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Abstract
This study presents the Wireless Charging Utility Maximization (WCUM) frame-

work, which aims to maximize the utility of Wireless Charging Units (WCUs) for

electric vehicle (EV) charging through the optimal WCU deployment at signalized

intersections. Furthermore, the framework aims to minimize the control delay at all

signalized intersections of the network. The framework consists of a two-step opti-

mization formulation, a dynamic traffic assignment model to calculate the user equi-

librium, a traffic microsimulator to formulate the objective functions, and a global

Mixed Integer Non-Linear Programming (MINLP) optimization solver. An optimiza-

tion problem is formulated for each intersection, and another for the entire network.

The performance of the WCUM framework is tested using the Sioux Falls network.

We perform a comparative study of 12 global MINLP solvers with a case study. Based

on solution quality and computation time, we choose the Couenne solver for this

framework.

1 INTRODUCTION

The transportation sector is characterized by the dominance
of fossil fuel-powered vehicles. Due to their nonreliance on
fossil fuels, electric vehicles (EVs) can help meet the environ-
mental, economic, and energy goals if electricity is produced
from environment-friendly sources such as nuclear, solar, and
wind. EVs are the fastest growing alternative fuel vehicles in
the market today. However, EVs have technical and economic
limitations related to the electricity storage (i.e., battery) tech-
nology such as low energy density, large battery size, limited
lifetime, long charging times, and high initial, operational,
and maintenance cost. Beside these limitations, EV users face
another difficulty known as range anxiety. EV users are con-
stantly worrying about having enough charge in battery to
complete the trips, and constantly looking for charging sta-
tions nearby when the battery is running out of charge (Egbue
& Long, 2012). To overcome this, Wireless Charging Units
(WCUs) on the road can transfer energy to EVs equipped with
wireless charging capabilities (i.e., pick-up coils in the bottom

© 2019 Computer-Aided Civil and Infrastructure Engineering

of the vehicle) through induction, which is called dynamic
charging or Charging While Driving (CWD). It can solve
the issue of limited driving range by increasing the range
of EVs in transit (Vilathgamuwa & Sampath, 2015). WCUs
can reduce the urban space requirements for charging infra-
structure of EVs. Recent developments in wireless charging
technology research indicate that CWD infrastructure can be
deployed for widespread use within the next 10 to 20 years
(Cirimele, Freschi, & Guglielmi, 2014; Fuller, 2016; Lukic
& Pantic, 2013; Vilathgamuwa & Sampath, 2015). However,
a proper infrastructure planning with effective resource uti-
lization is required to deploy this technology. Optimal place-
ment of WCUs on the roads is a major factor in widespread
adoption of CWD for EVs (Egbue & Long, 2012; Ushijima-
Mwesigwa, Khan, Chowdhury, & Safro, 2017). One possible
solution is to place WCUs at signalized intersections in urban
areas. Vehicles stop frequently at traffic signals in urban areas
and sometimes this stopped time can allow EVs to get charged.
So, utilizing the stop-and-go situation at signalized intersec-
tions for wireless recharging is more appealing than charging
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stations at parking lots because it saves time and increases the
effective range of the EV (Mohrehkesh & Nadeem, 2011).

In this study, the focus is on framework development, which
identifies the lane (or lanes) at the signalized intersections
where the WCUs should be installed, and the number of
WCUs that should be installed at that lane. The objective of
the framework is to maximize the utility within a certain bud-
get while minimizing the control delay of all intersections.

We define utility as the total amount of transferred energy
to EVs by a WCU at a specific location within a given time-
frame. The unit of utility is Watt-hour (Wh) or KiloWatt-hour
(KWh). Higher utility of a certain location signifies its abil-
ity to provide more energy to EVs throughout the day, thus
making it a better location to place WCUs.

The signalized intersections should operate at an accept-
able Level of Service (LOS). LOS is used to express the
operational condition of the traffic. There are six levels of
LOS, namely level A, B, C, D, E, and F. Level A represents
the best LOS with free-flow traffic operations, and level F
represents the worst traffic conditions with oversaturated
traffic operations (Highway Capacity Manual, 2010). For
signalized intersections, LOS is used to assign traffic quality
levels based on the control delay. It is the additional delay
that occurs due to traffic signal compared to the case with no
traffic signal. The control delay has three components: (1)
uniform delay, (2) incremental delay, and (3) initial queue
delay (Highway Capacity Manual, 2010). The incremental
delay has two components, random delay due to occasional
higher demand and deterministic delay due to sustained
oversaturation conditions. The control delay is always cal-
culated for a lane group. All the lanes in a lane group have
simultaneous traffic movement, a common stop-line, and a
capacity that is shared by all vehicles. In this study, control
delay is estimated using the queue-count method (Highway
Capacity Manual, 2010), which gives an approximate control
delay per vehicle for each lane group. The input data required
for this technique are collected from a traffic microsimulator.
For our research, we have considered that each lane under the
same lane group has similar control delay.

The basis of the problem is that a higher utility at an inter-
section means a higher delay. Therefore, our objective is to
balance these two measures and find an optimized solution.

1.1 Framework and its components
We present a novel framework in this article to identify
the optimal placement of WCUs for a signalized roadway
network in any area type and size (e.g., city, county, or state).
An optimization problem is formulated and solved to find
WCU placement in the network. The Wireless Charging
Utility Maximization (WCUM) framework has four major
components, and they are:

1. A two-step optimization problem.

2. A Dynamic Traffic Assignment (DTA) model.

3. A traffic microsimulator.

4. A global Mixed Integer Non-Linear Programming
(MINLP) optimization solver.

Here, the framework uses the DTA model and the traf-
fic microsimulator to create a calibrated simulation model.
The calibrated simulation model is used to create the lane-
specific utility and control delay functions. The lane-specific
utility and control delay functions are fed to the first step of
the optimization problem. The first step is the intersection-
level optimization. We formulate a multiobjective optimiza-
tion problem for each intersection; the objective functions
for each intersection are total intersection utility maximiza-
tion function and total intersection control delay minimiza-
tion function. We use a scalarization technique to obtain one
solution from the problem (Ehrgott, 2006). Scalarization can
be described as formulating multiple single-objective opti-
mization problems such that the optimal solutions to these
problems form the Pareto optimal solutions to the multiobjec-
tive optimization problem. We have used the weighted-sum
method (Marler & Arora, 2010) for the scalarization of our
problem. The weighted-sum method offers the advantages of
high search efficiency and low computational cost (Wang,
Zhou, Ishibuchi, Liao, & Zhang, 2018). One of the limita-
tions of the weighted-sum method is the requirement to bring
all objectives to the same scale. We are using simulation to
capture the lower and upper bounds of both objective func-
tions, so we are able to normalize both objective functions to
the same scale. By solving this problem, we obtain a Pareto-
front of the solutions. However, we need only one combina-
tion of signal timing parameters, which we can use in the fol-
lowing step. Hence, we select only one solution from a set of
Pareto optimal solutions and carry it forward. From this step,
the framework identifies the traffic signal control parameters
(i.e., minimum and maximum green times, gap time) for each
intersection. These parameters are fed to the second step of
the optimization, where a single-objective optimization prob-
lem is formulated for the whole network. There is only one
objective in this step, maximization of total utility of all the
lanes in the intersection. From this step, the framework iden-
tifies the lane(s) and the number of WCUs that should be
installed at the selected lane(s). Section 3 describes the details
of the WCUM framework development. Figure 1 shows how
the framework identifies the optimal locations of WCU instal-
lation for a roadway network.

At first, the user will develop the calibrated traffic
microsimulation model. The traffic microsimulation will
use an energy model for calculating energy consumption
and charging for each EV. The user needs to specify the EV
penetration in the network and energy model parameters. The
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F I G U R E 1 WCUM framework flowchart

calibration process is based on the Origin-Destination (OD)
traffic flow and travel time data. All traffic simulation is
performed after a DTA model is used to reroute the vehicles
so that user equilibrium is achieved throughout the network.
DTA is an iterative process that reroutes vehicles in each
iteration to reduce travel times, until the travel time cannot
be reduced any more. The traffic microsimulator and the
routing algorithm are part of the process. After all traffic
simulation is completed, the output files are fed to the utility
and control delay function handlers. These two components
calculate the lane-specific utility and control delays from the
simulation results. These results are carried forward to the
intersection-level optimization problem. The result of the
intersection-level optimization is the traffic signal control
parameters. These parameters are fed to the network-level
optimization. For both steps, the parameters that the users
need to specify are mentioned in the box below the flowchart
in Figure 1. After this step, the framework outputs the
solution for the network.

2 LITERATURE REVIEW

The advancements in EV wireless charging technology have
initiated substantial research on the optimal deployment of

WCUs for dynamic charging applications. Many studies have
been conducted on the prospects of EV wireless charging,
efficient wireless charging systems, and dynamic charging
scheme testing (Bi et al., 2016; Li & Mi, 2015; Qiu, Chau,
Liu, & Chan, 2013). One of the significant works focuses
on the system design utilizing wireless charging technology
for an electric bus, also known as online EV (OLEV) (Ko
& Jang, 2013). The authors have used a particle swarm
optimization method to find a minimum cost solution for
WCU installation. The decision variables considered in this
analysis are the battery size, total number of WCUs, and
places to install the WCUs on a fixed route. The model is
calibrated to the actual OLEV system (Ko & Jang, 2013),
which was developed by the Korea Advanced Institute of
Science and Technology and deployed in Seoul, Korea (Jang,
Ko, & Jeong, 2012). Other notable institutions that have suc-
cessfully implemented WCU system for EVs and performed
field-testing include Siemens, Volvo, Highways England,
Auckland University, HaloIPT (Qualcomm), Oak Ridge
National laboratory (ORNL), MIT (WiTricity), and Delphi.
However, for a full commercial CWD implementation, signif-
icant changes are needed to retrofit the current transportation
infrastructure.

