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A MULTILEVEL BILINEAR PROGRAMMING ALGORITHM FOR THE

VERTEX SEPARATOR PROBLEM ∗

WILLIAM W. HAGER† , JAMES T. HUNGERFORD‡, AND ILYA SAFRO§

Abstract. The Vertex Separator Problem for a graph is to find the smallest collection of vertices whose
removal breaks the graph into two disconnected subsets that satisfy specified size constraints. The Vertex Separator
Problem was formulated in the paper 10.1016/j.ejor.2014.05.042 as a continuous (non-concave/non-convex) bilinear
quadratic program. In this paper, we develop a more general continuous bilinear program which incorporates vertex
weights, and which applies to the coarse graphs that are generated in a multilevel compression of the original Vertex
Separator Problem. A Mountain Climbing Algorithm is used to find a stationary point of the bilinear program, while
perturbation techniques are used to either dislodge an iterate from a saddle point or escape from a local optimum.
We determine the smallest possible perturbation that will force the current iterate to a different location, with a
possibly better separator. The algorithms for solving the bilinear program are employed during the solution and
refinement phases in a multilevel scheme. Computational results and comparisons demonstrate the advantage of the
proposed algorithm.

Key words. vertex separator, continuous formulation, graph partitioning, combinatorial optimization, multilevel
computations, graphs, weighted edge contractions, coarsening, relaxation, multilevel algorithm, algebraic distance
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1. Introduction. Let G = (V , E) be a graph on vertex set V = {1, 2, . . . , n} and edge set
E ⊆ V×V . We assume G is simple and undirected; that is for any vertices i and j we have (i, i) /∈ E
and (i, j) ∈ E if and only if (j, i) ∈ E (note that this implies that |E|, the number of elements in E ,
is twice the total number of edges in G). For each i ∈ V , let ci ∈ R denote the cost and wi > 0
denote the weight of vertex i. If Z ⊆ V , then

C(Z) =
∑

i∈Z

ci and W(Z) =
∑

i∈Z

wi

denote the total cost and weight of the vertices in Z, respectively.
If the vertices V are partitioned into three disjoint sets A, B, and S, then S separates A and

B if there is no edge (i, j) ∈ E with i ∈ A and j ∈ B. The Vertex Separator Problem (VSP) is
to minimize the cost of S while requiring that A and B have approximately the same weight. We
formally state the VSP as follows:

min
A,S,B⊆V

C(S)(1.1)

subject to S = V \ (A ∪ B), A∩ B = ∅, (A× B) ∩ E = ∅,

ℓa ≤ W(A) ≤ ua, and ℓb ≤ W(B) ≤ ub,

∗ May 25, 2016. The research was supported by the Office of Naval Research under Grants N00014-11-1-0068 and
N00014-15-1-2048 and by the National Science Foundation under grants 1522629 and 1522751. Part of the research
was performed while the second author was a Givens Associate at Argonne National Laboratory.

†hager@ufl.edu, http://people.clas.ufl.edu/hager/ PO Box 118105, Department of Mathematics, University of
Florida, Gainesville, FL 32611-8105. Phone (352) 294-2308. Fax (352) 392-8357.

‡jamesthungerford@gmail.com, M.A.I.O.R. – Management, Artificial Intelligence, and Operations Research, Srl.,
Lucca, ITALY

§isafro@clemson.edu, http://www.cs.clemson.edu/∼isafro, 228 McAdams Hall, School of Computing, Clemson
University, Clemson, SC 29634. Phone (864) 656-0637.

1

http://arxiv.org/abs/1410.4885v2
http://people.clas.ufl.edu/hager/
http://www.cs.clemson.edu/~isafro


2 W. W. HAGER, J. T. HUNGERFORD, AND I. SAFRO

where ℓa, ℓb, ua, and ub are given nonnegative real numbers less than or equal to W(V). The
constraints S = V \ (A∪B) and A∩B = ∅ ensure that V is partitioned into disjoint sets A, B, and
S, while the constraint (A×B)∩ E = ∅ ensures that there are no edges between the sets A and B.
Throughout the paper, we assume (1.1) is feasible. In particular, if ℓa, ℓb ≥ 1, then there exist at
least two distinct vertices i and j such that (i, j) /∈ E ; that is, G is not a complete graph.

Vertex separators have applications in VLSI design [24, 28, 39], finite element methods [32],
parallel processing [11], sparse matrix factorizations ([10, Sect. 7.6], [15, Chapter 8], and [34]),
hypergraph partitioning [23], and network security [7, 25, 31]. The VSP is NP-hard [5, 14]. However,
due to its practical significance, many heuristics have been developed for obtaining approximate
solutions, including node-swapping heuristics [29], spectral methods [34], semidefinite programming
methods [12], and recently a breakout local search algorithm [3].

It has been demonstrated repeatedly that for problems on large-scale graphs, such as finding
minimum k-partitionings [6, 19, 22] or minimum linear arrangements [36, 37], optimization algo-
rithms can be much more effective when carried out in a multilevel framework. In a multilevel
framework, a hierarchy of increasingly smaller graphs is generated which approximate the original
graph, but with fewer degrees of freedom. The problem is solved for the coarsest graph in the
hierarchy, and the solution is gradually uncoarsened and refined to obtain a solution for the original
graph. During the uncoarsening phase, optimization algorithms are commonly employed locally to
make fast improvements to the solution at each level in the algorithm. Although multilevel algo-
rithms are inexact for most NP-hard problems on graphs, they typically produce very high quality
solutions and are very fast (often linear in the number of vertices plus the number of edges with no
hidden coefficients).

Early methods [16, 34], for computing vertex separators were based on computing edge separa-
tors (bipartitions of V with low cost edge-cuts). In these algorithms, vertex separators are obtained
from edge separators by selecting vertices incident to the edges in the cut. More recently, [1] gave
a method for computing vertex separators in a graph by finding low cost net-cuts in an associated
hypergraph. Some of the most widely used heuristics for computing edge separators are the node
swapping heuristics of Fiduccia-Mattheyses [13] and Kernighan-Lin [24], in which vertices are ex-
changed between sets until the current partition is considered to be locally optimal. Many multilevel
edge separator algorithms have been developed and incorporated into graph partitioning packages
(see survey in [6]). In [2], a Fiduccia-Mattheyses type heuristic is used to find vertex separators
directly. Variants of this algorithm have been incorporated into the multilevel graph partitioners
METIS [21, 22] and BEND [20].

In [18], the authors make a departure from traditional discrete-based heuristics for solving the
VSP, and present the first formulation of the problem as a continuous optimization problem. In
particular, when the vertex weights are identically one, conditions are given under which the VSP
is equivalent to solving a continuous bilinear quadratic program.

The preliminary numerical results of [18] indicate that the bilinear programming formulation
can serve as an effective tool for making local improvements to a solution in a multilevel context.
The current work makes the following contributions:

1. The bilinear programming model of [18] is extended to the case where vertex weights
are possibly greater than one. This generalization is important since each vertex in a
multilevel compression corresponds to a collection of vertices in the original graph. The
bilinear formulation of the compressed graph is not exactly equivalent to the VSP for the
compressed graph, but it very closely approximates the VSP as we show.

2. Optimization algorithms applied to the bilinear VSP model converge to stationary points
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which may not be global optima. Two techniques are developed to escape from a stationary
point and explore a new part of the solution space. One technique uses the first-order
optimality conditions to construct an infinitesimal perturbation of the objective function
with the property that a gradient descent step moves the iterate to a new location where
the separator could be smaller. This technique is particularly effective when the current
iterate lies at a saddle point rather than a local optimum. The second technique involves
relaxing the constraint that there are no edges between the sets in the partition. Since
this constraint is enforced by a penalty in the objective, we determine the smallest possible
relaxation of the penalty for which a gradient descent step moves the iterate to a new
location where the separator could be smaller.

3. A multilevel algorithm is developed which incorporates the weighted bilinear program in
the refinement phase along with the techniques to escape from a stationary point. Compu-
tational results are given to compare the quality of the solutions obtained with the bilinear
programming approach to a multilevel vertex separator routine in the METIS package. The
algorithm is shown to be especially effective on p2p networks and graphs having heavy-
tailed degree distributions.

The outline of the paper is as follows. Section 3 reviews the bilinear programming formulation
of the VSP in [18] and develops the weighted formulation which is suitable for the coarser levels
in our algorithm. Section 4 presents an algorithm for finding approximate solutions to the bilinear
program and develops two techniques for escaping from a stationary point. Section 5 summarizes the
multilevel framework, while Section 6 gives numerical results comparing our algorithm to METIS.
Conclusions are drawn in Section 7.

2. Notation. Vectors or matrices whose entries are all 0 or all 1 are denoted by 0 or 1

respectively, where the dimension will be clear from the context. If x ∈ R
n and f : Rn → R, then

∇f(x) denotes the gradient of f at x, a row vector, and ∇2f(x) is the Hessian. If f : Rn×R
n → R,

then ∇xf(x,y) is the row vector corresponding to the first n entries of ∇f(x,y), while ∇yf(x,y)
is the row vector corresponding to the last n entries. If A is a matrix, then Ai denotes the i-th row
of A. If x ∈ R

n, then x ≥ 0 means xi ≥ 0 for all i, and xT denotes the transpose, a row vector. Let
I ∈ R

n×n denote the n × n identity matrix, let ei denote the i-th column of I, and let |A| denote
the number of elements in the set A.

