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RELAXATION-BASED COARSENING AND MULTISCALE GRAPH
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Abstract. In this paper we generalize and improve the multiscale organization of graphs by
introducing a new measure that quantifies the “closeness” between two nodes. The calculation of
the measure is linear in the number of edges in the graph and involves just a small number of
relaxation sweeps. A similar notion of distance is then calculated and used at each coarser level.
We demonstrate the use of this measure in multiscale methods for several important combinatorial
optimization problems and discuss the multiscale graph organization.
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1. Introduction. A general approach for solving many large-scale graph prob-
lems, as well as most other classes of large-scale computational science problems, is
through multilevel (multiscale, multiresolution, etc.) algorithms. This approach gen-
erally involves coarsening the problem, producing from it a sequence of progressively
coarser levels (smaller, hence simpler, related problems), then recursively using the
(approximate) solution of each coarse problem to provide an initial approximation to
the solution at the next-finer level. At each level, this initial approximation is first
improved by what we generally call “local processing” (LP). This is an inexpensive
sequence of short steps, each involving only a few unknowns, together covering all
unknowns of that level several times over. The usual examples of LP are a few sweeps
of classical (e.g., Gauss–Seidel or Jacobi) relaxation in the case of solving a system of
equations, or a few Monte Carlo passes in statistical-physics simulations. Following
the LP, the resulting approximation may be further improved by one or several cy-
cles, each using again a coarser-level approximation followed by LP, applying them at
each time to the residual problem (the problem of calculating the error in the current
approximation). See, for example, references [6, 7, 11, 12, 13, 14, 38, 42].

At each level of coarsening one needs to define the set of coarse unknown variables
and the equations (or the stochastic relations) that they should satisfy (or the energy
that they should minimize). Each coarse unknown is defined in terms of the next-
finer-level unknowns (defined, not calculated: they are all unknowns until the coarse
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408 DORIT RON, ILYA SAFRO, AND ACHI BRANDT

level is approximately solved and the fine level is interpolated from that solution).
The following are examples:

• The set of coarse unknowns can simply represent a chosen subset of the fine-
level set.
• If the fine-level variables are real numbers or vectors, each coarse variable can
represent a weighted average of several of them.
• If the fine-level variables are Ising spins (having only values of +1 or −1),
each coarse variable can again be an Ising spin, representing the sign of the
sum of several fine spins.
• A coarse variable can be defined from several fine variables by a stochastic
process ([5], for example).
• In the case of graph problems, each node of the coarse graph can represent
an aggregate of several fine-level nodes or a weighted aggregate of such nodes,
that is, allowing each fine-level node to be split between several aggregates.

The choice of an adequate LP at a fine level and the choice of an adequate
set of variables at the next-coarser level are strongly coupled. The general guiding
rule [10] is that this pair of choices is good if (and to the extent that) a fine-level
solution can always be recovered from the corresponding set of coarse variables by
a short iterative use of a suitably modified version of the LP. That version is called
compatible LP (CLP). Examples are compatible Monte Carlo (CMC), introduced in
[13], and compatible relaxation (CR), introduced in [8].

The CLP, needed in several important upscaling procedures (such as the selec-
tion of the coarse variables, the acceleration of the fine-level simulations, and the
processing of fine-level windows within coarse simulations; see [10]) can also be used
for performing the interpolation from the coarse solution to obtain the first approxi-
mation at the fine level. When possible, however, the construction of a more explicit
interpolation is desired in order to apply it for the direct formulation of equations (or
an energy functional) that should govern the coarse level, as in Galerkin coarsening.

In the process of defining the set of coarse variables and in constructing an explicit
interpolation, it is important to know how “close” two given fine-level variables are
to each other at the stage of switching to the coarse level. We need to know, in other
words, to what extent the value after the LP of one variable implies the value of the
other. If they are sufficiently close, they can, for example, be aggregated to form a
coarse variable.