Mohrehkesh and Nadeem (2011) have investigated wireless
charging for EVs at signalized intersections. The authors pro-
pose adaptive control strategies of traffic signals for charging
of EVs at intersections that would meet EV's energy demand
while the control delay at intersections is minimized. This
study does not focus on selecting the optimal locations for
WCU installation. Earlier studies (Chen, He, & Yin, 2016;
Riemann, Wang, & Busch, 2015) do not investigate the effect
of traffic signals on EV charging in the analysis. One of the
problems with mathematical models, which are not validated
with reliable traffic simulation software, is that they often do
not accurately capture the realistic traffic scenarios. In addi-
tion, most of the existing optimization models are computa-
tionally expensive as they typically contain nonlinear and non-
convex components with integer variables. As a result, they
are more applicable for small networks. Ushijima-Mwesigwa
et al. (2017) have introduced an integer-programming model
that is built upon considering different realistic scenarios of
routes. The authors have compared the computational results
for the proposed model with faster heuristics and demon-
strated that their approach provides significantly better results
for fixed budget models. Using standard optimization solvers
with parallelization, they have succeeded to provide fast and
high-quality solutions for much larger networks. However,
they do not consider microscopic traffic flow modeling in an
urban area. Factors such as vehicular interaction and delay
due to traffic signals are not considered. The Sioux Falls net-
work, which has been used in this study, has been previously
used in other studies for developing network equilibrium mod-
els for battery EVs (He, Yin, & Lawphongpanich, 2014) and
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optimization models for deployment of public EV charging
stations (Li, Huang, & Mason, 2016).

Recent studies focus on energy optimization of EVs
(Bhavsar, He, Chowdhury, Fries, & Shealy, 2014; He,
Chowdhury, Pisu, & Ma, 2012) and ITS technologies to facil-
itate smart charging of EVs (Johnson, Chowdhury, He, &
Taiber, 2012, 2013; Sarkar et al., 2016). Deflorio, Guglielmi,
Pinna, Castello, and Marfull (2015) develop a design frame-
work for EV charging infrastructure based on the WCU
performance. In another analysis, Gill et al. (2014) focus
specifically on the costs of developing a wireless charging
infrastructure. After analyzing the costs, the authors pro-
pose a business model which will make the implementation
of the wireless charging infrastructure a profitable invest-
ment. The studies show that a typical standalone EV wire-
less charger with Level 2 power ratings for one EV can cost
around US$1,000–US$2,000. Considering other infrastruc-
tural costs, equipping a road segment with wireless charg-
ing may cost as much as US$250K–US$500K. Therefore, the
cost is a major obstacle for large-scale deployment of WCU
for EVs. In general, cost of installing electric infrastructure is
very high. In one study, the authors have discussed the cost
of electric infrastructure for the railway system (Caíno-Lores,
García, García-Carballeira, & Carretero, 2017).

Optimization of signal timing parameters using traffic
microsimulation is a popular research topic. In one study, the
authors have created an optimization model for signal tim-
ing (Han, Liu, Gayah, Friesz, & Yao, 2016). The authors of
the study have considered fuel consumption as a criterion for
optimizing signal timings. The authors use traffic microsim-
ulation to test if the algorithm works or not. In another
study, the authors develop an optimization model that incor-
porates multimodal signal priority, coordination, and actua-
tion (He, Head, & Ding, 2014). The authors outline the con-
flicting issues between actuated-coordination and signal pri-
ority requests and develop a mixed integer linear program.

It should be mentioned here that, wireless charging for EVs
is still at the early stages of its development. Using currently
available technology, the low power of the WCU combined
with the relatively short times for charging at intersections
would result in very little energy transfer to EVs that use the
system. However, it is currently a topic of major research, and
it is expected that faster charging technologies (such as Level
3/DC fast charging) will emerge, which will make dynamic
charging a feasible alternative for EVs.

3 DEVELOPMENT OF THE
FRAMEWORK

In this section, we describe the WCUM framework develop-
ment in detail. This framework has four major components,
as mentioned in Section 1. In this section, we follow the

flowchart in Figure 1 to explain the development. At first,
we specify the assumptions behind the framework. Then,
we define two optimization problems in two subsections.
The optimization problems have different objective functions
and constraints. We have used simulation to formulate these
functions for the framework. Therefore, we discuss the
development of the calibrated simulation model. After that,
we describe the process of using the simulation results to
formulate the objective functions.

3.1 Assumptions
The framework development consists of several assumptions,
which need to be mentioned before discussing the develop-
ment of the framework. The assumptions are listed below:

• All signalized intersections are controlled by fully actuated
traffic signals.

• All left turn phases are permitted along with the through
movement. There are no exclusive left-turn phases at any
signal.

• Signal timing parameters will be optimized at an intersec-
tion level rather than at the network level. Therefore, signal
coordination and associated parameters, such as offset, are
not considered in this framework.

• The relationship between the location of WCU and EV
routes is not modeled in this framework.

3.2 Optimization problem formulation
The most important part of the WCUM framework is the two-
step optimization problem. At first, we will identify decision
variables for the optimization problems. After that, the opti-
mization problems are formulated.

3.2.1 Variable selection
The analysis starts with the idea that signalized intersections
in urban areas are the most suitable locations to place
the WCUs on urban arterials. The focus of this study is
to maximize the utility of WCUs through EV charging
(including both stopped charging and charging in transit over
WCUs) at signalized intersections. For fully actuated traffic
signal control, there are many parameters that control the
traffic operation. In this study, we have chosen minimum
green duration (min-green time), maximum green duration
(max-green time), and unit extension duration (gap time) as
the decision variables (Roess, Prassas, & McShane, 2011).
We use signal phase to describe the time interval allocated
to one or more simultaneous vehicular traffic movements.
For a certain green phase, the min-green time defines the
minimum allowable duration of the phase. The max-green
time defines the maximum allowable duration up to which a
green phase can be extended. The gap time defines the unit
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duration which a green phase will be extended for each call
from the traffic sensor (e.g., loop detector, camera).

According to National Electrical Manufacturers Associ-
ation (NEMA) phasing scheme (Roess et al., 2011), the
four major through phases are phases 2, 4, 6, and 8 for
a standard four-legged intersection. Phases 2 and 6 move
together and correspond to the through movement in one
direction, and phases 4 and 8 are the conflicting phases
corresponding to the through movement in the other direc-
tion. In this analysis, the maximum green time of phases 2
and 6 is max-green 1 (gmax1), and the maximum green time
of phases 4 and 8 is max-green 2 (gmax2). Similarly, the min-
imum green time of phases 2 and 6 is min-green 1 (gmin1),
and the minimum green time of phases 4 and 8 is min-green
2 (gmin2). The effect of the variables on the utility and con-
trol delay is not well defined in the literature. The variations
of control delay and utility for each lane depend on the traffic
flow patterns and the presence of EVs on that route. The utility
of WCUs is dependent on the stopped charging and charging
in transit. If a through lane corresponds to phases 2 and 6, then
increasing gmax2 (max-green for phases 4 and 8) can increase
the utility and control delay of that lane. The reason is that
the red phase interval for that approach can increase with the
increase of gmax2. Increased red phase intervals means more
stopped time for EVs, so more stopped charging is provided.
However, more stopped time also means more control delay.
On the other hand, increasing gmax1 (max-green for phases 2
and 6) can increase the charging in transit (as more vehicles
will cross the WCUs), decrease the stopped charging, and
decrease the control delay of that lane. Apart from the mini-
mum and maximum green time, gap time is another parameter
that impacts utility and control delay. If a through lane corre-
sponds to phases 2 and 6, then increasing gt (gap time) can
increase the charging in transit (as more vehicles will cross
the WCUs), decrease the stopped charging, and decrease the
control delay of that lane. However, the gap time of the con-
flicting phase also increases, which can increase the stopped
charging and increase the delay. The gap time is considered
equal for approaches in both directions. Besides the traffic
signal timing parameters, the number of WCUs has a high
impact on the utility value. More WCUs placed back to back
will cover a higher proportion of the queue at the intersec-
tion, so it has the opportunity to serve more EVs during the
stopped time at the intersection. Therefore, we develop both
lane- and intersection-specific utility and control delay func-
tions so that we can accurately capture the variations for each
lane and intersection separately.

3.2.2 Intersection-level optimization problem
The optimization strategy for WCU placement consists of
two steps. First, we formulate a multiobjective optimization
problem for each intersection, where the decision variables

are the traffic signal controller parameters. For actuated sig-
nals, we have chosen five parameters that affect WCU util-
ity and control delay: the min-green time and max-green time
of the phases corresponding to the two through movements
(i.e., gmin1, gmin2, gmax1, gmax2), and the gap time (gt). WCUs
are installed along the full length of the approaching lanes
of the corresponding intersections. The objective functions
are the total utility from all the WCUs and the control delay at
the respective intersections. The two objectives are maximiza-
tion of total intersection utility and minimization of total con-
trol delay.

Maximize
∑
𝑗∈𝐽𝑖

𝑢𝑖,𝑗(𝑔𝑡𝑖, 𝑔min 1𝑖, 𝑔min 2𝑖, 𝑔max 1𝑖, 𝑔max 2𝑖)

Minimize
∑
𝑗∈𝐽𝑖

CD𝑖,𝑗(𝑔𝑡𝑖, 𝑔min 1𝑖, 𝑔min 2𝑖, 𝑔max 1𝑖, 𝑔max 2𝑖)

Subject to,

C𝐷𝑖,𝑗(𝑔𝑡𝑖, 𝑔min 1𝑖, 𝑔min 2𝑖, 𝑔max 1𝑖, 𝑔max 2𝑖) ≤ ℎ𝑖,𝑗 ,

∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽𝑖 (1)

𝑔min _lower ≤ 𝑔min 1𝑖, 𝑔min 2𝑖 ≤ 𝑔min _𝑢𝑝𝑝𝑒𝑟, ∀𝑖 ∈ 𝐼 (2)

𝑔max _lower ≤ 𝑔max 1𝑖, 𝑔max 2𝑖 ≤ 𝑔max _𝑢𝑝𝑝𝑒𝑟, ∀𝑖 ∈ 𝐼 (3)

𝑔𝑡_lower ≤ 𝑔𝑡𝑖 ≤ 𝑔𝑡_𝑢𝑝𝑝𝑒𝑟, ∀𝑖 ∈ 𝐼 (4)

𝑔min 1𝑖, 𝑔min 2𝑖, 𝑔max 1𝑖, 𝑔max 2𝑖 are integers (5)

where,

𝐼 = Set of all signalized intersections

𝑖 = Signalized intersection 𝑖

𝐽𝑖 = Set of all lanes approaching signalized intersection 𝑖

𝑗 = Any lane 𝑗 approaching signalized intersection 𝑖

𝑢𝑖,𝑗 = WCU Utility function at lane 𝑗 of intersection 𝑖 (Wh)