3. Bilinear programming formulation. Since minimizing C(S) in (1.1) is equivalent to
maximizing C(A ∪ B), we may view the VSP as the following maximization problem:

max
A,B⊆V

C(A ∪ B)(3.1)

subject to A ∩ B = ∅, (A× B) ∩ E = ∅,

ℓa ≤ W(A) ≤ ua, and ℓb ≤ W(B) ≤ ub.

Next, observe that any pair of subsets A,B ⊆ V is associated with a pair of incidence vectors
x,y ∈ {0, 1}n defined by

xi =

{

1, if i ∈ A
0, if i /∈ A

and yi =

{

1, if i ∈ B
0, if i /∈ B

.(3.2)

Let H := (A + I), where A is the n × n adjacency matrix for G defined by aij = 1 if (i, j) ∈ E
and aij = 0 otherwise, and I is the n × n identity matrix. Note that since G is undirected, H is
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symmetric. Then we have

xTHy =
n
∑

i=1

n
∑

j=1

xiaijyj +
n
∑

i=1

xiyi

=
∑

xi=1

∑

yj=1

aij +
∑

xi=yi=1

1

=
∑

i∈A

∑

j∈B

aij +
∑

i∈A∩B

1

= |(A× B) ∩ E| + |A ∩ B|.(3.3)

So, the constraints A∩ B = ∅ and (A× B) ∩ E = ∅ in (3.1) hold if and only if

xTHy = 0.(3.4)

Hence, a binary formulation of (3.1) is

max
x,y∈{0,1}n

cT(x+ y)

subject to xTHy = 0,(3.5)

ℓa ≤ wTx ≤ ua, and ℓb ≤ wTy ≤ ub,

where c and w are the n−dimensional vectors which store the costs ci and weights wi of vertices,
respectively.

Now, consider the following problem in which the quadratic constraint of (3.5) has been relaxed:

max
x,y∈{0,1}n

f(x,y) := cT(x+ y) − γxTHy(3.6)

subject to ℓa ≤ wTx ≤ ua and ℓb ≤ wTy ≤ ub.

Here, γ ∈ R. Notice that γxTHy acts as a penalty term in (3.6) when γ ≥ 0, since xTHy ≥ 0 for
every x,y ∈ {0, 1}n. Moreover, (3.6) gives a relaxation of (3.5), since the constraint (3.4) is not
enforced. Problem (3.6) is feasible since the VSP (3.1) is feasible by assumption. The following
proposition gives conditions under which (3.6) is essentially equivalent to (3.5) and (3.1).

Proposition 3.1. If w ≥ 1 and γ > 0 with γ ≥ max{ci : i ∈ V}, then for any feasible point

(x,y) in (3.6) satisfying

f(x,y) ≥ γ(ℓa + ℓb),(3.7)

there is a feasible point (x̄, ȳ) in (3.6) such that

f(x̄, ȳ) ≥ f(x,y) and x̄THȳ = 0.(3.8)

Hence, if the optimal objective value in (3.6) is at least γ(ℓa + ℓb), then there exists an optimal

solution (x∗,y∗) to (3.6) such that an optimal solution to (3.1) is given by

A = {i : x∗
i = 1}, B = {i : y∗i = 1}, and S = {i : x∗

i = y∗i = 0}.(3.9)
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Proof. Let (x,y) be a feasible point in (3.6) satisfying (3.7). Since x, y, and H are nonnegative,
we have xTHy ≥ 0. If xTHy = 0, then we simply take x̄ = x and ȳ = y, and (3.8) is satisfied.
Now suppose instead that

xTHy > 0.(3.10)

Then,

γ(ℓa + ℓb) ≤ f(x,y) = cT(x+ y)− γxTHy(3.11)

< cT(x+ y)(3.12)

≤ γ1T(x+ y).(3.13)

Here, (3.11) is due to (3.7), (3.12) is due to (3.10) and the assumption that γ > 0, and (3.13) holds
by the assumption that γ ≥ max{ci : i ∈ V}. It follows that either 1Tx > ℓa or 1Ty > ℓb.

Assume without loss of generality that 1Tx > ℓa. Since x is binary and ℓa is an integer, we
have

1Tx ≥ ℓa + 1.

Since the entries in x, y, and H are all non-negative integers, (3.10) implies that there exists an
index i such that Hiy ≥ 1 and xi = 1 (recall that subscripts on a matrix correspond to the rows).
If x̂ = x− ei, then (x̂,y) is feasible in problem (3.6) since ua ≥ wTx > wTx̂ and

wTx̂ ≥ 1Tx̂ = 1Tx− 1 ≥ ℓa.

Here the first inequality is due to the assumption that w ≥ 1. Furthermore,

f(x̂,y) = f(x,y) − ci + γHiy ≥ f(x,y) − ci + γ ≥ f(x,y),(3.14)

since Hiy ≥ 1, γ ≥ 0, and γ ≥ ci. We can continue to set components of x and y to 0 until reaching
a binary feasible point (x̄, ȳ) for which x̄THȳ = 0 and f(x̄, ȳ) ≥ f(x,y). This completes the proof
of the first claim in the proposition.

Now, if the optimal objective value in (3.6) is at least γ(ℓa + ℓb), then by the first part of the
proposition, we may find an optimal solution (x∗,y∗) satisfying (3.4); hence, (x∗,y∗) is feasible in
(3.5). Since (3.6) is a relaxation of (3.5), (x∗,y∗) is optimal in (3.5). Hence, the partition (A,S,B)
defined by (3.9) is optimal in (3.1). This completes the proof.

Algorithm 3.1 represents the procedure used in the proof of Proposition 3.1 to move from a feasible
point in (3.6) to a feasible point (x̄, ȳ) satisfying (3.8).

Remark 3.1. There is typically an abundance of feasible points in (3.6) satisfying (3.7). For

example, in the common case where γ = ci = wi = 1 for each i, (3.7) is satisfied whenever x and y

are incidence vectors for a pair of feasible sets A and B in (3.1), since in this case

f(x,y) = cT(x+ y) = wTx+wTy ≥ ℓa + ℓb = γ(ℓa + ℓb).

Now consider the following continuous bilinear program, which is obtained from (3.6) by relax-
ing the binary constraint x,y ∈ {0, 1}n:

max
x,y∈Rn

f(x,y) := cT(x+ y) − γxTHy(3.15)

subject to 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, ℓa ≤ wTx ≤ ua, and ℓb ≤ wTy ≤ ub.
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Input: A binary feasible point (x,y) for (3.6) satisfying (3.7)
while ( xTHy > 0 )

if ( 1Tx > ℓa )
Choose i such that xi = 1 and Hiy ≥ 1.
Set xi = 0.

else if ( 1Ty > ℓb )
Choose i such that yi = 1 and Hix ≥ 1.
Set yi = 0.

end if

end while

Algorithm 3.1. Convert a binary feasible point for (3.6) into a vertex separator without decreasing the objective
function value.

In [18], the authors study (3.15) in the common case where c ≥ 0 and w = 1. In particular, the
following theorem is proved:

Theorem 3.2. [18, Theorem 2.1, Part 1] If (3.1) is feasible, w = 1, c ≥ 0, γ ≥ max{ci :
i ∈ V} > 0, and the optimal objective value in (3.1) is at least γ(ℓa + ℓb), then (3.15) has a binary

optimal solution (x,y) ∈ {0, 1}2n satisfying (3.4).

In the proof of Theorem 3.2, a step-by-step procedure is given for moving from any feasible
point (x,y) in (3.15) to a binary point (x̄, ȳ) satisfying f(x̄, ȳ) ≥ f(x,y). Thus, when the vertices
all have unit weights, the VSP may be solved with a 4-step procedure:

1. Obtain an optimal solution to the continuous bilinear program (3.15).
2. Move to a binary optimal solution using the algorithm of [18, Theorem 2.1, Part 1].
3. Convert the binary solution of (3.15) to a separator using Algorithm 3.1.
4. Construct an optimal partition via (3.9).

When G has a small number of vertices, the dimension of the bilinear program (3.15) is small,
and the above approach may be very effective. However, since the objective function in (3.15)
is non-concave, the number of local maximizers in (3.15) grows quickly as |V| becomes large and
solving the bilinear program becomes increasingly difficult.

In order to find good approximate solutions to (3.15) when G is large, we will incorporate the
4-step procedure (with some modifications) into a multilevel framework (see Section 5). The basic
idea is to coarsen the graph into a smaller graph having a similar structure to the original graph;
the VSP is then solved for the coarse graph via a procedure similar to the one above, and the
solution is uncoarsened to give a solution for the original graph.

At the coarser levels of our algorithm, each vertex represents an aggregate of vertices from
the original graph. Hence, in order to keep track of the sizes of the aggregates, weights must be
assigned to the vertices in the coarse graphs, which means the assumption of Theorem 3.2 that
w = 1 does not hold at the coarser levels. Indeed, when c ≥ 0 and w 6= 1, (3.15) may not have a
binary optimal solution, as we will show. However, in the general case where w > 0 and c ∈ R

n,
the following weaker result is obtained:

Definition 3.3. A point (x,y) ∈ R
2n is called mostly binary if x and y each have at most

one non-binary component.