The central issue addressed in the present article is how to measure this “close-
ness” between two variables in a system of equations or between two nodes in a given
graph. (We consider the latter to be a special case of the former, by associating the
graph with the system formed by its Laplacian.) More generally, we want to define
the distance of one variable xi from a small subset S of several variables, in order to
measure how well xi can be interpolated from S following the LP.

In classical algebraic multigrid (AMG), aimed at solving the linear system

(1.1) Ax = b or

n∑
j=1

aijxj = bi , (i = 1, . . . , n),

the closeness of two unknowns xi and xj is measured simply by the relative size of
their coupling aij , for example, by the quantity

(1.2) |aij |/max

(∑
k

|aik|,
∑
k

|akj |
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RELAXATION-BASED GRAPH COARSENING 409

(or similarly by the relative size of their coupling in some power of A). Although this
definition has worked well for the coarsening procedures of discretized scalar elliptic
differential equations, it is not really effective, and sometimes meaningless, for systems
lacking sufficient diagonal dominance (including many discretized nonscalar elliptic
systems). Moreover, even for systems with a fully dominant diagonal (such as the
Laplacian of a graph), the classical AMG definition may result in wrong coarsening,
for example, in graphs with nonlocal edges (see example in section 3).

Instead, we propose to define the “closeness” between two variables exactly, by
measuring how well their values are correlated at the coarsening stage, namely, follow-
ing the LP relaxation sweeps. Since the coarse level is actually applied to the residual
system, the two variables will be considered close if their errors have nearly the same
ratio in all relaxed vectors. We will thus create a sequence of K normalized relaxed er-
ror vectors x(1), . . . , x(K), each obtained by relaxing the homogeneous system Ax = 0
from some (e.g., random) start and then normalizing the result. We will then define the
algebraic distance (reciprocal of “closeness”) between any two variables xi and xj as

(1.3) minη

( K∑
k=1

|ηx(k)
i − |η−1|x(k)

j |p
)1/p

,

where p ≥ 2 in order to attach larger weights to larger differences (using usually either
p = 2 or the maximum norm (p → ∞)). This use of η gives a symmetric measure of
how well xi can be interpolated from xj or vice versa. For the graph Laplacian (and
other zero-sum A) this can be simplified to a distance defined as

(1.4)

( K∑
k=1

(x
(k)
i − x

(k)
j )2

)1/2

or
K

max
k=1

∣∣∣x(k)
i − x

(k)
j

∣∣∣ .
The algebraic distance defined by (1.4) measures how strongly in the graph any pair of
nodes i and j is connected, not just directly, but possibly even more indirectly, through
their common neighbors, neighbors of neighbors, etc. Starting from a random vector
and applying a small number of relaxation sweeps, it is expected that in case i and j are
strongly connected, their values in the relaxed vector will be similar. Such a similarity
can accidentally occur also between two nodes which are not strongly connected to
each other in the graph, due to the random initialization. However, since we use sev-
eral such test vectors, it is not likely that such an accidental similarity will occur in all
of them. In other words, similarity of all values between two nodes (hence small value
in (1.4)) indicates they are strongly (directly and indirectly) connected. Conversely,
it is enough that one vector results with a large difference between the values of two
nodes to conclude that they are not strongly coupled. In our coarsening procedure, the
algebraic distance main function is to avoid aggregating together two nodes that seem
to be strongly coupled (having a large weight on their connecting edge) but actually
are far apart (having very different sets of neighbors, hence weak algebraic coupling),
as occurs, for example, in the graph in Figure 3.1: (as shown in Table 3.1 for K = 10,
r = 20, or 50 and wij = 2) the coupling between i and j, which seems to be twice as
strong as all other couplings in the graph, turns out to be half the strength of other
couplings of either i or j when measured by the algebraic distance proposed here.