𝑔min 1𝑖 = Minimum green signal time of phases 2 and 6
at intersection 𝑖 (sec)

𝑔min 2𝑖 = Minimum green signal time of phases 4 and 8
at intersection 𝑖 (sec)

𝑔max 1𝑖 = Maximum green signal time of phases 2 and 6
at intersection 𝑖 (sec)

𝑔max 2𝑖 = Maximum green signal time of phases 4 and 8
at intersection 𝑖 (sec)

𝑔min _lower = Acceptable lower value of 𝑔min 1𝑖 or 𝑔min 2𝑖(sec)

𝑔min _𝑢𝑝𝑝𝑒𝑟 = Acceptable upper value of 𝑔min 1𝑖 or 𝑔min 2𝑖(sec)

𝑔max _lower = Acceptable lower value of 𝑔max 1𝑖 or 𝑔max 2𝑖 (sec)

𝑔max _𝑢𝑝𝑝𝑒𝑟 = Acceptable upper value of 𝑔max 1𝑖 or 𝑔max 2𝑖(sec)

𝑔𝑡𝑖 = Gap time at intersection 𝑖 (sec)
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𝑔𝑡_𝑢𝑝𝑝𝑒𝑟 = Acceptable upper value of gap time (sec)

𝑔𝑡_lower = Acceptable lower value of gap time (sec)

ℎ𝑖,𝑗 = Control delay limit corresponding to target LOS of
lane 𝑗 at intersection 𝑖 (sec/veh)

CD𝑖,𝑗 = Control delay at lane 𝑗 of intersection 𝑖 (sec/veh)

The constraints of the first step of the optimization formula-
tion are range of gmin1i and gmin2i, range of gmax1i and gmax2i,
range of gti, and LOS (Highway Capacity Manual, 2010). The
purpose of the first step of the optimization is to ensure that
increasing the utility of the WCU at any intersection does not
degrade the overall operational performance of the intersec-
tion. In such a case, the non-EV users will suffer excessive
delay, which is not desirable.

The total WCU utility of the intersection is the sum of util-
ity from each lane (ui,j) approaching the intersection. Simi-
larly, the total control delay of the intersection is the sum of
control delay at each lane (CDi,j). In this step, they are both
functions of gmin1i, gmin2i, gmax1i, gmax2i, and gti. There is
no limit on the length of WCUs, so WCU is installed across
the full length of all the lanes approaching the intersection.
There are five constraints of the formulation. The solution to
the optimization problem must obey all these constraints. For
clarification, the constraints are described below in sequence:

• The control delay of all lanes in each lane group should be
less than the threshold value for the target LOS limit. For
example, if the target LOS is C, then the limiting value of
control delay is 35 s/veh (Highway Capacity Manual, 2010)
(Equation 1).

• The minimum green signal times of all phases at all the
intersections are constrained by an upper and a lower value
(Equation 2).

• The maximum green signal times of all phases at all the
intersections are constrained by an upper and a lower value
(Equation 3).

• The gap time at all the intersections are constrained by an
upper and a lower value (Equation 4).

• The min-green times and max-green times are integer con-
strained (Equation 5).

Scalarization is applied to obtain a single solution. The
weighted sum method is used to transform this problem into
multiple single objective optimization problems. A weight
factor (fi) is used to calculate the weight of the objective func-
tions in the unified objective function. Different fi values will
yield different solutions, but we will choose only one solution
to carry forward to the next step. We sum the utility and con-
trol delay for all the lanes at the intersection. Since we will
form a minimization problem, we need to invert the total util-
ity value, so that a minimization problem will result in a max-
imized utility value. Then, we apply feature scaling or unity-

based normalization to bring the inverted utility and control
delay values between zero and one. Both values should be
brought to the same scale; otherwise, the weight of one value
will be more than the other in the optimization. After that, we
formulate the single objective function with the normalized
values. Equation (6) describes the relationship between the
unified objective function and the utility, control delay, and
the weight factor. The “ubn” notation indicates unity-based
normalization:

𝑧𝑖 = 100 × (𝑓𝑖 × 𝑢𝑏𝑛((
∑
𝑗∈𝐽𝑖

𝑢𝑖,𝑗)−1)

+ (1 − 𝑓𝑖) × 𝑢𝑏𝑛(
∑
𝑗∈𝐽𝑖

CD𝑖,𝑗)) (6)

𝑧𝑖(𝑔𝑡𝑖, 𝑔max 1𝑖, 𝑔max 2𝑖)=𝑘𝑖 × 𝑔𝑡𝑖2+𝑙𝑖 × 𝑔max 1𝑖
2+𝑚𝑖 × 𝑔max 2𝑖

2

+ 𝑛𝑖 × 𝑔𝑡𝑖 × 𝑔max 1𝑖 + 𝑜𝑖 × 𝑔max 1𝑖 × 𝑔max 2𝑖 + 𝑝𝑖 × 𝑔max 2𝑖

× 𝑔𝑡 + 𝑞𝑖 × 𝑔𝑡𝑖 + 𝑟𝑖 × 𝑔max 1𝑖 + 𝑠𝑖 × 𝑔max 2𝑖 + 𝑡𝑖 (7)

where,

𝑧𝑖 = 𝑧𝑖(𝑔𝑡𝑖, 𝑔max 1𝑖, 𝑔max 2𝑖) = Objective function value

𝑓𝑖 = Weight factor of intersection 𝑖

𝑘𝑖, 𝑙𝑖, 𝑚𝑖,… , 𝑡𝑖 = Coefficients of the second order

fitting equation for intersection 𝑖

After converting simulation outputs to objective function
values, we need to model the relationship between this objec-
tive function and the input variables. We assume that the
objective function has no variation with gmin1i and gmin2i.
Therefore, we can choose a generic quadratic polynomial
of three variables to model a single objective function that
combines the utility and control delay functions. The generic
quadratic polynomial is shown in Equation (7), which is used
to represent the relationship between the single objective
function and the input variables (gmax1i, gmax2i, gti). There are
10 coefficients (ki-ti) in this equation, and we need to identify
the values of these coefficients for each intersection. We have
two data series of 27 data points (27 = 33 = number of com-
binations for three independent variables with three values
each). One of the data series comes from Equation (6) (sim-
ulation outputs) and the other comes from Equation (7). We
use a generalized reduced gradient solver to identify the coef-
ficients that minimizes the Root Mean Squared Error (RMSE)
between the two data series.

3.2.3 Network-level optimization problem
The second step of the optimization uses the optimized traf-
fic signal controller parameters (i.e., gmin1i, gmin2i, gmax1i,
gmax2i, and gti) from the previous step to formulate a single
objective problem at a network level. In this step, the traffic
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control parameters act as constants and do not take part in the
optimization process. The decision variable in this step is the
number of WCUs placed at the different lanes in each inter-
section. The objective is the maximization of the total utility
from all intersections. The purpose of this step is to determine
the spread of the WCUs in the network. The constraint of the
optimization formulation in this step is the budget. The objec-
tive function is the sum of the WCU utility of each lane (ui,j).
In this step, the decision variables are the number of installed
WCU units (xi,j) in lane j at intersection i.

Maximize
∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝑢𝑖,𝑗(𝑥𝑖,𝑗)

Subject to,∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

𝑥𝑖,𝑗𝑑 ≤ 𝑤

(8)

0 ≤ 𝑥𝑖,𝑗 ≤
𝑙𝑖,𝑗

𝑦
, ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽𝑖 (9)

𝑥𝑖,𝑗 is integer (10)
where,

𝐼 = Set of all signalized intersection

𝑖 = Signalized intersection 𝑖

𝐽𝑖 = Set of all lanes approaching intersection 𝑖

𝑗 = Any lane 𝑗 approaching signalized intersection 𝑖

𝑢𝑖,𝑗 = WCU Utility function at lane 𝑗 of intersection 𝑖 (Wh)

𝑥𝑖,𝑗 = Number of WCU units installed at lane 𝑗 of

intersection 𝑖

𝑑 = Price of WCU per unit ($∕unit)

𝑦 = Length of unit WCU (m)

𝑤 = Budget ($)

𝑙𝑖,𝑗 = Length of lane 𝑗 of intersection 𝑖 (m)

There are three constraints of the formulation. The solu-
tion to the optimization problem must obey all these con-
straints. For clarification, the constraints are described below
in sequence:

• The total cost of the installation should be less than or equal
to the budget (Equation 8).

• The number of WCU units for each lane must be greater
than or equal to zero, and less than or equal to the length of
the lane divided by unit WCU length (Equation 9).

• The number of WCU units for each lane is integer con-
strained (Equation 10).

For this step, we follow a similar pattern to the previous
step. At first, we use the solutions from the previous step to

determine the relationship between the number of WCUs and
the utility. When the number of WCU is zero, the utility will
always be zero. Apart from that, we evaluate utility values for
three data points. Therefore, for each lane, we will have four
data points from simulation. A third-order polynomial can
accurately capture the relationship for all lanes. Therefore, we
calculate the coefficients of the third-order polynomial that
passes through all the data points. Equation (11) represents
the relationship between number of WCU units and utility for
a specific lane:

𝑢𝑖,𝑗(𝑥𝑖,𝑗) = 𝑎𝑖,𝑗 × 𝑥𝑖,𝑗3 + 𝑏𝑖,𝑗 × 𝑥𝑖,𝑗2 + 𝑐𝑖,𝑗 × 𝑥𝑖,𝑗 + 𝑑𝑖,𝑗 (11)

where,
𝑎𝑖,𝑗 , 𝑏𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑑𝑖,𝑗 = Coefficients of the third-order fitting
equation for lane 𝑗 at intersection 𝑖

3.3 Network calibration and dynamic traffic
assignment
In this section, we describe the traffic microsimulation
component of the framework. For developing the frame-
work, we have used Simulation of Urban Mobility (SUMO)
(Behrisch, Bieker, Erdmann, & Krajzewicz, 2011) as the traf-
fic microsimulation platform of choice, as we can simulate EV
and WCU in a calibrated network. SUMO is open source and
allows seamless integration to platforms like OpenStreetMap
(Haklay & Weber, 2008) and Python.