Proposition 3.4. If the VSP (3.1) is feasible and γ ∈ R, then (3.15) has a mostly binary

optimal solution.
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Proof. We show that the following stronger property holds:

(P) For any (x,y) feasible in (3.15), there exists a piecewise linear path to a feasible point
(x̄, ȳ) ∈ R

2n which is mostly binary and satisfies f(x̄, ȳ) ≥ f(x,y).

Let (x,y) be any feasible point of (3.15). If x and y each have at most one non-binary
component, then we are done. Otherwise, assume without loss of generality there exist indices
k 6= l such that

0 < xk ≤ xl < 1.

Since w > 0, we can define

x(t) := x+ t

(

1

wk

ek −
1

wl

el

)

for t ∈ R. Substituting x = x(t) in the objective function yields

f(x(t),y) = f(x,y) + td, where d = ∇xf(x,y)

(

1

wk

ek −
1

wl

el

)

.

If d ≥ 0, then we may increase t from zero until either xk(t) = 1 or xl(t) = 0. In the case where
d < 0, we may decrease t until either xk(t) = 0 or xl(t) = 1. In either case, the number of non-
binary components in x is reduced by at least one, while the objective value does not decrease by
the choice of the sign of t. Feasibility is maintained since wTx(t) = wTx. We may continue moving
components to bounds in this manner until x has at most one non-binary component. The same
procedure may be applied to y. In this way, we will arrive at a feasible point (x̄, ȳ) such that x̄

and ȳ each have at most one non-binary component and f(x̄, ȳ) ≥ f(x,y). This proves (P), which
completes the proof.

The proof of Proposition 3.4 was constructive. A nonconstructive proof goes as follows: Since
the quadratic program (3.15) is bilinear, there exists an optimal solution lying at an extreme point
[27]. At an extreme point of the feasible set of (3.15), exactly 2n linearly independent constraints
are active. Since there can be at most n linearly independent constraints which are active at x, and
similarly for y, there must exist exactly n linearly independent constraints which are active at x;
in particular, at least n− 1 components of x must lie at a bound, and similarly for y. Therefore,
(x,y) is mostly binary. In the case where w 6= 1, there may exist extreme points of the feasible
set which are not binary; for example, consider n = 3, ℓa = ℓb = 1, ua = ub = 2, w = (1, 1, 2),
x = (1, 0, 0.5), and y = (0, 1, 0.5).

Often, the conclusion of Proposition 3.4 can be further strengthened to assert the existence of
a solution (x,y) of (3.15) for which either x or y is completely binary, while the other variable
has at most one nonbinary component. The rationale is the following: Suppose that (x,y) is a
mostly binary optimal solution and without loss of generality xi is a nonbinary component of x.
Substituting x(t) = x+ tei in the objective function we obtain

f(x(t),y) = f(x,y) + td, d = ∇xf(x,y)ei.

If d ≥ 0, we increase t, while if d < 0, we decrease t; in either case, the objective function f(x(t),y)
cannot decrease. If

ℓa + wi ≤ wTx ≤ ua − wi,(3.16)
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Input: A feasible point (x,y) for the continuous bilinear program (3.15).
while ( x has at least 2 nonbinary components )

Choose i, j ∈ V such that xi, xj ∈ (0, 1).
Update x ← x+ t( 1

wi
ei −

1
wj

ej), choosing t to ensure that:

(a) f(x,y) does not decrease,
(b) either xi ∈ {0, 1} or xj ∈ {0, 1},
(c) x feasible in (3.15).

end while

while ( y has at least 2 nonbinary components )
Choose i, j ∈ V such that yi, yj ∈ (0, 1).
Update y ← y + t( 1

wi
ei −

1
wj

ej), choosing t to ensure that:

(a) f(x,y) does not decrease,
(b) either yi ∈ {0, 1} or yj ∈ {0, 1},
(c) y feasible in (3.15).

end while

Algorithm 3.2. Convert a feasible point for (3.15) into a mostly binary feasible point without decreasing the
objective value.

then we can let t grow in magnitude until either xi(t) = 0 or xi(t) = 1, while complying with the
bounds ℓa ≤ wTx(t) ≤ ua. In applications, either the inequality (3.16) holds, or an analogous
inequality ℓb + wj ≤ wTy ≤ ua − wj holds for y, where yj is a nonbinary component of y. The
reason that one of these inequalities holds is that we typically have ua = ub > W(V)/2, which
implies that the upper bounds wTx ≤ ua and wTy ≤ ub cannot be simultaneously active. On the
other hand, the lower bounds wTx ≥ ℓa and wTy ≥ ℓb are often trivially satisfied when ℓa and ℓb
are small numbers like one.

Algorithm 3.2 represents the procedure used in the proof of Proposition 3.4 to convert a given
feasible point for (3.15) into a mostly binary feasible point without decreasing the objective function
value. In the case where w = 1, the final point returned by Algorithm 3.2 is binary. Although
the continuous bilinear problem (3.15) is not necessarily equivalent to the discrete VSP (3.1) when
w 6= 1, it closely approximates (3.1) in the sense it has a mostly binary optimal solution. Since
(3.15) is a relaxation of (3.5), the objective value at an optimal solution to (3.15) gives an upper
bound on the optimal objective value in (3.5), and therefore on the optimal objective value in (3.1).
On the other hand, given a mostly binary solution to (3.15), we can typically push the remaining
fractional components to bounds without violating the constraints on wTx and wTy. Then we
apply Algorithm 3.1 to this binary point to obtain a feasible point in (3.5), giving a lower bound
on the optimal objective value in (3.5) and (3.1). In the case where w = 1, the upper and lower
bounds are equal.

4. Solving the bilinear program. In our implementation of the multilevel algorithm, we
use an iterative optimization algorithm to compute a local maximizer of (3.15), then employ two
different techniques to escape from a local optimum. Our optimization algorithm is a modified
version of a Mountain Climbing Algorithm originally proposed by Konno [27] for solving bilinear
programs.

4.1. Mountain Climbing. Given an initial guess, the Mountain Climbing Algorithm of [27]
solves (3.15) by alternately holding x or y fixed while optimizing over the other variable. This
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Input: A feasible point (x,y) for (3.15) and η > 0.
while ( (x,y) not stationary point for (3.15) )

x̂ ← argmax {f(x,y) : x ∈ Pa}
ŷ ← argmax {f(x,y) : y ∈ Pb}
if ( f(x̂, ŷ) > max {f(x̂,y), f(x, ŷ)}+ η )

(x,y) ← (x̂, ŷ)
else if ( f(x̂,y) > f(x, ŷ) )

x ← x̂

else

y ← ŷ

end if

end while

return (x,y)

Algorithm 4.1. MCA: A modified version of Konno’s Mountain Climbing Algorithm for generating a sta-
tionary point for (3.15).

optimization problem for a single variable can be done efficiently since the program is linear in x

and in y. In our modified version of the mountain climbing algorithm, which we call MCA (see
Algorithm 4.1), we maximize over x with y held fixed to obtain x̂, we maximize over y with x held
fixed to obtain ŷ, and then we maximize over the subspace spanned by the two maximizers. Due to
the bilinear structure of the objective function, the subspace maximum is either f(x̂, ŷ), f(x̂,y), or
f(x, ŷ). The step (x̂, ŷ) is only taken if it provides an improvement of at least η more than either
an x̂ or ŷ step, where η is a small constant (10−5 in our experiments). After an x or y step is taken,
the subspace maximizer alternates between (x̂,y) and (x, ŷ), and hence only one linear program is
solved at each iteration. In our statement of MCA, Pa and Pb denote the polyhedral feasible sets
for (3.15) defined by

Pi = {z ∈ R
n : 0 ≤ z ≤ 1 and ℓi ≤ wTz ≤ ui}, i = a, b.

The linear programs arising in MCA are solved using a greedy algorithm. In particular,
max {f(x,y) : x ∈ Pa} is solved by setting all components xi equal to zero and then sorting
the components in decreasing order of their ratio ri := ∂f

∂xi
(x,y)/wi; the components are then

visited in order and are pushed up from 0 to 1 until either wTx = ua or a component is reached
such that ri < 0. It is easy to show that this procedure gives an optimal solution to the LP.

Since (3.15) is non-concave, it may have many stationary points; thus, it is crucial to incorporate
techniques to escape from a stationary point and explore a new part of the solution space. The
techniques we develop are based on perturbations in either the cost vector c or in the penalty
parameter γ. We make the smallest possible perturbations which guarantee that the current iterate
is no longer a stationary point of the perturbed problem. After computing an approximate solution
of the perturbed problem, we use it as a starting guess in the original problem and reapply MCA.
If we reach a better solution for the original problem, then we save this best solution, and make
another perturbation. If we do not reach a better solution, then we continue the perturbation
process, starting from the new point.

4.2. c-perturbations. Our perturbations of the cost vector are based on an analysis of the
first-order optimality conditions for the maximization problem (3.15). If a feasible point (x,y) for
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(3.15) is a local maximizer, then the objective function can only decrease when we make small
moves in the direction of other feasible points, or equivalently,

∇xf(x,y)(x̃ − x) +∇yf(x,y)(ỹ − y) ≤ 0(4.1)

whenever (x̃, ỹ) is feasible in (3.15). Another way to state the first-order optimality condition
(4.1) employs multipliers for the constraints. In particular, by [33, Theorem 12.1], a feasible point
(x,y) for (3.15) is a local maximizer only if there exist multipliers µ

a ∈ M(x), µ
b ∈ M(y),

λa ∈ L(x, ℓa, ua), λ
b ∈ L(y, ℓb, ub) such that

[

∇xf(x,y)
∇yf(x,y)

]

+

[

µ
a

µ
b

]

+

[

λaw

λbw

]

= 0,(4.2)

where

M(z) = {µ ∈ R
n : µizi ≤ min{µi, 0} for all 1 ≤ i ≤ n} and

L(z, ℓ, u) = {λ ∈ R : λwTz ≤ min{λu, λℓ}}.