More generally, the distance of a node i from a subset S of several nodes can sim-
ilarly be defined as the deviation of the best-fitted interpolation from S to i, where
the deviation is the L2 norm of the vector of K errors obtained upon applying the
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410 DORIT RON, ILYA SAFRO, AND ACHI BRANDT

interpolation to our K normalized relaxed error vectors, and the best-fitted inter-
polation is the one having the minimal deviation. (This least-square interpolation
is the one introduced in bootstrap AMG (BAMG) [9] for the coarse-to-fine explicit
interpolation.)

An essential aspect of the “algebraic distance” defined here is that it is a crude
local distance. It measures meaningful closeness only between neighboring nodes; the
closer they are the less fuzzy is their measured distance. For nodes that should not
be considered as neighbors, their algebraic distance just detects the fact that they are
far apart; its exact value carries no further meaning. The important point is that this
crude local definition of distance is fast to calculate and is all that is required for the
coarsening purposes. A similar notion of distance is then similarly calculated at each
coarser level.

Indeed, we argue that meaningful distances in a general graph should, in princi-
ple, be defined (not just calculated) only in such a multiscale fashion. This essential
viewpoint, and relations to diffusion distances and spectral clustering are discussed in
section 5. In particular, we advocate the replacement of spectral methods by AMG-
like multilevel algorithms, which are both faster and more tunable to define better
solutions to many fuzzy graph problems (see, for example, [41, 42]).

The paper is organized as follows. The graph problems we use to demonstrate our
approach are introduced in section 2. The calculation of the “algebraic distance” and
its use within the multiscale algorithm is described in section 3. Results of tests are
summarized in section 4. Finally, the relations of our approach to diffusion distances
and spectral clustering are discussed in section 5.

2. Notation and problem definitions. Given a weighted graph G = (V, E),
where V = {1, 2, . . . , n} is the set of nodes (vertices) and E is the set of edges, denote
by wij the nonnegative weight (coupling) of the undirected edge ij between nodes
i and j; if ij /∈ E, then wij = 0. We consider as our examples the following two
optimization problems.

2.1. Linear ordering. Let π be a bijection

π : V −→ {1, 2, . . . , n}.
The purpose of linear ordering problems is to minimize some functional over all pos-
sible permutations π. The following functional should be minimized for the minimum
p-sum problem1 (MpSP):

(2.1) σp(G, π) =
∑
ij

wij |π(i)− π(j)|p.

In the generalized form of the problem that emerges during the multilevel solver, each
vertex i is assigned with a volume (or length), denoted vi. Given the vector of all
volumes, v, the task now is to minimize the cost

σp(G, π, v)
def
= σp(G, x) =

∑
ij

wij |xi − xj |p,

where xi =
vi
2 +

∑
k,π(k)<π(i) vk; that is, each vertex is positioned at its center of

mass, capturing a segment on the real axis that equals its length. The original form

1We use this definition for simplicity. The usual definition of the functional is σp(G, π) =
(
∑

ij wij |π(i)− π(j)|p)1/p, which yields the same minimization problem.
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RELAXATION-BASED GRAPH COARSENING 411

of the problem is the special case where all the volumes are equal. In particular,
we would like to concentrate on the minimum linear arrangement (where p = 1)
and the minimum 2-sum problem (M2SP) that were proven to be nondeterministic
polynomial time complete (NP-complete) in [22, 24] and whose solutions can serve as
an approximation for many different linear ordering problems replacing the spectral
approaches [41, 42].

2.2. Partitioning. The goal of the 2-partitioning problem is to find a partition
of V into two disjoint nonempty subsets Π1 and Π2 such that

(2.2) minimize
∑

i∈Π1,j∈Π2

wij subject to |Πk| ≤ (1 + α) · |V |
2

, (k = 1, 2),

where α is a given imbalance factor.
Graph partitioning is an NP-hard problem [23] used in many fields of computer

science and engineering. Applications include VLSI design, minimizing the cost of
data distribution in parallel computing, and optimal tasks scheduling. Because of its
practical importance, many different heuristics (spectral [36], combinatorial [31, 21],
evolutionist [15], etc.) have been developed to provide an approximation in a reason-
able (and, one hopes, linear) computational time. However, only the introduction of
multilevel methods for partitioning [30, 35, 2, 34, 45, 3, 37, 4, 27, 29, 1] has really
provided a breakthrough in efficiency and quality.