To create a calibrated traffic simulation model, we need
network configuration data (i.e., number of nodes and links,
node positions, and link lengths) for the study area, along
with OD traffic flow and travel time data. We can collect
the Annual Average Daily Traffic (AADT) data and average
link speed data from the state DOT's Web site. To convert the
AADT of a road segment (link) into a design hourly volume,
we need the k-factor (k) and the directional split (d). The k-
factor is defined as the factor which converts a daily volume
to an hourly volume. The d-factor determines the percentage
split of volume in each direction. From previous studies that
have collected real-world data across the Sioux Falls area, we
can determine the k-factor and directional split. Using these
factors, we can convert AADT to Directional Design Hourly
Volume (DDHV) using Equation (12):

D𝐷𝐻𝑉 = A𝐴𝐷𝑇 × 𝑘 × 𝑑 (12)

The DDHV for each link in SUMO is the ground truth for
the DTA model. We have chosen a simulation based DTA
model called the Gawron model (Gawron, 1998) for this
framework. This model computes the stochastic dynamic user
equilibrium for a network using an iterative process. The steps
are given below:

• Each vehicle has a finite set of routes and a probability dis-
tribution of route choice. In each iteration, a random route
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is chosen from the set of routes based on the probability
distribution.

• Initially there are no routes in the set. With each iteration, a
new route is added to the set based on shortest path calcu-
lations, unless the route is already part of the set.

• In each iteration, the travel time and the probability distri-
bution of route choice are updated for each vehicle after
routing and microsimulation is performed.

• The model is considered to be converged when the max-
imum relative standard deviation in travel times between
consecutive iterations is below a certain threshold.

𝑡v,new(𝑖) =
{

𝑡𝑠, if 𝑖 = 𝑟
𝛽𝑡𝑔(𝑖) + (1 − 𝛽)𝑡v(𝑖), otherwise

}
(13)

where,

𝑡v,new(𝑖) = Travel time of route 𝑖 in the current iteration (sec)

𝑡v(𝑖) = Travel time of route 𝑖 in the previous iteration (sec)

𝑡𝑠 = Travel time from simulation (sec)

𝑡𝑔(𝑖) = Sum of time dependent link travel times for route 𝑖
(sec)

𝛽 = Smoothing parameter

Let us consider the routing for one vehicle, v. The set of
chosen routes for vehicle v is Pv and the probability distribu-
tion is pv. The sum of the route choice probabilities is always
1. In each iteration, the Gawron model uses SUMO to simu-
late the network and update the travel times and the probability
distributions of route choice for each vehicle. For vehicle v, let
us assume that the current selected route is r. The update rule
for travel time of all routes in set Pv is given in Equation (13).
For route r, the travel time is updated directly from simulation,
since the vehicle actually took this route in the previous simu-
lation. For all other routes, the travel time is updated based on
the sum of the time-dependent link travel times and the travel
time of that route in the previous iteration.

𝑝v,new(𝑟) =
𝑝v(𝑟)[𝑝𝑣(𝑟) + 𝑝v(𝑠)]𝑒

𝛼𝛿𝑟𝑠

1−𝛿2𝑟𝑠

𝑝v(𝑟)𝑒
𝛼𝛿𝑟𝑠

1−𝛿2𝑟𝑠 + 𝑝v(𝑠)
(14)

where,

𝑝v,new(𝑟) = New probability of choosing route 𝑟

𝑝v(𝑟) = Prior probability of choosing route 𝑟

𝑝v(𝑠) = Prior probability of choosing route 𝑠

𝛼 = Model parameter

𝛿𝑟𝑠 = Relative travel time difference between routes 𝑟 and 𝑠

= 𝑡v(𝑠)−𝑡v(𝑟)
𝑡v(𝑠)+𝑡v(𝑟)

The new probability of route choice is updated based on
the comparison with the travel time of a known route from set

Pv. Let us assume that r is the route used in the last iteration
and s is another known route in the set Pv. Equation (14) gives
the new probability of choosing route r. Equation (15) gives
the new probability of choosing a known route. The sum
of the prior and new probabilities should be equal.

𝑝v,new(𝑠) = 𝑝v(𝑟) + 𝑝v(𝑠) − 𝑝v,new(𝑟) (15)

where,

𝑝v,new(𝑠) = New probability of choosing route 𝑠

𝑝v,new(𝑟) = New probability of choosing route 𝑟

𝑝v(𝑠) = Prior probability of choosing route 𝑠

𝑝v(𝑟) = Prior probability of choosing route 𝑟

The method requires the use of a routing algorithm. We
have used the well-known Dijkstra's algorithm (Yin & Wang,
2010) in this framework. Significant research has already
been conducted in the field of calibration of traffic simu-
lation model (Dowling, Skabardonis, Halkias, McHale, &
Zammit, 2004; Hollander & Liu, 2008). We have used a trial
and error method to adjust the OD matrix values to match the
link DDHV and average travel times with the data from the
real world.

3.3.1 DTA model convergence
Achieving the stochastic dynamic user equilibrium through
convergence of an iterative process is a major challenge for
any DTA model. The ideal method for testing the convergence
of a DTA model is an equilibrium gap function (such as dual-
ity gap), which measures the gap between the travel times (or
traffic flows) of current iteration and the equilibrium travel
times (or traffic flows). However, the equilibrium travel times
(or flows) for a large network are not always known, which
creates a problem for using gap functions for checking con-
vergence. Therefore, a proxy indicator can be used to mea-
sure the change in link travel times in successive iterations to
assess if the algorithm has reached a stable solution (Taale
& Pel, 2015). In this case, the assumption is that if the link
travel times reach a stable value and do not change signifi-
cantly due to perturbations (i.e., a change in traffic conditions
from the previous iteration), such as a congestion buildup,
in the following iterations, it can be assumed that the algo-
rithm has reached user equilibrium. In this study, we have used
maximum relative standard deviation as the proxy indicator.
The condition to terminate the iterations is described using
Equation (16).

𝜀(𝑥) = 100% × max
𝑙∈𝑙𝑖𝑛𝑘𝑠

√
∑𝑥
𝑖=𝑥−𝑑 (𝑡𝑡

𝑖
𝑙
−

∑𝑥
𝑗=𝑥−𝑑 𝑡𝑡

𝑗

𝑙

𝑑+1 )
2

𝑑∑𝑥
𝑗=𝑥−𝑑 𝑡𝑡

𝑗

𝑙

𝑑+1

<𝜀𝑡ℎ, 𝑑 < 𝑥

(16)
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where,

𝑙𝑖𝑛𝑘𝑠 = Set of all links in the network

𝑙 = Any link l in the network

𝑥 = Current Iteration number

𝑡𝑡𝑖
𝑙
∕𝑡𝑡𝑗

𝑙
= Travel time of link 𝑙 for the 𝑖th∕𝑗th iteration (s)

𝜀(𝑥) = Maximum relative standard deviation for the 𝑥th
iteration

𝜀𝑡ℎ = Threshold value for maximum relative standard error

𝑑 = Number of prior iterations considered for calculation

When the value of 𝜀 is below 𝜀th, it is considered that
the algorithm has converged and reached a stable solution.
The Gawron model ensures that a stable solution can be
achieved for any simulation scenario. A stable solution in this
case is a stable probability distribution. After a stable solu-
tion is reached, a stochastic fluctuation in travel times may
result in the variation of 𝛿rs. However, the exponential term

𝑒

𝛼𝛿𝑟𝑠

1−𝛿2𝑟𝑠 in Equation (14) ensures that the change in probability
distribution due to the change in 𝛿rs is minimal. The param-
eter 𝛼 can be used to increase or decrease the sensitivity of
the model to stochastic fluctuations in travel times. Figure 2
shows the variation in probability distribution of route choice
with respect to the value of 𝛼. Decreasing the value of 𝛼 can
increase the stability of the probability function with stochas-
tic variations of 𝛿rs around 0.

Moreover, Gawron has performed a stability analysis of
the model, which results in a theoretical limit on the value
of 𝛼 (Gawron, 1998). In the stability analysis performed by
Gawron, the effect of a small perturbation on the probability
distribution of route choice is examined. The theoretical limit
on the value of 𝛼 is given in Equation (17).

𝛼<

𝑛∑
𝑖=1
𝐶𝑖

Δ𝑡
min
𝑡∈[𝑡0,𝑡1]

𝑛∑
𝑗=1
𝑇𝑗(𝑡)

𝑑(𝑡)
(17)

where,

𝐶𝑖 = Capacity of route 𝑖 (veh/hr)

𝑇𝑗(𝑡) = Travel time of route 𝑗 at time 𝑡 (sec)
Δ𝑡 = Congestion period (sec)

𝑑(𝑡) = Total demand at time 𝑡 (veh/hr)

𝑛 = Number of routes in the simulation

𝑡0 = Start time of congestion (sec)

𝑡1 = End time of congestion (sec)

From Equation (17), it can be observed that, if the capaci-
ties are higher than the demand and the time of congested peri-
ods is negligible compared to the overall travel time, the limit
on value 𝛼 is more flexible. However, if the demand matches
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capacity and the travel times are similar to congested periods,
then the limit on the value of 𝛼 is very stringent. Therefore,
if the users face convergence issues with their test cases, they
have two options. They can choose to lower the value of 𝛼,
which will inherently increase the stability of the probability
functions of route choice. The users can also change the value
of 𝜀th to achieve fast convergence.