The conditions (4.1) and (4.2) are equivalent. The condition (4.2) is often called the KKT (Karush-
Kuhn-Tucker) condition. The usual formulation of the KKT conditions involves introducing a sepa-
rate multiplier for each upper and lower bound constraint, which leads to eight different multipliers
in the case of (3.15). In (4.2) the number of multipliers has been reduced to four through the use
of the setM and L.

In describing our perturbations to the objective function, we attach a subscript to f to indicate
the parameter that is being perturbed. Thus fc denotes the original objective in (3.15), while fc̃
corresponds to the objective obtained by replacing c by c̃.

Proposition 4.1. If γ ∈ R and (x,y) satisfies the first-order optimality condition (4.2) for

(3.15), then in any of the following cases, for any choice of ǫ > 0 and for the indicated choices of

c̃, (x,y) does not satisfy the first-order optimality condition (4.2) for f = fc̃:
1. For any i 6= j such that µa

i = µa
j = 0, xi < 1, and xj > 0, take

c̃k =







ck + ǫ if k = i,
ck − ǫ if k = j,
ck otherwise

.

2. If λa = 0 and wTx < ua, then for any i such that µa
i = 0 and xi < 1, take c̃i = ci + ǫ and

c̃k = ck for k 6= i.
3. If λa = 0 and wTx > ℓa, then for any j such that µa

j = 0 and xj > 0, take c̃j = cj − ǫ and

c̃k = ck for k 6= j.

Proof. Part 1. Let i and j satisfy the stated conditions and define the vector d = wjei−wiej .
Since wTd = 0, xi < 1, and xj > 0, it follows that x̃(t) = x + td is feasible in (3.15) for t > 0
sufficiently small. Moreover, by (4.2) and the assumption µa

i = µa
j = 0, we have ∇xfc(x,y)d = 0.

Since

∇xfc̃(x,y) = ∇xfc(x,y) + ǫ(eTi − eTj ),

we conclude that ∇xfc̃(x,y)d = ǫ(wi + wj), which implies that

∇xfc̃(x,y)(x̃(t)− x) = ǫt(wi + wj) > 0.(4.3)
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Input: A feasible point (x,y) for (3.15).
(x,y) ← MCA (x,y)
loop

c̃ ← perturb (c)
(x̃, ỹ) ← MCA (x,y, c̃)
(x∗,y∗) ← MCA (x̃, ỹ, c)
if ( f(x∗,y∗) > f(x,y) )

(x,y) ← (x∗,y∗)
else

break

end if

end loop

return (x,y)

Algorithm 4.2. MCA CP: A modification of MCA which incorporates c-perturbations.

This shows that the first-order optimality condition (4.1) is not satisfied at (x,y) for f = fc̃.
Part 2. Define d = ei. Since wTx < ua and xi < 1, it follows that x̃(t) = x+ td is feasible in

(3.15) for t > 0 sufficiently small. Since λa = µa
i = 0, (4.2) implies that ∇xfc(x,y)d = 0. So,

∇xfc̃(x,y)d = [∇xfc(x,y) + ǫeTi ]d = 0 + ǫeTi d = ǫ,

which implies ∇xfc̃(x,y)(x̃(t)− x) = ǫt > 0. Hence, the first-order optimality conditions (4.1) are
not satisfied at (x,y) for fc̃.

Part 3. The analysis parallels the analysis of Part 2.

Of course, Proposition 4.1 may be applied to either x or y. Since ǫ was arbitrary, we usually
take ǫ to be a tiny positive number (10−6 in our experiments). By making a tiny change in the
problem, the iterates of the optimization algorithm MCA applied to f = fc̃ must move away from
the current point to a new vertex of the feasible set to improve the objective value in the perturbed
problem. Then the solution of the slightly perturbed problem is used as a starting guess for the
solution of the original unperturbed problem. Algorithm 4.2, also denoted MCA CP, incorporates
the c-perturbations into MCA. In the figure, the notation MCA (x,y, c̃) indicates that the MCA
algorithm is applied to the point (x,y) using c̃ in place of c as the vector of vertex costs. In
our experiments, the c-perturbations were performed in the following way: For each i such that
|µa

i | < 10−5, we set c̃i = ci + ǫ whenever xi < 0.5 and c̃i = ci − ǫ otherwise; similar perturbations
are made based on the values of µb

i and yi.

4.3. γ-perturbations. Next, we consider perturbations in the parameter γ. According to our
theory, we need to take γ ≥ max{ci : i ∈ V} to ensure an (approximate) equivalence between the
discrete (3.1) and the continuous (3.15) VSP. The penalty term −γxTHy in the objective function
of (3.15) enforces the constraints A ∩ B = ∅ and (A × B) ∩ E = ∅ of (3.1). Thus, by decreasing
γ, we relax our enforcement of these constraints and place greater emphasis on the cost of the
separator. The next proposition will determine the amount by which we must decrease γ in order
to ensure that the current point (x,y), a local maximizer of fγ , is no longer a local maximizer of
the perturbed problem fγ̃ . The derivation requires a formulation of the second-order necessary and
sufficient optimality conditions given in [17, Cor. 3.3]; applying these conditions to the bilinear
program (3.15), we have the following theorem.
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Theorem 4.2. If γ ∈ R and (x,y) is feasible in (3.15), then (x,y) is a local maximizer if and

only if the following hold:

(C1) ∇xf(x,y)d ≤ 0 for every d ∈ Fa(x) ∩ D,
(C2) ∇yf(x,y)d ≤ 0 for every d ∈ Fb(y) ∩D, and
(C3) dT

1 (∇
2f)d2 ≤ 0 for every d1,d2 ∈ C(x,y) ∩ G,

where

Fi(z) =























d ∈ R
n :

dj ≤ 0 for all j such that zj = 1

dj ≥ 0 for all j such that zj = 0

wTd ≤ 0 if wTz = ui

wTd ≥ 0 if wTz = li























, i = a, b, z ∈ R
n,

C(x,y) = {d ∈ Fa(x)×Fb(y) : ∇f(x,y)d = 0} ,

D =
n
⋃

i,j=1

{ei,−ei, wjei − wiej} , and G = (D × {0}) ∪ ({0} × D).(4.4)

The sets Fa and Fb are the cones of first-order feasible directions at x and y. The set G is a
reflective edge description of the feasible set, introduced in [17]; that is, each edge of the constraint
polyhedron of (3.15) is parallel to an element of G. Since D is a finite set, checking the first-order
optimality conditions reduces to testing the conditions (C1) and (C2) for the finite collection of
elements from D that are in the cone of first-order feasible directions; testing the second-order
optimality conditions reduces to testing the condition (C3) for the elements from G that are in the
critical cone C(x,y).

Proposition 4.3. Let γ ∈ R, let (x,y) be a feasible point in (3.15) which satisfies the first-

order optimality condition (C1), and let γ̃ ≤ γ.
1. Suppose ℓa < wTx < ua. Then (C1) holds at (x,y) for f = fγ̃ if and only if γ̃ ≥ α1, where

α1 := max

{

cj
Hjy

: j ∈ J

}

and J := {j : xj < 1 and Hjy > 0} ,

with α1 := −∞ if J = ∅.
2. Suppose wTx = ua. Then (C1) holds at (x,y) for f = fγ̃ if and only if γ̃ ≥ α2 where

α2 := inf Γ and Γ :=

{

α ∈ R :
1

wi

∂fα
∂xi

(x,y) ≤
1

wj

∂fα
∂xj

(x,y) for all xi < 1 and xj > 0

}

.

Proof. Part 1. Since ℓa < wTx < ua, the cone of first-order feasible directions for x is given
by

Fa(x) = {d ∈ R
n : di ≥ 0 when xi = 0 and di ≤ 0 when xi = 1, i = 1, . . . , n} .

It follows that for each i = 1, . . . , n,

ei ∈ Fa(x) if and only if xi < 1,
−ei ∈ Fa(x) if and only if xi > 0,

(wjei − wiej) ∈ Fa(x) if and only if xi < 1 and xj > 0.
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Hence, the first-order optimality condition (C1) for fγ̃ can be expressed as follows:

∇xfγ̃(x,y)ei ≤ 0 when xi < 1,(4.5)

∇xfγ̃(x,y)ei ≥ 0 when xi > 0,(4.6)

∇xfγ̃(x,y)(wjei − wiej) ≤ 0 when xi < 1 and xj > 0.(4.7)

Since (4.7) is implied by (4.5) and (4.6), it follows that (C1) holds if and only if (4.5) and (4.6)
hold. Since (C1) holds for fγ , we know that

∇xfγ(x,y)ei = ci − γHiy ≥ 0 when xi > 0.

Hence, since γ̃ ≤ γ and Hiy ≥ 0,

∇xfγ̃(x,y)ei = ci − γ̃Hiy ≥ 0 when xi > 0.

