EPIDEMICS, CYBER ATTACKS
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Homework 23 (RT).

I Read handout about AMG
I Solve Ex 11

Homework 24 (I).

I Download and install PyAMG http://pyamg.org/

I Generate and solve Poisson matrix A of size 500x500 with random b
I Print out both A, and b
I Upload both A and b to Matlab and solve Ax = b
I Compare running times
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Subsection 3

Nonlinear Multigrid
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NONLINEAR MULTIGRID

(see “Multigrid methods for nonlinear problems: an overview” by Van E. Henson)
Reminder: Classical multigrid begins with a two-grid process. First,
iterative relaxation is applied, whose effect is to smooth the error. Then
a coarse-grid correction is applied, in which the smooth error is
determined on a coarser grid. This error is interpolated to the fine grid
and used to correct the fine-grid approximation. Applying this method
recursively to solve the coarse-grid problem leads to multigrid.

I The coarse-grid correction works because the residual equation is
linear. But this is not the case for nonlinear problems.

I Nonlinear problems necessarily must be solved using iterative
methods, and for this reason it is natural to expect that multigrid
ideas should be effective on these problems.
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I GMG, AMG: We solve
Au = f ⇒ r = f − Av ⇒ Ae = r ⇒ r2h = I2hrh ⇒ A2he2h = r2h

I Nonlinear MG: consider a system of nonlinear equations, A(u) = f ,
where u, f ∈ Rn

I The error is given by e = u− v while now r = f − A(v) is the
residual. Subtracting the original equation from the residual, we
obtain

A(u)− A(v) = r (11)

I A is nonlinear, in general A(e) 6= r, implying that for the nonlinear
problem we can not determine the error by solving Ae = r on the
coarse grid, as in GMG/AMG.

There are two basic approaches to using multigrid in (11).
I use multigrid as the linear solver in a standard linearization, such

as in Newtons method.
I use Full Approximation Scheme (FAS), that is to apply multigrid

methodology directly to the original equation A(u) = f and to base
the coarse-grid correction on the nonlinear residual equation.
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NEWTON’S MULTIGRID

Suppose we solve the scalar equation F(x) = 0. By expanding F in a
Taylor series around x0 we obtain

F(x0 + s) = F(x0) + sF′(x0) +
s2

2
F′′(a)

for some a ∈ (x0, x0 + s). The Newton iteration is

xj ← xj −
F(xj)

F′(xj)
.

We use (11) as a basis for multigrid by applying NM to the system

A(x) =

A1(x1, x2, ..., xn)
...

An(x1, x2, ..., xn)

 =

 0
...
0

 .
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Let J(v) =
(∂Ai

∂xj

)
ij be its Jacobian, and if u = v + e is the exact solution,

the Taylor series for the system is

A(v + e) = A(v) + J(v)e + high order terms

Neglecting HOT and subtracting A(v) from both sides we have

J(v)e = r,

that is an approximation to the nonlinear system (11).

It can be solved
for e and the current approximation of v can be updated by v← v + e.
Iteration step is a form of Newton’s method

vj ← vj + J−1(vj)(fj − A(vj)).

By using multigrid to solve this linear system at each step we obtain a
combination of Newtons method for the outer iteration and multigrid
for the (linear) inner iteration.
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NONLINEAR MULTIGRID

Ae = r

Algebraic Multigrid

Geometric Multigrid

A(v+e)=A(v)+J(v)e+high order
terms

solve J(v)e=r

vj = vj+J−1(vj)(fj−A(vj))

A(u)=f

e(rror) = u−v

r(esidual) = f − A(v)

A is linear

A is nonlinear

A(e)=r
Newton Multigrid

Full Approximation Scheme
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FULL APPROXIMATION SCHEME

While Newton-MG is often an extremely effective method, it does not
use multigrid ideas to treat the nonlinearity directly. To do this, we
return to the residual equation (11) and use it to determine a
coarse-grid correction. Suppose we have found an approximation, vh, to
the original fine-grid problem

Ah(uh) = f h.

Then the coarse-grid version of 11 is

A2h(v2h + e2h)− A2h(v2h) = r2h.
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FULL APPROXIMATION SCHEME

I Restrict the fine-grid approximation r2h = I2h
h rh = I2h

h (f h − Ah(vh))

and v2h = I2h
h vh

I Solve the coarse-grid problem A2h(u2h) = A2h(v2h) + r2h

I Compute coarse-grid approximation to e2h = u2h − v2h

I Interpolate the error approximation vh ← vh + Ih
2he2h

Rewrite
A2h(u2h) = f 2h + τ 2h

h , where τ 2h
h = A2h(I2h

h vh)− I2h
h Ah(vh)
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FAS

336 / 337



ITERATIVE METHODS FOR LINEAR SYSTEMS AND MULTIGRID

UNSTRUCTURED MULTIGRID AND HPC
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