A higher value of 𝛼 is desired for better performance from
the model. However, lowering the value of 𝛼 increases the sta-
bility of the algorithm. Therefore, an optimum value of 𝛼 can
be determined for each case study. If 𝛼 = 0, then the algo-
rithm does not change the route choice probabilities. Equa-
tion (17) places an upper limit on the value of 𝛼. There is
a small range of 𝛼 in which we can search for the optimal
𝛼 value, and this range varies between 0 and an upper limit
derived from Equation (17). In the simplest setting, a binary
search algorithm can be used to determine the optimal value
of 𝛼. Since the range is bounded from above and below, one
can select a value 𝛼, verify the convergence, and decrease or
increase 𝛼 to the middle between the upper and lower bound of
the updated range based on the convergence estimation. This
iteration can be repeated several times gradually updating the
current lower and upper bounds of the search range until a
proper value of 𝛼 is found. However, in general, one of the
recent trends is to accelerate parameter fitting in simulation
using machine-learning approaches. Given sufficient compu-
tational resources, one can create a library of simulations,
where each simulation is a data point in a feature space. A fea-
ture space should include various descriptions and properties
of the simulation (i.e., number of nodes/links, link capacities,
traffic conditions, etc.). Then, for each of these data points, a
label that contains optimized parameters is obtained through
actual execution of the simulation. This creates a labeled data
set on which a machine learning method can be applied to
predict the initial values of the parameters per new test point
(a new simulation for which parameters are required). For
example, one can use generative neural networks to obtain
the acceptable value of 𝛼. Such methods are popular in broad
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simulation, such as transportation logistics (Wojtusiak,
Warden, & Herzog, 2012) and computer architecture design
(Hamerly, Perelman, Lau, Calder, & Sherwood, 2006). We
can obtain the optimal 𝛼 value using Equation (17), but it
is beyond the scope of this research. In this study, we have
obtained the 𝛼 value from previous case studies and achieved
convergence satisfying Equation (16).

3.3.2 Developing traffic simulation scenarios
Some approximations are made to simplify computations in
order to reduce the runtime of the framework. Instead of per-
forming simulation for all possible combinations of min-green
times, max-green times, and gap times, we select a low, mid,
and high value for each variable, which limits the number of
simulation runs within a fixed limit. Using the results from the
limited simulation runs, we model the relationship between
the variables and the output functions. We assume that the
different traffic scenarios at the signalized intersections are
accurately represented in the simulation model. Moreover, it
is assumed that the utility function and control delay function
can be combined into a quadratic polynomial curve-fitting
(with exact fitting) equations. Each lane at each intersection
will have a different characteristic and finding the accurate
relationship of utility and control delay for each lane is a
nontrivial task. For simplicity, a quadratic polynomial curve-
fitting equation is used.

The calibrated simulation model acts as the base model for
this step. The user will assume an EV penetration level when
creating the SUMO model files. The traffic simulation cases
are created from combinations of low-mid-high values of all
the variables (xi,j, gmin1i, gmin2i, gmax1i, gmax2i, and gti). A high
number of cases is generated using this technique. It is diffi-
cult to run such high number of simulations using one pro-
cessor. Therefore, we have developed the framework to run
the simulation cases in a Linux-based cluster computer. The
WCUM framework is developed using the Palmetto Cluster,
which is the primary high-performance computing resource
of Clemson University. Palmetto is comprised of 2,021 com-
pute nodes totaling 23,072 CPU cores (Palmetto Cluster user's
guide, 2018). The framework pools the requested resources
and submits simulation jobs simultaneously. Parallelization is
achieved through GNU Parallel (Tange, 2011).

3.4 Utility calculation
SUMO has a built-in EV energy model and EV charging
model (Kurczveil, López, & Schnieder, 2013). The model cal-
culates the energy consumed/charged between the previous
timestep and the current timestep for each EV in the simula-
tion. The change in EV energy can be obtained by subtracting
the energy loss from the energy gain. Four types of energy
gain components are considered, which are: kinetic, potential,
rotational, and frictional components. The different resistance

components such as acceleration, brake, air drag, and road sur-
face are responsible for the loss of energy. The charging model
is based on the relative position of the WCU and the EV at
each timestep. Based on the proximity of WCU and EV, the
EV battery receives energy from the WCU. The factors that
affect the charging are alignment of the coils of EV and WCU,
and the time spent by the EV over the WCU. There are two
components of charging for an EV, they are stopped charging
and charging in transit. Stopped charging refers to the charg-
ing of EV at an intersection during the red time interval. It
can also be described as opportunistic charging. When an EV
approaches the intersection during the green time interval, it
gets charged as it passes over the charging coils; this charging
is known as charging in transit.

𝑢 =
∑
𝑣∈𝑉

𝑒𝑛𝑑𝑠𝑡𝑒𝑝∑
𝑘=0

(𝐸𝑐ℎ𝑟𝑔_𝑠𝑡𝑜𝑝𝑝𝑒𝑑,𝑣(𝑘) + 𝐸𝑐ℎ𝑟𝑔_𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑣(𝑘)) (18)

where,

𝑉 = Set of all electric vehicles

𝑣 = An electric vehicle 𝑣 in the network

𝑢 = Total utility from a WCU (Wh)

𝑘 = Simulation timestep (sec)

𝐸𝑐ℎ𝑟𝑔_𝑠𝑡𝑜𝑝𝑝𝑒𝑑,𝑣(𝑘) = Stopped charging of EV 𝑣 at timestep
𝑘 (Wh)

𝐸𝑐ℎ𝑟𝑔_𝑡𝑟𝑎𝑛𝑠𝑖𝑡,𝑣(𝑘) = Charging in transit of EV 𝑣 at timestep 𝑘
(Wh)

For each simulation step, the model calculates the energy
gain/loss for each EV. An output file is generated from sim-
ulation that contains the values of the stopped charging and
charging in transit for each EV at each timestep. The output
file is used for utility calculation in this framework. Both the
EV energy model and EV charging model require input of cer-
tain vehicle parameters and charging infrastructure parame-
ters, which can be found in Figure 1.

Equation (18) represents the formula to calculate the util-
ity from one traffic simulation scenario. Here, the utility,
u, is the total charging of all the EVs in the network by a
WCU. All the charging information from the simulation is
generated in an output file. The data from the output file can
be parsed and Equation (18) can be used to get the utility
value.

3.5 Control delay calculation
There are many techniques to calculate control delay of an
intersection lane group (Highway Capacity Manual, 2010;
Ghosh-Dastidar & Adeli, 2006). Among these techniques, the
queue-count technique is chosen for the control delay calcu-
lation.
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The queue-count technique is developed for calculating
control delay using traffic data collected from the field. For
a specific lane group, the data required from the field is the
total vehicle count, stopped vehicles count, vehicles in queue
count, approach speed, and cycle length. The stop delay can
be calculated from field data. The acceleration and decelera-
tion delay cannot be measured easily; every vehicle that passes
through the intersection needs to be tracked individually to
measure these delays. The queue-count technique is an estab-
lished method to provide reasonable approximation of control
delay. However, this can only be achieved by applying appro-
priate adjustment factors (Powell, 1998; Quiroga & Bullock,
1999). In this study, the technique is applied to a simulation
environment, where the data collection from the field is mim-
icked in the simulation. Detectors are used in simulation to
collect the input data for the technique. The technique is illus-
trated using Equations (19)–(23).

Time-in-queue per vehicle, 𝑑𝑣𝑞 = 𝐼𝑠
𝑉𝑞

𝑉𝑡𝑜𝑡
(19)

Fraction of stopped vehicles, FVS =
𝑉𝑠𝑡𝑜𝑝

𝑉𝑡𝑜𝑡
(20)

Number of stopped vehicles/lane/cycle, 𝑉𝑞𝑝𝑙𝑝𝑐 =
𝑉𝑠𝑡𝑜𝑝

𝑁𝑐 ×𝑁
(21)

Acceleration deceleration correction delay, 𝑑𝑎𝑑 = FVS × CF

(22)

Control delay, 𝑑 = 𝑑𝑣𝑞 + 𝑑𝑎𝑑 (23)

where,

𝑉𝑡𝑜𝑡 = Total number of vehicles

𝑉𝑞 = Total number of vehicles in queue

𝑉𝑠𝑡𝑜𝑝 = Number of stopped vehicles

𝑁𝑐 = Number of cycles surveyed

𝑆 = Approach speed (m/s)

𝑁 = Number of Lanes

𝐼𝑠 = Time interval of aggregation (sec)

CF = Acceleration-deceleration correction factor. Values

collected from the Highway Capacity Manual (2010)

using𝑆 and𝑉𝑞𝑝𝑙𝑝𝑐

The control delay is calculated to determine LOS for each
lane (Highway Capacity Manual, 2010). LOS C is described
as the stable flow (acceptable control delay) regime, while
LOS D is described as regime approaching unstable flow. The

intuitive choice for target LOS criteria should be C, but target
LOS is kept as a user input to the model, since it can vary for
different situations.

3.6 Optimization solver selection
The objective functions are nonlinear, and some decision
variables are integer constrained, so a global MINLP solver
is required for this framework. For MINLP problems, sev-
eral popular algorithms exist such as branch and bound,
branch and cut, genetic algorithm, and ant colony optimiza-
tion. Many solvers have been developed using these meth-
ods. Some of the popular global solvers for MINLP prob-
lems are AlphaECP (Lastusilta, Bussieck, & Westerlund,
2009), ANTIGONE (Misener & Floudas, 2014), BARON
(Sahinidis, 1996), Bonmin (Bonami & Lee, 2007), Couenne
(Belotti, 2009), DICOPT (Grossman et al., 2002), Kni-
tro (Byrd, Nocedal, & Waltz, 2006), LINDOGlobal (Lin
& Schrage, 2009), SBB (Bussieck & Drud, 2001), Scip
(Achterberg, 2009), Cbc (Forrest & Lougee-Heimer, 2005),
and Gurobi (Gu, Rothberg, & Bixby, 2012). To choose the
best solver for this framework, a comparative performance
evaluation is performed using a case study. The comparison
is performed using the NEOS server (Dolan, Fourer, Moré, &
Munson, 2002). It is an open access server where users can
submit optimization jobs for large-scale problems. However,
this framework does not use the NEOS server directly. The
server is just a tool which the user can choose to use to find
the best solver for the user defined problem. However, the user
is required to provide the solver code to the two solver com-
ponents for our framework.

4 CASE STUDY

The evaluation of the WCUM framework has been conducted
with a case study. The Sioux Falls network (Chakirov, 2016)
is chosen as the case study network. The network data, OD
traffic flow data, and travel time data for the Sioux Falls net-
work have been made available for public use (Transportation
Networks for Research Core Team, 2016). However, this data
set does not represent the current traffic conditions. There-
fore, we need to collect recent data that represents the current
traffic conditions in this area.