Hence, (C1) holds with respect to γ̃ if and only if (4.5) holds. Since (C1) holds for f = fγ , we have

cj − γHjy ≤ 0 when xj < 1.(4.8)

Hence, for every j such that xj < 1 and Hjy = 0, we have

cj − γ̃Hjy = cj = cj − γHjy ≤ 0.

So, (4.5) holds if and only if cj − γ̃Hjy ≤ 0 for every j ∈ J ; that is, if and only if γ̃ ≥ α1. This
completes the proof of Part 1.

Part 2. Since wTx = ua, the cone of first-order feasible directions at x has the constraint
wTd ≤ 0. Consequently, ei 6∈ Fa(x)∩D for any i, and the first-order optimality condition (C1) for
fγ̃ reduces to (4.6)–(4.7). As in Part 1, (4.6) holds, since γ̃ ≤ γ. Condition (4.7) is equivalent to
γ̃ ∈ Γ. Since (4.7) holds for f = fγ , we have γ ∈ Γ. Since ∇xfγ̃(x,y) is a affine function of γ̃, the
set of γ̃ satisfying (4.7) for some i and j such that xj > 0 and xi < 1 is a closed interval, and the
intersection of the intervals over all i and j for which xj > 0 and xi < 1 is also a closed interval.
Hence, since γ̃ ≤ γ ∈ Γ, we have γ̃ ∈ Γ if and only if γ̃ ≥ α2. This completes the proof of Part 2.

Remark 4.1: Of course, Proposition 4.3 also holds when the variables x and y and the bounds
(ℓa, ua) and (ℓb, ub) are interchanged. In most applications, ua and ub >W(V)/2, ℓa = ℓb = 1, and
as the iterates converge to a solution of (3.15), either the constraint wTx ≤ ua or the constraint
wTy ≤ ub is active. Thus, for a given iterate (x,y), the assumptions of Part 1 typically apply
to either x or y, while the assumptions of Part 2 apply to the other variable. Although the
Part 2 condition seems complex, it often provides no useful information in the following sense: In
a multilevel implementation, the vertex costs (and weights) are often 1 at the finest level, and at
coarser levels, the vertex costs may not differ greatly. When the vertex costs are equal, (4.7) holds
when γ̃ has the same sign as γ; that is, as long as γ̃ ≥ 0. Thus, α2 = 0. Since α1 is typically
positive, the tighter bound on γ̃ is the interval [α1, γ], which means that when γ̃ < α1, (x,y) is no
longer a stationary point for f = fγ̃ .

Algorithm 4.3, also denoted MCA GR, approximately solves (3.15), while incorporating both
c-perturbations and γ-refinements. Here, the notation MCA(x,y, γ̃) indicates that the MCA al-
gorithm is applied to the point (x,y) using γ̃ in place of γ as the penalty parameter. In our
implementation, the γ-refinements are performed in the following way: γ is reduced from the initial
value α1 in 10 uniform decrements until it reaches 0 or the optimal objective value improves. We
note that in 4.3, the c-perturbations are embedded in the γ-refinement procedure in order to obtain
a local optimizer of high quality for each γ̃.
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Input: A feasible point (x,y) for (3.15).
(x,y) ← MCA CP (x,y)
γ̃ ← α1

while ( γ̃ > 0 )
γ̃ ← reduce (γ̃)
(x̃, ỹ) ← MCA CP (x,y, γ̃)
(x∗,y∗) ← MCA CP (x̃, ỹ, γ)
if ( f(x∗,y∗) > f(x,y) )

(x,y) ← (x∗,y∗)
γ̃ ← α1

end while

return (x,y)

Algorithm 4.3. MCA GR: A refinement algorithm for (3.15) which incorporates c-perturbations and γ-
refinements.

5. Multilevel algorithm. We now give an overview of a multilevel algorithm, which we call
BLP, for solving the vertex separator problem. The algorithm consists of three phases: coarsening,
solving, and uncoarsening.

Coarsening. Vertices are visited one by one and each vertex is matched with an unmatched
adjacent vertex, whenever one exists. Matched vertices are merged together to form a single vertex
having a cost and weight equal to the sum of the costs and weights of the constituent vertices.
Multiple edges which arise between two vertices are combined and assigned an edge weight equal
to the sum of the weights of combined edges (in the original graph, all edges are assumed to have
weight 1). This coarsening process repeats until the graph has fewer than 75 vertices or fewer than
10 edges.

The goal of the coarsening phase is to reduce the number of degrees of freedom in the problem,
while preserving its structure so that the solutions obtained for the coarse problems give a good
approximation to the solution for the original problem. We consider two matching rules: random
and heavy-edge. In heavy-edge based matching, each vertex is matched with an unmatched neighbor
such that the edge between them has the greatest weight over all unmatched neighbors. Heavy
edge matching rules have been used in multilevel algorithms such as [19, 22], and were originally
developed for edge-cut problems. In our initial experiments, we also considered a third rule based on
an algebraic distance [8] between vertices. However, the results were not significantly different from
heavy-edge matching, which is not surprising, since (like heavy-edge rules) the algebraic distance
was originally developed for minimizing edge-cuts.

Solving. For each of the graphs in the multilevel hierarchy, we approximately solve (3.15)
using MCA GR. For the coarsest graph, the starting guess is xi = ua/W(V) and yi = ub/W(V),
i = 1, 2, . . . , n. For the finer graphs, a starting guess is obtained from the next coarser level using
the uncoarsening process described below. After MCA GR terminates, Algorithm 3.2 along with
the modification discussed after Proposition 3.4 are used to obtain a binary approximation to a
solution of (3.15), and then Algorithm 3.1 is used to convert the binary solution into a vertex
separator.

Uncoarsening. We use the solution for the vertex separator problem computed at any level
in the multilevel hierarchy as a starting guess for the solution at the next finer level. Sophisticated
cycling techniques like the W- or F-cycle [4] were not implemented. A starting guess for the
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next finer graph is obtained by unmatching vertices in the coarser graph. Suppose that we are
uncoarsening from level l to l−1 and (xl,yl) denotes the solution computed at level l. If vertex i at
level l is obtained by matching vertices j and k at level l−1, then our starting guess for (xl−1,yl−1)
is simply (xl−1

j , yl−1
j ) = (xl

i, y
l
i) and (xl−1

k , yl−1
k ) = (xl

i, y
l
i).

6. Numerical results. The multilevel algorithm was programmed in C++ and compiled
using g++ with optimization O3 on a Dell Precision T7610 Workstation with a Dual Intel Xeon
Processor E5-2687W v2 (16 physical cores, 3.4GHz, 25.6MB cache, 192GB memory). The sorting
phase in the solution of the linear programs in MCA was carried out by calling std :: sort, the
(O(n log n)) sorting routine implemented in the C++ standard library. Comparisons were made
with the routine

METIS ComputeVertexSeparator,

available from METIS 5.1.0 [22]. The following options were employed:

METIS IPTYPE NODE (coarsest problem solved with node growth scheme),
METIS RTYPE SEP2SIDED (Fiduccia-Mattheyses-like refinement scheme).

In a preliminary experiment, we also considered the refinement option METIS RTYPE
SEP1SIDED, but the results obtained were not significantly different. On the average, the option
METIS RTYPE SEP2SIDED provides slightly better results. Additionally, we considered both
heavy-edge matching (METIS CTYPE SHEM) and random matching (METIS CTYPE RM).

For our experiments, we considered 59 sparse graphs with dimensions ranging from n = 1, 000
to n = 1, 965, 206 and sparsities ranging from 1.43× 10−6 to 1.32× 10−2, where sparsity is defined

as the ratio |E|
n(n−1) (recall that |E| is equal to twice the number of edges). Twenty of these graphs

correspond to the adjacency matrix for symmetric matrices from the University of Florida Sparse
Matrix Collection [9]. Column 2 of Table 6.1 gives the number of vertices for each of these graphs,
followed by the number of edges (|E|/2), the sparsity, and the minimum, maximum, and average
vertex degrees, respectively.

Eight large graphs with heavy-tailed degree distribution (HTDD, i.e., there is a large gap
between minimum and maximum vertex degree) were selected from the Stanford SNAP database
[30] (see Table 6.2).

Fifteen graphs (see Table 6.3) were taken from [38], and were designed to be especially challeng-
ing for multilevel graph partitioners. The challenge in these graphs derives from the fact that the
optimal vertex separator is sparse, yet densely connected to the two shores (A and B). Also, these
graphs represent mixtures of different structures (similar to multi-mode networks) which makes the
coarsening uneven.

The Vertex Separator Problem is of particular importance in cyber security. For example, it
can be used to disconnect a largest connected component in a network to prevent a possible spread
of an attack or to find non-robust structures. Therefore, we also experimented with a set of 9
peer-to-peer networks from SNAP that were collected in [35] (see Table 6.4).

The UF, HTDD, Hard, and p2p graphs have at most 139, 752 nodes. In order to assess the
performance of BLP on very large scale graphs, we also considered 7 graphs from the Konect
database [26] having between 317, 080 and 1, 965, 206 nodes and between 925, 872 and 11, 095, 298
edges (see Table 6.5).

Vertex costs ci and weights wi were assumed to be 1 at the finest level for all graphs. For
the bounds on the shores of the separator, we took ℓa = ℓb = 1 and ua = ub = ⌊0.6n⌋, which are
the default bounds used by METIS. Here ⌊r⌋ denotes the largest integer not greater than r. In
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Degree

Graph |V| |E|/2 Sparsity Min Max Ave

bcspwr09 1723 2394 1.61E-03 1 14 2.78

bcsstk17 10974 208838 3.47E-03 0 149 38.06

c-38 8127 34781 1.05E-03 1 888 8.56

c-43 11125 56275 9.09E-04 1 2619 10.12

crystm01 4875 50232 4.23E-03 7 26 20.61

delaunay n13 8192 24547 7.32E-04 3 12 5.99

Erdos992 6100 7515 4.04E-04 0 61 2.46

fxm3 6 5026 44500 3.52E-03 3 128 17.71

G42 2000 11779 5.89E-03 4 249 11.78

jagmesh7 1138 3156 4.88E-03 3 6 5.55

lshp3466 3466 10215 1.70E-03 3 6 5.89

minnesota 2642 3303 9.47E-04 1 5 2.5

nasa4704 4704 50026 4.52E-03 5 41 21.27

net25 9520 195840 4.32E-03 2 138 41.14

netscience 1589 2742 2.17E-03 0 34 3.45

netz4504 1961 2578 1.34E-03 2 8 2.63

sherman1 1000 1375 2.75E-03 0 6 2.75

sstmodel 3345 9702 1.73E-03 0 17 5.8

USpowerGrid 4941 6594 5.40E-04 1 19 2.67

yeast 2361 6646 2.39E-03 0 64 5.63

Table 6.1

UF Graphs.

Degree

Graph |V| |E|/2 Sparsity Min Max Ave

ca-HepPh 7241 202194 7.71E-03 2 982 55.85

email-Enron 9660 224896 4.82E-03 2 2532 46.56

email-EuAll 16805 76156 5.39E-04 1 3360 9.06

oregon2 010505 5441 19505 1.32E-03 1 1888 7.17

soc-Epinions1 22908 389439 1.48E-03 1 3026 34

web-NotreDame 56429 235285 1.48E-04 1 6852 8.34

web-Stanford 122749 1409561 1.87E-04 1 35053 22.97

wiki-Vote 3809 95996 1.32E-02 1 1167 50.4

Table 6.2

Heavy-tailed degree distribution graphs from the SNAP database.

order to enable future comparisons with our solver, we have made this benchmark set available at
http://people.cs.clemson.edu/∼isafro/data.html.

6.1. Refinement comparison. In this subsection, we compare an FM-style refinement to a
refinement based upon solving (3.15) using the following two experiments:

1. Obtain an approximate solution (x̃, ỹ) to the VSP by calling the multilevel algorithm
METIS ComputeVertexSeparator. Next, refine (x̃, ỹ) by calling MCA GR.

2. Obtain an approximate solution (x̃, ỹ) to the VSP by invoking the multilevel algorithm
BLP. Next, refine (x̃, ỹ) by calling METIS NodeRefine.

http://people.cs.clemson.edu/~isafro/data.html
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Degree

Graph |V| |E|/2 Sparsity Min Max Ave

barth5 1Ksep 50in 5Kout 32212 101805 1.96E-04 1 22 6.32

bcsstk30 500sep 10in 1Kout 58348 2016578 1.18E-03 0 219 69.12

befref fxm 2 4 air02 14109 98224 9.87E-04 1 1531 13.92

bump2 e18 aa01 model1 crew1 56438 300801 1.89E-04 1 604 10.66

c-30 data data 11023 62184 1.02E-03 1 2109 11.28

c-60 data cti cs4 85830 241080 6.55E-05 1 2207 5.62

data and seymourl 9167 55866 1.33E-03 1 229 12.19

finan512 scagr7-2c rlfddd 139752 552020 5.65E-05 1 669 7.9

mod2 pgp2 slptsk 101364 389368 7.58E-05 1 1901 7.68

model1 crew1 cr42 south31 45101 189976 1.87E-04 1 17663 8.42

msc10848 300sep 100in 1Kout 21996 1221028 5.05E-03 1 722 111.02

p0291 seymourl iiasa 10498 53868 9.78E-04 1 229 10.26

sctap1-2b and seymourl 40174 140831 1.75E-04 1 1714 7.01

south31 slptsk 39668 189914 2.41E-04 1 17663 9.58

vibrobox scagr7-2c rlfddd 77328 435586 1.46E-04 1 669 11.27

Table 6.3

Hard graphs from [38].

Degree

Graph |V| |E|/2 Sparsity Min Max Ave

p2p-Gnutella04 10879 39994 6.76E-04 0 103 7.35

p2p-Gnutella05 8846 31839 8.14E-04 1 88 7.2

p2p-Gnutella06 8717 31525 8.30E-04 1 115 7.23

p2p-Gnutella08 6301 20777 1.05E-03 1 97 6.59

p2p-Gnutella09 8114 26013 7.90E-04 1 102 6.41

p2p-Gnutella24 26518 65369 1.86E-04 1 355 4.93

p2p-Gnutella25 22687 54705 2.13E-04 1 66 4.82

p2p-Gnutella30 36682 88328 1.31E-04 1 55 4.82

p2p-Gnutella31 62586 147892 7.55E-05 1 95 4.73

Table 6.4

Peer-to-peer networks from [35].

Degree

Graph |V| |E|/2 Sparsity Min Max Ave

out.as-skitter 1696415 11095298 7.71E-06 1 35455 13.08

out.com-amazon 334863 925872 1.65E-05 1 549 5.53

out.com-dblp 317080 1049866 2.09E-05 1 343 6.62

out.com-youtube 1134890 2987624 4.64E-06 1 28754 5.27

out.roadNet-CA 1965206 2766607 1.43E-06 1 12 2.82

out.roadNet-PA 1088092 1541898 2.60E-06 1 9 2.83

out.roadNet-TX 1379917 1921660 2.02E-06 1 12 2.79

Table 6.5

Konect graphs from [26].
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Graph Type MCA GR METIS NodeRefine
avg min max avg min max

UF 0.02 0.00 0.22 0.03 0.00 0.38
HTDD 0.36 0.00 2.06 0.06 0.00 0.55
Hard 0.07 0.00 0.54 0.16 0.00 1.64
p2p 0.49 0.03 1.20 0.27 0.04 0.58

Total 0.16 0.00 2.06 0.12 0.00 1.64

Table 6.6

Percent improvement in separator sizes using MCA GR or METIS NodeRefine.

METIS NodeRefine is a refinement routine which improves upon an initial solution using a Fiduccia-
Mattheyses-style refinement: Vertices in S are moved into either A or B and their neighbors in the
opposite shore are moved into S. Vertices having the largest gains are moved first.

The results of the two experiments are given in Table 6.6. Columns labeled MCA GR give
the average, minimum, and maximum improvement in the size of S from calling MCA GR in
Experiment 1, and the last three columns give the results for Experiment 2. Here, the improvement
is expressed as a percentage using the formula 100(C(Sinitial) − C(Sfinal))/C(V). In Experiment 1,
we observed that in every initial solution obtained by METIS ComputeVertexSeparator, the upper
bounds on both of the sets A and B were inactive, which we can show implies that the METIS
solution is a local minimizer in the continuous quadratic program (3.15). Hence, the algorithm
MCA was unable to improve upon the METIS solutions. However, MCA GR gave improvements
of 0.16% on average, compared to only 0.12% in Experiment 2, when METIS NodeRefine was
used. The greatest improvements achieved by MCA GR are seen in the HTDD and p2p graphs.
METIS NodeRefine was the most effective on the UF and Hard graphs.

6.2. Multilevel solution comparison. Tables 6.7–6.11 compare the costs C(S) of the ver-
tex separators found by the multilevel implementations BLP and METIS. The coarsening phases
of both algorithms involve matching vertices, which depends on a random seed. Therefore 100
trials (with different random seeds) were run for each graph. The tables report the average,
minimum, and maximum costs obtained by each algorithm. Columns labeled METIS RM and
BLP RM give the results of using METIS or BLP with random matching, and columns labeled
METIS HE and BLP HE indicate heavy-edge based matching. The columns labeled BLP RMFM
and BLP HEFM correspond to a hybrid approach, in which solutions are refined by first performing
Fiduccia-Mattheyses-like (FM) swaps, followed by MCA GR. FM swaps were performed by calling
METIS NodeRefine. Due to large running times of BLP on the Konect test set, only BLP RM
and METIS RM were compared for these graphs.

The data in Tables 6.7–6.11 is summarized in Tables 6.12–6.15. For instance, Table 6.12
gives the percentage of graphs of each type for which the average size of the separator obtained
by BLP RM was strictly better than METIS RM (% Wins) and the average, minimum, and
maximum percentage improvement in the average separator size compared to METIS, as measured
by the expression 100(C(SMETIS) − C(SBLP))/C(V). Note that here, neither solution is used as an
initial guess for the other algorithm, unlike the experiments of Section 6.1. Table 6.13 compares
BLP RMFM with METIS RM, and Tables 6.14 and 6.15 compare BLP HE and BLP HEFM
with METIS HE.

First, we note that the average improvement was positive for all versions of BLP on all graph
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types, except for BLP HE on the UF graphs and BLP RM on the Konect graphs. However, even
when METIS’s separators are smaller, the difference in size is often not substantial (less than 0.1%).