The method has been described previously in Section 3.3.
We collect the AADT data and the travel time data for the city
of Sioux Falls from the South Dakota Department of Trans-
portation (SDDOT) Web site (Turner & Koeneman, 2018).
At first, we cross-match the links between this data set and
the existing data set to identify the AADT and speed of
the links in our case study network. Then, we convert the
AADT values to DDHV values using appropriate k-factor and
directional split through Equation (12). Based on previous
studies for Sioux Falls network, the k-factor value is chosen
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as 0.08 and the directional split is chosen as 50% or 0.5 for
the whole network. The values are obtained from a major
bridge investment study conducted by SDDOT in 2016 (Fels-
burg Holt & Ullevig & Benesch, 2016).

For this network, the link volumes and speeds are known,
but the OD matrix is still unknown. To use the Gawron model
for DTA, we need to determine the OD matrix for this net-
work. The OD matrix is initialized using the OD matrix of
the Sioux Falls network from the transportation networks
repository (Transportation Networks for Research Core Team,
2016). At first, we perform the calibration of the model using
the AADT and the speed data. For one specific traffic signal
setting, we use the Gawron model to iterate and converge to
a user equilibrium. The details of the iterative process can be
found in Section 3.3. The values of the Gawron model parame-
ters are obtained from previous studies (Behrisch, Krajzewicz,
Wagner, & Wang, 2008) and they have worked well for this
case study. The values are, 𝛼 = 0.5, 𝛽 = 0.9, d = 4, 𝜀th = 0.1%.

The routes generated by the final iteration of the Gawron
model are considered as the final route. However, this assign-
ment does not match the link volumes from the AADT data.
Therefore, we continue to adjust the OD matrix and perform
dynamic assignment until the solution is within 5% of the
DDHV values for every link in the network. This model is
considered as the calibrated model. When we change the sig-
nal timing parameters in the network, we perform DTA again,
since the assignment will change due to the changing link
costs influenced by the signal times. However, calibration is
not performed again, so the OD matrix remains unchanged.

Figure 3 shows the Sioux Falls road network with node and
link numbers. The progression of link flow changes for 20
links (arbitrarily chosen) can be found in Table 1. Table 1 also
contains the progression of average travel time per vehicle. It
shows how the algorithm is rerouting the vehicles to reduce
the travel time. After iteration 8, the algorithm stops because
the maximum relative standard deviation in travel time for
iterations 4–8 is below 0.1%. At this point, we have reached
user equilibrium and the average travel time of the network is
946.3 seconds. After converging to a solution, the final link
flows are compared with the DDHV for each link in Table 1.
As it can be observed, the link flows change with each itera-
tion, and after iteration 8, it converges to equilibrium values.
From Table 1, it can be seen that these link flows are within
5% of the DDHV values for each link, which confirms that this
network is a calibrated network. The DTA model did not face
any convergence issues with the parameter values mentioned
in this section.

Based on the study by Conti et al. (2016), a specific pen-
etration level of EVs has been assumed, which is 10%. The
penetration level specifies the probability of a new vehicle
generated to be an EV. In the simulation, 45,964 vehicles are
generated in 1 hour. The number of EVs generated is 4,548,
which is approximately 10% of the total vehicles generated.

F I G U R E 3 Sioux Falls road network with link numbers

The EV generation is uniformly distributed over the network
since we do not have the OD data for EV trips. For example,
let us assume that 2,000 vehicles are generated from one edge.
The 10% EV penetration means that there is a high likelihood
that about 200 of those vehicles will be EVs. However, EV
penetration rates can vary by location of origin, which will
result in a spatial variation of EV flows. The parameters of
the EV and WCU model used in this analysis are shown in
Table 2. We have used an average efficiency of 85% for the
WCU. This is an average based on field tests performed using
WCU (Bi et al., 2016). This value includes power loss due to
misalignment of charging coils, the air-gap between the coils,
the loss at power converters, and the heating loss in the coils. If
we increase the efficiency value, it will result in higher utility.

The key characteristics of this road network and a visual
representation of the network are shown in Figure 4. There
is a text box below the road network diagram that includes
the information related to the traffic simulation. The trian-
gles, rectangles, and circles indicate signalized intersections
in the network. Triangles indicate no congestion (LOS A-B),
rectangles indicate moderate congestion (LOS C), and circles
indicate high level of congestion (LOS D-E).

For our analysis, we implemented the framework using
SUMO in the Palmetto Cluster at Clemson University. There
are 17 signalized intersections and 128 lanes in the net-
work. In the first step, we identify lanes suitable for WCU
installation considering length and roadway topology. In the
case study, 34 lanes were filtered out in this step.

According to the SCDOT Signal Design Guidelines (2009),
based on vehicle approach speed and detector distance from
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T A B L E 1 DTA and network calibration (average travel time and first 20 link flows in veh/hr)

Average travel
time (s/veh) 1050.6 1041.7 970.6 962.3 960.5 951.6 949.4 946.3

Flow (veh/hr) in each iteration
Link no. 1 2 3 4 5 6 7 8

Actual flow
(veh/hr)

Difference between converged
flow and actual flow

1 594 642 682 708 827 866 883 908 890 2%

2 1,153 1,210 1,187 1,221 1,210 1,206 1,207 1,211 1,162 4%

3 578 611 613 650 654 659 675 678 696 3%

4 621 616 668 695 815 854 868 889 868 2%

5 1,173 1,239 1,259 1,275 1,383 1,415 1,420 1,442 1,419 2%

6 1,024 807 774 756 745 736 730 727 717 1%

7 1,380 1,633 1,561 1,566 1,548 1,532 1,528 1,526 1,503 2%

8 1,000 1,701 1,704 1,738 1,866 1,908 1,938 1,978 1,968 1%

9 1,348 1,132 1,068 1,051 962 954 944 934 983 5%

10 430 466 610 639 703 721 731 742 728 2%

11 1,359 1,429 1,477 1,470 1,526 1,536 1,535 1,546 1,605 4%

12 830 601 546 509 497 486 474 464 487 5%

13 1,068 1,201 1,312 1,368 1,407 1,426 1,443 1,451 1,492 3%

14 600 587 596 638 640 644 655 661 673 2%

15 764 952 1,116 1,151 1,326 1,354 1,372 1,392 1,417 2%

16 1,266 910 755 711 703 712 701 705 718 2%

17 1,029 765 762 770 767 765 758 754 726 4%

18 1,155 1,083 1,018 988 978 962 952 944 921 2%

19 1,180 1,232 1,254 1,298 1,361 1,372 1,388 1,409 1,367 3%

20 949 783 728 715 712 708 697 697 673 4%

T A B L E 2 EV and WCU properties and corresponding values

Specification Properties Value
EV Air Drag Coefficient 0.3

Front Surface Area 0.8 m2

Internal Moment of Inertia 0.01 kgm2

Maximum Battery Capacity 54 KWh

Propulsion Efficiency 0.9

Radial Drag Coefficient 0.2

Recuperation Efficiency 0.9

Roll Drag Coefficient 0.01

Vehicle Mass 1700 Kg

Initial Battery Capacity 27 KWh (50%)

WCU Length of one WCU 6 m

Budget Constraint 6 units

Charging Delay 0s

Efficiency 85%

Power Rating of each WCU 7.2 KW

stop bars, the allowable minimum green time varies between
8 and 15 seconds for this case study. Using this range, after
analyzing initial simulation results from our case study net-
work, we have observed that the variation of gmin1 and gmin2

Intersection LOS
A-B
C
D-E

Total number of signalized intersections: 17
Total number of lanes approaching a signal: 128
EV penetration: 10%
Unit Length of WCU: 6m
Budget Constraint: 6 Units (6*6 = 36m)

F I G U R E 4 Sioux Falls road network in SUMO

for an intersection has little impact on the lane and intersection
specific utilities and control delays. The maximum variation
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F I G U R E 5 Frequency distribution of all intersection lanes by
LOS

found from simulation turned out to be insignificant (0.1%).
The control delay showed no variation with min-green times.
The reason is sufficient traffic demand on all approaches
and low range of allowable values. For this case study, min-
imum green is omitted as a decision variable from the anal-
ysis. To do that, we have used 15 seconds as the gmin_lower
and gmin_upper time, fixing the value of min-green times to
15 seconds.

From Section 3, we know that the user needs to specify
some additional inputs for the optimization steps. For this case
study, the max-green time range is 20–50 seconds, and the gap
time range is 1–3 seconds (SCDOT Signal Design Guidelines,
2009). These are inputs to the framework, so the ranges will
vary based on the signal design practices/guidelines and user
judgment corresponding to the selected network. The user will
determine the appropriate range of values and input the val-
ues. After running the simulations, the postprocessing of sim-
ulation output data is performed. This step contains the pars-
ing of large XML files to calculate the utility and control delay
from each simulation case following the method described in
Sections 3.4 and 3.5, respectively.

As mentioned previously, we have 94 lanes approaching
traffic signals. In Figure 5, we have drawn the histogram plot
of the LOS of all 94 lanes during the simulation. The LOS has
been measured based on the control delay. From Figure 5, it
is observed that 54 out of the 94 lanes operate in LOS D and
E, so the network operates in a congested condition.

5 ANALYSIS AND FINDINGS FOR
CASE STUDY

We present results from the analysis of the WCUM frame-
work for the case study. Later analysis shows the comparison
of WCUM framework with two other WCU placement frame-
works (i.e., betweenness centrality-based framework and traf-
fic volume-based framework).

5.1 Optimization solution and solver
comparison
After the utility and control delay calculations, it is desired to
find the optimal lanes to place the WCUs such that the util-
ity is maximized while intersection operation remains accept-
able. At first, we solve the optimization problem at an inter-
section level, and then we solve the optimization problem at a
network level.

5.1.1 Test of difference between objective
function and simulation output
Intersection-level optimization problem includes solving a
multiobjective optimization problem for each intersection.
There are 17 intersections in this network, so we solve 17
multiobjective optimization problems. For each problem, the
two objective functions are as follows: intersection-specific
utility-related objective function and control delay function.
These two objective functions are converted into a sin-
gle objective function. The conversion to a single objective
function has been previously described in Section 3.2.2.
Here, we describe the analysis using a sample intersection,
Intersection 6.

Based on the method in Section 3.2.2, we first calculate
the coefficients of Equation (7). To validate the coefficients,
we conduct a statistical hypothesis test (an F-test followed
by a t-test) to determine the difference between the two data
series. Before conducting the test, we check the normality of
the two data sets. We perform multiple normality tests and
find that both data sets can be modeled according to a normal
distribution.

We conduct the tests for different weight factors to vali-
date the method. We perform the F-test to check for differ-
ence in variances, and the two-sample t-test to check for dif-
ference in means between the two data series at a 95% confi-
dence interval (𝛼 = 0.05). For all tests, the null hypothesis is
that the variances (F-test)/means (t-test) are equal. The F-test
and t-test results are summarized in Table 3. All the observed
p-values are higher than the 𝛼 (0.05) value; the lowest
observed p-value is 0.15 for F-test and 0.69 for t-test. Based
on the statistical analysis and RMSE values, it is proved that
the difference between the objective function in Equations (6)

T A B L E 3 F-test and t-test results for different weights

Factors (f values) F-test (p value) t-test (p value) RMSE
0 0.15 1.00 11.6

0.1 0.24 0.69 8.9

0.3 0.39 0.72 6.1

0.5 0.57 0.81 3.6

0.7 0.52 1.00 11.3

0.9 0.44 0.97 5.2

1 0.29 0.92 5.3
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F I G U R E 6 Comparison of output from Equation (6) and
Equation (7) (intersection 6). (a) Factor = 0. (b) Factor = 0.5. (c)
Factor = 1

and (7) is insignificant. Equation (7) is used for calculating
the objective function value in the remainder of the analysis.
The comparison of Equations (6) and (7) is shown graphically
in Figure 6 for three factors (0, 0.5, and 1).

5.1.2 Solution and comparison:
Intersection-level optimization
As mentioned in Section 5.1.1, at first, we calculate the objec-
tive function values for each combination of variables from
simulation output using Equation (6). Then, we find the coef-
ficients of Equation (7) for each intersection. Then, we solve
the intersection-level optimization problem we discussed in

Section 3.2.2. To identify the best optimization solver for this
problem, we solve the optimization problem using the differ-
ent solvers mentioned in Section 3.6. The objective function is
nonlinear, and two of the three decision variables (i.e., gmax1
and gmax2) are integer constrained. This results in a MINLP
problem for each intersection. We also want to achieve a
global solution to the optimization problem. Here, we have
compared 12 solvers for solving MINLP problems. The solu-
tions have been compared based on two criteria, computa-
tion time and solution quality. The results of the optimization
are shown in Table 4, and the comparison of solution quality
(minimized objective value) and computation time for differ-
ent solvers is shown in Figure 7.

Couenne and ANTIGONE are the two best solvers for this
optimization. They both achieve the best solution (43.498) in
2 ms. Couenne consistently performs well for other intersec-
tions also. Couenne uses a branch and bound algorithm to
solve mixed integer nonlinear problems. Couenne performs
well in obtaining global optimum solution for both convex
and nonconvex problems. Therefore, we choose Couenne as
the solver for intersection-level optimization.

The purpose of scalarization here is to convert the multi-
objective optimization to multiple single objective optimiza-
tion problems. In this study, for each intersection, we have
varied the values from 0 to 1 with 0.1 increments. This has
resulted in 11 solutions for each intersection. The criteria for
choosing f are based on the control-delay solution values for
each factor. An example is presented with intersection 6. The
variation of the solution with different factors is shown in
Table 5. From Table 5, we can observe that, the minimum
control delay that can be achieved is 20 s/veh, correspond-
ing to LOS C. When the f value is increased from 0 to 0.5,
the control delay is 32 s/veh, which is still within the range
of LOS C. If f is set to 0.6, the solution exceeds 35 s/veh
(threshold for LOS C). Therefore, the selected f value for inter-
section 6 is 0.5. A similar analysis is performed for all other
intersections.

We use the Couenne solver and the corresponding weight
factors to solve the optimization problems for all 17 intersec-
tions. The results for each intersection are shown in Table 6.
In the first step of the optimization, for all 17 intersections,
we have performed optimization considering two scenarios,
(a) maximizing utility and minimizing control delay, and (b)
minimizing only control delay. The resulting utility and con-
trol delays, for both scenarios, are shown in Table 6. As it can
be observed, the control delay for all intersections are equal or
lower when utility is not considered in the optimization com-
pared to the control delay when both utility and control delay
are considered in the optimization. This shows that, when
the utility is maximized while minimizing the control delay,
then control delay increases because the two objectives are
conflicting. There are some intersections that are heavily con-
gested, where the control delay cannot be reduced beyond a
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T A B L E 4 Results from different solvers (optimization for intersection 6)

Solvers Algorithm gt (s) gmax1 (s) gmax2 (s)
AlphaECP Extended cutting plane (ECP) 2 50 20

ANTIGONE Deterministic Solver 3 50 20

BARON Branch and Reduce 1 50 35

Bonmin Hybrid outer-approximation based branch-and-cut 3 50 50

Couenne Branch-and-bound 2 50 35

DICOPT Extended outer-approximation 1 20 47

Knitro Interior-point/Active Set 2 20 20

LINDOGlobal Branch-and-cut 3 50 20

SBB Branch-and-bound 3 20 20

Scip Branch-and-cut-and-price 3 20 20

Cbc COIN-OR Branch and Cut 2 50 50

Gurobi Generalized Reduced Gradient 1 35 35

43.20 43.40 43.60 43.80 44.00 44.20

AlphaECP
ANTIGONE

BARON
Bonmin

Cbc
Couenne

DICOPT
Gurobi
Knitro

LINDOGlobal
SBB
Scip

Minimized Objec�ve Value (zi)
0 1 2 3 4 5 6

AlphaECP
ANTIGONE

BARON
Bonmin

Cbc
Couenne

DICOPT
Gurobi
Knitro

LINDOGlobal
SBB
Scip

Computa�on Time (ms)

(a) (b)

F I G U R E 7 Comparison of different solvers (intersection 6). (a) Solution quality. (b) Computation time

T A B L E 5 Selection of f value for intersection 6

Factors (f values) Utility Control delay
0 1,216 20

0.1 1,216 20

0.2 1,216 20

0.3 1,216 20

0.4 1,432 26

0.5 1,627 32

0.6 1,742 41

0.7 1,998 64

0.8 3,877 73

0.9 3,877 73

1 3,877 73

certain point. Intersections 2 and 5 operate in LOS E and inter-
section 12 operates in LOS D regardless of the strategy. For
the other intersections, the control delay is increased because
utility is part of the objective function. However, a comparison
of the two control delays (column 6 and column 8 in Table 6)
shows that an increase in control delay, due to considering

the utility maximization in addition to the control delay min-
imization, is such that the LOS (shown inside parentheses of
column 6 and 8) is not degraded. This is achieved by choosing
the solution (f value) from a set of solutions for which the util-
ity is the maximum and the control delay is within the range
of the target LOS (i.e., LOS considering only minimizing
average control delay and without considering the total util-
ity maximization objective). For example, for intersection 6,
the selected value of f is 0.5. For this f value, the control
delay is increased from 20 s/veh to 32 s/veh. However, the
control delay is within the range of the target LOS C (20–35
s/veh). The utility is increased by 385 KWh in this case. From
Table 5, we have already observed that, if f value is increased
more than 0.5, the optimization produces a solution for which
utility is higher than 1,627 KWh but the LOS is degraded to
D from LOS C.

Although we have minimized the delay in this step, not all
intersections have a delay corresponding to LOS C. There-
fore, we will not include the lanes from the intersection that
have LOS more than C in the network-level optimization.
The network-level optimization should select lanes that have
a LOS C or better than LOS C. The assumption here is
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T A B L E 6 Intersection-level optimization solution using Couenne

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8
Maximizing utility and
minimizing control delay Minimizing only control delay

Intersections gt, sec gmax1, sec gmax2, sec
Total utility,
KWh

Average
control delay,
s/veh (LOS)

Total utility,
KWh

Average
control delay,
s/veh (LOS)

1 2 50 20 625 9 (A) 617 7 (A)

2 3 50 20 3,099 64 (E) 3,099 64 (E)

3 1 50 35 561 10 (A) 537 7 (A)

4 3 50 50 1,356 31 (C) 1,086 21 (C)

5 2 50 35 3,520 61 (E) 3,520 61 (E)

6 1 20 47 1,627 32 (C) 1,242 21 (C)

7 2 20 20 1,474 29 (C) 1,320 25 (C)

8 3 50 20 521 5 (A) 521 5 (A)

9 3 20 20 721 20 (B) 583 11 (B)

10 3 20 20 1,213 31 (C) 977 21 (C)

11 2 50 50 724 20 (B) 648 13 (B)

12 1 35 35 2,166 47 (D) 2,166 47 (D)

13 3 35 35 1,557 34 (C) 1,508 32 (C)

14 1.8 20 50 2,031 34 (C) 1,456 21 (C)

15 1.7 20 50 785 20 (B) 674 11 (B)

16 3 50 20 282 6 (A) 276 5 (A)

17 1.4 43 20 2,120 32 (C) 1,807 21 (C)

that the operation of those intersections will improve in the
future.

An assumption in this step is that all the lanes of an inter-
section have WCU installed throughout the lane. In this step
of the optimization, there is no budget constraint, so WCU
can be installed in the full length of the lane. We consider the
maximum potential length of the lanes for charging. This is a
valid assumption for the first step of the optimization, since
one of the objectives of the signal timing parameter optimiza-
tion is maximizing utility values at each intersection. In the
second step of the optimization, the budget is included as a
constraint, which will limit the number of WCUs that can be
installed in each lane.

5.1.3 Solution and comparison: Network-level
optimization
In the second step of the optimization, there is only one maxi-
mization objective, and the decision variables are the number
of WCU units at each lane. As we have already ascertained
the max-green times and the gap times, these values will be
constant for this step of the optimization. In the case study,
there are 94 variables (for 94 lanes) in this step.

The method described in Section 3.2.3 is used in this sec-
tion. We determine the coefficients of Equation (11) for all
intersections. All the variables for this problem are integer

constrained, and the total utility is sum of all the utility func-
tions. The budget constraint assumed for this section is six
WCU units, and the optimization solution will tell us where
to place these six units. Then, we solve the network-level opti-
mization problem using different solvers in the NEOS server.
The solvers that we evaluate in this section are the same as the
ones we used in the previous step. The optimization results
from the solvers are shown in Table 7, and the comparison of
different solvers is shown in Figure 8.