The BLP algorithms seem to be the most effective on the p2p, HTDD, and Hard graphs. Based
on our observations from Section 6.1, the high performance of BLP on the p2p and HTDD graphs
is probably due to the refinement algorithm, while the high performance on the Hard graphs may
be attributed (at least partially) to minor differences in the coarsening schemes used by METIS
and BLP. The p2p graphs performed exceptionally well, giving an improvement over the METIS
solution in 100% of the trials. As expected, the hybrid algorithms performed the best on average.

Due to the large dimension of the Konect graphs, combined with their abnormal degree distri-
butions, the coarsening scheme of BLP produced a large number of coarse levels for these graphs
(over 200 in some cases), since on many levels only a small number of vertices could be matched.
Since the computational bottleneck of BLP is the refinement phase, we decided to refrain from
refining a given coarse solution until the number of vertices increased by a factor of 2 during the
uncoarsening process, in order to improve the running time of BLP. This is one possible explanation
for the relatively poor performance of BLP for these problems.

In some applications, such as cybersecurity, the size of a vertex separator is of primary im-
portance, while in other applications, such as sparse matrix reordering, small separators must be
found quickly. Table 6.16 compares the average, geometric mean, minimum, and maximum CPU
time (in seconds) for BLP RM and METIS RM on each of the five test sets. For the first four
test sets in this table, the average CPU time for BLP was on average about 260 times slower than
METIS. However, we note that the average BLP solution was strictly better than the best METIS
solution (over 100 trials) in 25 out the 52 instances in these test sets, and in fact for all 9 p2p
instances. For the Konect graphs, the CPU time gap between BLP and METIS was approximately
28 times. We suspect that this relative improvement in CPU time is due to the reduced number
of refinement phases used for these problems. Finally, we stress that BLP has not been optimized
for speed. Figure 6.1 gives a log-log plot of n = |V| versus CPU time for all 59 instances. The best
fit line through the data in the log-log plot has a slope of approximately 1.65, which indicates that
the CPU time of BLP is between a linear and a quadratic function of the number of vertices.

In order to determine the computational bottlenecks of BLP, we examined a flat profile of the
code, using the Linux utility GNU gprof. We randomly selected one problem from each of the first
four test sets and found that between 61% and 87% of the CPU time was consumed by the routine
which implements the greedy algorithm for solving the linear programs in MCA. The remainder of
the CPU time was shared by objective value computations, matrix vector product computations
(between A and x or y), and Karush-Kuhn-Tucker multiplier computations, which were used to
determine the perturbations in c or γ required to escape a local optimum.

Thus, for applications in which speed is more important than solution quality, the following
modifications may be investigated:

1. Instead of resolving the linear program in MCA from scratch, we could exploit the structure
of the previously computed solution to update it.

2. In each iteration of the Mountain Climbing Algorithm, we need the products Axk and Ayk

between the matrix and a vector. We could save the previous products Axk−1 and Ayk−1

and only recompute the parts of the products that change.

7. Conclusion. We have developed a new algorithm (BLP) for solving large-scale instances
of the Vertex Separator Problem (1.1). The algorithm incorporates a multilevel framework; that
is, the original graph is coarsened several times; the problem is solved for the coarsest graph; and
the solution to the coarse graph is gradually uncoarsened and refined to obtain a solution to the
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Fig. 6.1. Number of vertices n versus CPU time for BLP RM.

original graph. A key feature of the algorithm is the use of the continuous bilinear program (3.15)
in both the solution and refinement phases. In the case where vertex weights are all equal to one
(or a constant), (3.15) is an exact formulation of the VSP in the sense that there exists a binary
solution satisfying (3.4), from which an optimal solution to the VSP can be recovered using (3.9).
When vertex weights are not all equal, we showed that (3.15) still approximates the VSP in the
sense that there exists a mostly binary solution.

During the solution and refinement phases of BLP, the bilinear program is solved approximately
by applying the algorithm MCA GR, a mountain climbing algorithm which incorporates pertur-
bation techniques to escape from stationary points and explore a new part of the search space.
One technique, referred to as c-perturbations, uses the first-order optimality conditions to derive
a tiny perturbation that will force an iterate to a new location with a possibly improved separa-
tor. The second technique, referred to as γ-perturbations, improves the separator by relaxing the
requirement that there are no edges between the sets in the partition. We determined the smallest
relaxation that will generate a new partition. To our knowledge, this is the first multilevel algo-
rithm to make use of a continuous optimization based refinement method for the family of graph
partitioning problems. The numerical results of Section 6 indicate that BLP is capable of locating
vertex separators of high quality (comparing against METIS), and is particularly effective on p2p
graphs, HTDD graphs (graphs with heavy-tailed distributions), and graphs having relatively sparse
separators.
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Graph Best METIS HE BLP HE BLP HEFM

avg min max avg min max avg min max

bcspwr09 6 7.52 6 13 12.20 6 25 9.92 6 22

bcsstk17 126 143.88 132 186 158.22 126 234 146.24 126 216

c-38 12 14.20 12 22 41.90 14 103 24.16 12 54

c-43 83 141.67 103 155 135.76 115 166 108.17 83 138

crystm01 65 67.31 65 90 77.64 65 85 73.93 65 85

delaunay n13 69 74.02 69 83 82.70 72 126 78.61 69 92

Erdos992 58 108.07 95 125 72.57 64 82 69.10 58 84

fxm3 6 42 53.48 42 88 66.73 42 90 52.96 42 87

G42 412 440.97 424 462 452.28 438 469 441.38 412 466

jagmesh7 14 14.03 14 15 19.90 14 42 21.67 14 42

lshp3466 51 55.41 51 61 58.96 51 105 52.33 51 73

minnesota 14 16.80 14 23 20.75 14 40 19.30 14 35

nasa4704 163 176.61 163 206 196.23 168 274 180.25 165 262

net25 510 597.34 510 915 557.27 510 993 516.13 510 578

netscience 0 0.09 0 3 0.00 0 0 0.00 0 0

netz4504 16 18.01 17 20 21.42 16 41 19.93 16 33

sherman1 18 29.98 28 39 21.23 18 28 19.88 18 26

sstmodel 20 24.28 22 35 27.34 21 37 24.77 20 33

USpowerGrid 8 8.98 8 14 20.09 8 44 12.19 8 22

yeast 137 192.62 182 213 165.16 156 178 147.23 137 155

Graph Best METIS RM BLP RM BLP RMFM

bcspwr09 6 7.47 6 11 11.88 7 28 9.82 6 18

bcsstk17 126 147.29 138 168 153.45 126 356 156.01 126 346

c-38 12 24.82 12 72 51.37 14 97 26.32 12 57

c-43 83 140.86 117 156 133.44 108 164 106.46 94 118

crystm01 65 66.50 65 90 79.60 65 85 77.57 65 80

delaunay n13 69 75.49 69 90 86.98 71 125 81.56 69 127

Erdos992 58 121.23 109 141 73.08 64 86 69.29 59 82

fxm3 6 42 60.82 42 90 73.55 57 101 67.95 42 99

G42 412 441.48 427 458 451.01 440 464 443.23 426 463

jagmesh7 14 14.14 14 21 21.23 14 39 19.87 14 49

lshp3466 51 55.45 52 61 63.36 51 98 55.14 51 86

minnesota 14 17.34 14 23 21.03 15 40 18.70 14 30

nasa4704 163 175.45 168 188 174.63 168 208 170.94 166 181

net25 510 676.32 641 714 546.63 510 990 528.05 510 621

netscience 0 0.16 0 5 0.00 0 0 0.00 0 0

netz4504 16 18.29 16 23 21.15 16 36 20.00 16 33

sherman1 18 30.70 29 50 21.52 18 30 20.56 18 27

sstmodel 20 24.85 22 40 25.99 20 37 24.31 20 34

USpowerGrid 8 9.13 8 16 18.84 8 35 12.31 8 23

yeast 137 212.37 177 236 165.14 153 178 147.33 137 158

Table 6.7

Vertex Separator Costs C(S) for UF graphs.
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Graph Best METIS HE BLP HE BLP HEFM

avg min max avg min max avg min max

ca-HepPh 583 754.23 668 839 657.29 583 706 678.05 591 736

email-Enron 426 687.12 604 804 484.94 426 578 481.25 436 583

email-EuAll 5 8.99 5 57 9.41 6 18 7.33 6 12

oregon2 010505 37 58.57 48 70 53.30 41 64 43.59 37 59

soc-Epinions1 2382 2975.27 2818 3078 2423.42 2382 2465 2529.81 2457 2576

web-NotreDame 132 399.97 270 518 431.95 132 543 415.45 134 505

web-Stanford 29 133.52 29 575 415.13 95 815 261.23 72 584

wiki-Vote 680 704.86 694 731 716.23 698 764 706.03 680 735

Graph Best METIS RM BLP RM BLP RMFM

ca-HepPh 583 767.56 683 851 674.28 621 720 683.55 625 745

email-Enron 426 709.29 650 839 496.20 451 547 487.84 440 574

email-EuAll 5 76.04 5 348 11.99 7 35 10.25 6 28

oregon2 010505 37 79.00 66 113 53.60 46 68 43.67 38 51

soc-Epinions1 2382 3072.42 2915 3224 2431.98 2399 2475 2529.72 2467 2572

web-NotreDame 132 437.77 274 611 462.24 190 567 419.79 136 489

web-Stanford 29 143.73 29 484 384.79 134 495 283.44 63 382

wiki-Vote 680 708.97 694 737 716.06 696 768 709.51 680 737

Table 6.8

Vertex Separator Costs C(S) for HTDD graphs.
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Graph Best METIS HE BLP HE BLP HEFM