From the analysis, it is observed that the maximum utility
that can be achieved is 71.55 KWh. For this step, Couenne
is the best solver in terms of solution quality and computa-
tion time. Four lanes (lanes 29, 37, 38, and 82) from three
intersections (intersections 6, 7, and 15) have been selected
for WCU installation. The budget constraint allowed a max-
imum of six units of installation, so the distribution of units
is 1, 1, 3, and 1, respectively, for lanes 29, 37, 38, and 82.
The total utility achieved (total energy charged in KWh) from
this experiment is 71.55 KWh. This corresponds to about 120
miles of additional range supplied to EVs. The control delay
of lanes 29, 37, 38, and 82 are 32, 29, 29, and 20 s/veh, respec-
tively. The graphical representation of the installation solution
can be seen in Figure 9. The square filled boxes indicate the
selected intersections and the number inside the box indicates
the lane number at that intersection which has been selected.
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T A B L E 7 Results from different solvers (network-level optimization)

Solvers
Lane 20
(Int. 4)

Lane 29
(Int. 6)

Lane 37
(Int. 7)

Lane 38
(Int. 7)

Lane 70
(Int. 13)

Lane 82
(Int. 15)

Maximized
utility value
(KWh)

AlphaECP 1 1 3 1 71.55

ANTIGONE 1 1 3 1 71.45

BARON 2 1 3 71.20

Bonmin 1 1 3 1 71.55

Couenne 1 1 3 1 71.55

DICOPT 6 63.36

Knitro 2 1 3 71.20

LINDOGlobal 2 1 3 71.20

SBB 1 1 3 1 71.55

Scip 1 3 1 1 69.59

Cbc 1 1 3 1 71.55

Gurobi 1 1 3 1 71.55

62.00 64.00 66.00 68.00 70.00 72.00
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ANTIGONE

BARON
Bonmin

Cbc
Couenne
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Gurobi
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LINDOGlobal
SBB
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F I G U R E 8 Comparison of different solvers. (a) Solution quality.
(b) Computation time

5.2 Analysis of the framework solution
We need to analyze the output generated from the optimiza-
tion step. The optimization framework is able to achieve
71.55 KWh of charging from four different lanes. On average,
the WCUs provide 188 Wh of energy to an EV. Typically,
188 Wh of energy equals 0.5 miles of additional range for
each charged EV in the simulation. From the 71.55 KWh,
about 56.45 KWh of charging occurs while EVs are stopped

F I G U R E 9 Optimization output

at the intersections. The rest of the charging occurs while in
transit. The maximum charging achieved by a single EV is
1.12 KWh, which is equivalent to approximately 2 miles of
additional range. The total number of generated EVs is 4,548
but the total number of charged EVs is 223. Therefore, only
5% of the generated EVs are charged during the simulation.

The utility values of the lanes have a complex relationship
with the EV traffic flow and the control delay at the intersec-
tion. From the results, it can be observed that stopped charg-
ing is closely related with control delay, and charge-in-transit
is closely related with number of EVs charged. Lane 38 is
the best lane in terms of utility, since the highest number of
WCUs (3) is installed in this lane. Lane 38 charges EVs at the
rate of 354 Wh/EV. Among the other three lanes, lane 29 has
the next highest amount of total charging (11.66 KWh) but
also has high EV flow and high control delay, so the average
charging is 124 Wh/EV. Lanes 37 and 82 have similar charac-
teristics in terms of average charging. The results are shown
in Table 8.
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T A B L E 8 Analysis of the optimization results

Lanes

Total
charging
(KWh)

Stopped
charging
(KWh)

Charge-in-
transit
(KWh) EVs charged

Average
charging
(Wh/EV)

Average control
delay (s/veh)

29 11.66 8.75 2.91 104 124 32

37 10.91 8.73 2.18 78 140 29

38 38.28 30.62 7.66 98 354 29

82 10.70 8.35 2.35 80 134 20

5.3 Alternative frameworks
In this section, we investigate two simple models for WCU
installation, the betweenness centrality-based WCU alloca-
tion model (Brandes, 2001) and the traffic volume-based allo-
cation model.

The betweenness centrality is a widely used concept in net-
work science that measures node significance based on the
node's presence in the agent paths. In this study, we have
already performed the DTA and achieved user equilibrium.
Therefore, we use the equilibrium routes of vehicles to per-
form the centrality calculations. In a directed graph with mul-
tiple nodes, each node can be part of multiple equilibrium
paths. However, we need to rank the links instead of the nodes.
We use the betweenness centrality for ranking the links by
assuming that a link is a node in the case study network. A
link is connected to another link if they share an intersection
(node) between them. Equation (24) gives the betweenness
centrality of a link r.

𝑔(𝑟) =
∑
𝑝≠𝑟≠𝑞

𝜎𝑝𝑞(𝑟)
𝜎𝑝𝑞

(24)

where,

𝜎𝑝𝑞 = Total shortest path count from edge 𝑝 to edge 𝑞

𝜎𝑝𝑞(𝑟) = Total shortest path count from edge 𝑝 to edge 𝑞
that pass through edge 𝑟

Based on betweenness centrality, the link with the highest
betweenness centrality value is chosen. The WCU of maxi-
mum allowable length based on budget (6 units or 36 m in this
study) is placed at different lanes in the selected link to iden-
tify the lane that yields the maximum utility. Multiple sim-
ulation cases are performed and in each simulation case, the
WCU is placed in a different lane on the selected link. The
simulations are performed using SUMO. The utility achieved
from betweenness centrality-based WCU allocation model is
63.36 KWh.

The framework is also compared with another deployment
paradigm called traffic volume-based allocation model. The
lane with the highest traffic volume is found by placing detec-
tors on all lanes in the simulation and extracting the traffic

T A B L E 9 Comparison of utility from different models

Strategy
Utility
(Wh)

Relative difference
with respect to
WCUM framework

WCUM Framework Model 71.55 -

Betweenness Centrality
based WCU Allocation
Model

63.36 −12%

Traffic Volume based WCU
Allocation Model

41.59 −42%

flow for each lane. This paradigm has very low computational
requirements. It achieves utility of 41.59 KWh.

The model comparison is represented in Table 9. The
WCUM framework achieves higher utility from the same
number of WCUs. However, there are many other factors asso-
ciated with the real-world deployment of WCUs. To prove the
superiority of a deployment scheme, a cost–benefit analysis
should be performed. The focus of this study is developing
a framework for WCU deployment. Therefore, we have not
performed an economic analysis to determine the feasibility
of the deployment plan in this study. This framework can be
used in future studies to develop methods that consider the
economic aspect of the WCU deployment process.

6 CONTRIBUTIONS OF THIS
RESEARCH

In this study, a novel framework (WCUM) is developed, which
uses a traffic micro simulation model of a network of any
area and identifies (a) the placement and sizing of WCUs
and (b) the traffic signal timing parameters (minimum and
maximum green times, and gap times), which maximize the
utility of the deployment (total amount of wireless charg-
ing in KWh) within a given budget and minimize the traf-
fic signal control delay at each intersection. The novelty in
the approach lies in the development of a framework that
finds the optimal locations for WCU installation in urban
areas using the concept of opportunistic and in-motion charg-
ing at traffic signals. To the best of our knowledge, this is
the first study that incorporates fully actuated traffic sig-
nals, DTA model, and traffic microsimulation model in the
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analysis of finding the optimal locations to install the
WCUs in the network. The framework has been developed
using SUMO traffic simulator, Gawron DTA model, and
Couenne solver, but they can be replaced by any other traffic
microsimulator, DTA model, and MINLP solver. Moreover,
the two-step optimization formulation reduces the computa-
tional complexity of the framework. Due to the intersection-
level optimization, the complexity of the network-level opti-
mization problem decreases. Instead of doing simulation-
based optimization, we create a framework that reduces the
computational burden by doing the simulations in a pre-
processing step and developing higher-order polynomials
for the optimization step. We demonstrate that the devel-
oped framework is able to identify the optimal locations
to place the WCUs while obtaining higher utility com-
pared to betweenness centrality and traffic volume-based
WCU application methods, maintaining operationally accept-
able intersection LOS and reducing the computation time.
This is the first study that simultaneously maximizes the
utility of WCU deployment while minimizing the traffic
signal control delay within a given budget. The traffic
microsimulation-based approach to optimal installation is also
a new concept for CWD application. Previous work has
focused on EV energy management and routing strategies
based on location of EV charging facilities. However, the con-
cepts of our focus were not present in previous work. The
framework also has an advantage of scalability; it can be
used for large-scale networks with thousands of signalized
intersections.

7 CONCLUSION AND FUTURE
WORKS

The WCUM framework can be considered a first step for
developing WCU deployment frameworks in the future. One
major limitation of this framework is the economic aspect,
which can be incorporated in the framework in future. Some
assumptions have been made while developing this frame-
work, which have been mentioned in Section 3.1. In future
work, we can investigate a unified optimization model that
optimizes the signal timing parameters and the location of
WCU simultaneously. A network-level optimization problem
can be formulated instead of intersection-level optimization
problem to optimize the signal timing parameters. Moreover,
we can explore complex phasing patterns other than the sim-
ple one we have used in the article. The routing of EVs can
be incorporated into the optimization model so that more EVs
can be charged by the WCUs, thus increasing the utility of the
WCU deployment.

This research will provide the building blocks for further
work in the field of dynamic wireless charging for EVs. Actu-
ated signals are increasingly replaced with adaptive signal

control that varies signal phases and timing parameters based
on real-time conditions as detected by roadway sensors, and
the number of signals operating in this manner will increase
in the future at the same time that WCU technology is matur-
ing and is being implemented. So, this study can be extended
to investigate the effects of adaptive signals on CWD at sig-
nalized intersections. In this article, it is also assumed that
the interaction between the signalized intersections is negli-
gible. However, often coordination exists among the signals
on a corridor, which has not been considered here. This factor
can be included in future work.

Connected Vehicle Technology can be incorporated in
EVs, which will allow the EVs to interact with roadside infra-
structure, such as traffic signals and charging stations, for
data sharing. A smart real-time charge scheduling method can
be developed for EVs, which will consider routing based on
location of EV charging stations and WCUs on the road net-
work. In addition, vehicle-to-infrastructure communication
with traffic signals can further increase the utility for WCUs
for connected EVs. A routing strategy can be developed for
WCU that will take the connected EVs to the nearby charging
stations for urgent charging needs.
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