avg min max avg min max avg min max

vsp barth5 1Ksep 50in 5Kout 987 1329.76 1131 1451 1546.57 1309 1767 1353.79 987 1640

vsp bcsstk30 500sep 10in 1Kout 528 752.65 552 1228 870.56 570 1510 830.00 550 1644

vsp befref fxm 2 4 air02 270 1072.63 989 1142 284.98 270 302 284.87 275 300

vsp bump2 e18 aa01 model1 crew1 3849 4306.55 4264 4343 3978.57 3903 4404 4024.77 3849 4411

vsp c-30 data data 453 510.31 453 594 555.38 475 656 513.32 460 605

vsp c-60 data cti cs4 2222 2600.78 2525 2684 2930.37 2354 3590 2826.26 2222 3589

vsp data and seymourl 1030 1253.12 1148 1341 1150.97 1097 1271 1084.40 1045 1258

vsp finan512 scagr7-2c rlfddd 4605 7438.78 7216 7697 4871.55 4776 5029 4692.32 4608 4798

vsp mod2 pgp2 slptsk 5739 5859.63 5809 5905 7434.46 5767 9711 6391.40 5739 9091

vsp model1 crew1 cr42 south31 1838 2216.08 2086 2631 2507.86 2424 2576 1971.33 1838 2013

vsp msc10848 300sep 100in 1Kout 279 648.16 279 929 723.60 343 1421 669.93 387 1209

vsp p0291 seymourl iiasa 511 536.25 532 542 516.66 511 528 521.60 513 528

vsp sctap1-2b and seymourl 3390 4114.48 3831 4373 3925.59 3732 4390 3715.86 3390 4134

vsp south31 slptsk 1971 2054.39 1982 2116 2328.52 2242 2567 2031.13 1971 2081

vsp vibrobox scagr7-2c rlfddd 2762 3467.55 3362 3613 2856.32 2801 2992 2867.30 2762 3050

Graph Best METIS RM BLP RM BLP RMFM

vsp barth5 1Ksep 50in 5Kout 987 1346.14 1043 1530 1549.01 1326 1818 1361.58 1123 1613

vsp bcsstk30 500sep 10in 1Kout 528 636.70 528 844 627.95 565 854 629.66 570 850

vsp befref fxm 2 4 air02 270 1464.03 1328 1584 288.35 274 314 285.45 275 303

vsp bump2 e18 aa01 model1 crew1 3849 4378.39 4280 4793 3986.52 3897 4389 4070.99 3894 4429

vsp c-30 data data 453 536.73 471 611 530.51 458 602 500.92 463 568

vsp c-60 data cti cs4 2222 2636.81 2384 2741 2869.78 2345 3545 2666.91 2226 3365

vsp data and seymourl 1030 1243.14 1091 1347 1139.91 1087 1207 1082.04 1030 1248

vsp finan512 scagr7-2c rlfddd 4605 7610.25 7400 7883 4975.58 4861 5170 4691.99 4605 4776

vsp mod2 pgp2 slptsk 5739 5884.52 5838 5925 6123.36 5776 8920 6605.61 5741 9133

vsp model1 crew1 cr42 south31 1838 2740.18 2558 2894 2508.41 2413 2581 1973.98 1926 2013

vsp msc10848 300sep 100in 1Kout 279 523.70 279 715 553.37 279 791 541.28 279 785

vsp p0291 seymourl iiasa 511 535.98 531 545 516.61 511 533 521.36 513 529

vsp sctap1-2b and seymourl 3390 4269.77 3884 4557 3921.85 3766 4030 3764.07 3418 4159

vsp south31 slptsk 1971 2416.25 2350 2498 2298.76 2205 2563 2033.78 1977 2082

vsp vibrobox scagr7-2c rlfddd 2762 4182.86 3995 5240 2878.12 2804 2995 2877.13 2789 2998

Table 6.9

Vertex Separator Costs C(S) for hard graphs.
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Graph Best METIS HE BLP HE BLP HEFM
avg min max avg min max avg min max

p2p-Gnutella04 1656 2055.11 1986 2103 1710.59 1675 1755 1697.08 1662 1738
p2p-Gnutella05 1306 1666.38 1629 1724 1369.70 1340 1404 1348.47 1306 1385
p2p-Gnutella06 1253 1605.98 1568 1653 1305.96 1265 1343 1291.29 1260 1327
p2p-Gnutella08 771 1009.10 976 1043 825.25 794 855 795.99 772 821
p2p-Gnutella09 975 1287.01 1253 1327 1044.83 1021 1081 1003.17 975 1038
p2p-Gnutella24 2463 3284.91 3203 3380 2728.58 2671 2781 2511.26 2467 2553
p2p-Gnutella25 2043 2761.52 2691 2836 2279.78 2227 2345 2089.72 2043 2143
p2p-Gnutella30 3016 4267.82 4094 4398 3320.50 3245 3422 3097.88 3035 3176
p2p-Gnutella31 4905 5985.32 5888 6184 5581.26 5460 5750 5002.65 4905 5081
Graph Best METIS RM BLP RM BLP RMFM
p2p-Gnutella04 1656 2140.50 2089 2200 1708.87 1673 1749 1696.39 1656 1742
p2p-Gnutella05 1306 1720.54 1687 1750 1369.40 1341 1407 1350.60 1324 1389
p2p-Gnutella06 1253 1689.01 1641 1727 1306.65 1275 1339 1290.61 1253 1318
p2p-Gnutella08 771 1042.30 1003 1075 825.46 795 857 794.54 771 822
p2p-Gnutella09 975 1328.33 1293 1367 1044.11 1010 1076 1003.04 981 1038
p2p-Gnutella24 2463 3617.52 3538 3685 2727.85 2670 2806 2514.59 2463 2563
p2p-Gnutella25 2043 3008.89 2931 3095 2276.96 2233 2335 2091.69 2046 2144
p2p-Gnutella30 3016 4692.64 4580 4798 3321.06 3239 3433 3093.14 3016 3184
p2p-Gnutella31 4905 6904.14 6619 7468 5571.38 5432 5712 5014.85 4929 5071

Table 6.10

Vertex Separator Costs C(S) for peer-to-peer networks.

Graph Best METIS RM BLP RM
avg min max avg min max

out.as-skitter 15006 20654.00 15006 23149 30834.29 26728 32380
out.com-amazon 4237 4470.61 4237 4644 5622.31 5386 5893
out.com-dblp 10600 10859.04 10600 11136 12762.98 11855 13848
out.com-youtube 16729 28355.39 26911 30371 17480.22 16729 18165
out.roadNet-CA 99 124.13 99 168 336.60 127 1222
out.roadNet-PA 109 128.90 109 155 343.11 131 865
out.roadNet-TX 59 77.41 59 130 248.71 74 533

Table 6.11

Vertex Separator Costs C(S) for Konect networks.
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% Improvement
Graph Type % BLP Wins avg min max
UF 35.00 0.10 -0.62 2.00
p2p 100.00 3.52 2.13 4.39
HTDD 62.50 0.84 -0.20 2.80
Hard 73.33 0.96 -0.63 8.33
Konect 14.29 -0.09 -0.60 0.96
Total 55.93 0.92 -0.63 8.33

Table 6.12

Comparison of separator costs C(S) obtained by BLP RM and METIS RM.

% Improvement
Graph Type % BLP Wins avg min max
UF 45.00 0.26 -0.50 2.75
p2p 100.00 4.04 3.02 4.57
HTDD 74.22 1.22 -0.11 3.36
Hard 77.81 1.33 -0.08 8.35
Total 68.48 1.37 -0.50 8.35

Table 6.13

Comparison of separator costs C(S) obtained by BLP RMFM and METIS RM.

% Improvement
Graph Type % BLP Wins avg min max
UF 30.00 -0.02 -0.57 1.16
p2p 100.00 2.59 0.65 3.44
HTDD 50.00 0.67 -0.30 2.41
Hard 46.67 0.38 -1.55 5.58
Total 50.00 0.65 -1.55 5.58

Table 6.14

Comparison in separator costs C(S) obtained by BLP HE and METIS HE.

% Improvement
Graph Type % BLP Wins avg min max
UF 40.00 0.17 -0.67 1.92
p2p 100.00 3.11 1.57 3.61
HTDD 62.50 0.66 -0.10 2.13
Hard 60.00 0.75 -0.52 5.58
Total 59.62 0.92 -0.67 5.58

Table 6.15

Comparison of separator costs C(S) obtained by BLP HEFM and METIS HE.
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BLP RM METIS RM
Graph Type avg geomean min max avg geomean min max
UF 0.56 0.34 0.03 3.08 0.01 0.00 0.00 0.12
p2p 36.08 14.99 1.48 276.09 0.16 0.13 0.05 0.49
HTDD 18.34 7.64 0.64 104.82 0.13 0.08 0.01 0.55
Hard 88.59 32.23 1.58 719.48 0.28 0.21 0.05 0.84
Konect 9258.19 5989.74 689.58 27888.17 334.55 4.97 0.63 2702.44
Total 1264.62 10.44 0.03 27888.17 44.72 0.00 0.00 2702.44

Table 6.16

CPU times (in seconds) for each algorithm on different graph types.