3. The coarsening algorithm. In the multilevel framework a hierarchy of de-
creasing size graphs G0, G1, . . . , Gk is constructed. Starting from the given graph,
G0 = G, we create by recursive coarsening the sequence G1, . . . , Gk, and then solve
the coarsest level directly, and uncoarsen the solution back to G.

In general, the AMG-based coarsening is interpreted as a process of weighted
aggregation of the graph nodes to define the nodes of the next-coarser graph. In
weighted aggregation each node can be divided into fractions, and different fractions
belong to different aggregates. The construction of a coarse graph from a given one
is divided into three stages. First a subset of the fine nodes is chosen to serve as the
seeds of the aggregates (the nodes of the coarse graph). Then the rules for aggregation
are determined, thereby establishing the fraction of each nonseed node belonging to
each aggregate. Finally, the graph couplings (or edges) between the coarse nodes are
calculated. The entire coarsening scheme is shown in Algorithm 1.

The AMG-based multilevel framework for graph optimization problems is dis-
cussed, for example, in [42]. In the present work we generalize the coarsening part of
the AMG-based framework. The problem-dependent solution of the coarsest level and
the uncoarsening are not changed here. They are fully described in [42] and references
therein.

The principal difference between the previous AMG-based coarsening approaches
[42, 28, 17] and the new relaxation-based approach is the improved measure, the al-
gebraic coupling, assigned to each edge, or, more generally, between any two nodes in
the graph. The algebraic coupling is the reciprocal of the calculated algebraic distance
introduced below.

Algebraic distance and coupling. We start with a simple example which
illustrates the need for an improved measure while coarsening. Consider Figure 3.1:
one additional edge ij (connecting nodes i and j) is added to a regular two dimensional
mesh. The usual set of seeds chosen by some AMG-based criterion (see, for example,
Algorithm 2) will include about half of the nodes, roughly, those which belong to one
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412 DORIT RON, ILYA SAFRO, AND ACHI BRANDT

j

i q

Fig. 3.1. Mesh graph with an additional edge between nodes i and j. The black dots mark some
of the nodes selected to serve as the seeds of the coarse aggregates; see Algorithm 2.

color of a red-black chess board; see, for instance, the five black dots in the figure. The
main question is then to which of those five seeds should node i be aggregated. Clearly,
nodes i and j should not belong to the same aggregate unless their coupling is much
stronger than other graph couplings. However, if the weight of ij is just somewhat
larger than all other graph edges, node i will tend to be aggregated with node j, rather
than with any of its immediate geometric neighbors. Such a decision will create bad
coarse-level approximations in many optimization problems (e.g., linear ordering and
partitioning). Moreover, at the next-coarser levels the approximation may further
deteriorate by making similar wrong decisions, making the entire neighborhood of
i close to j, thereby promoting linear arrangements in which many local couplings
would unnecessarily become long-range ones. To prevent this situation we would like
to have a measure that not only evaluates the coupling between i and j according
to the direct coupling between them but also takes into account the contribution of
connections between the neighborhoods of i and j. In other words, if i and j are not
only connected directly, but are also connected via other nodes so that they can be
reached from each other by a short path (with only a small number of intermediate
nodes), the coupling between them should be stronger than if i and j are connected
only directly, while all other possible paths are much longer. Thus, it is clear that
the new measure should indicate that the coupling between i and j is in fact weaker
than the coupling of i to its immediate neighbor (e.g., q). That is, if the immediate
(graph) neighbors of i are connected to those of j, the coupling between i and j should
be enhanced, while if i’s neighbors are not connected to those of j, as in Figure 3.1,
a significant weakening of the ij coupling is due. This measure will prevent possible
errors while coarsening. As presented below (in Table 3.1) the new calculated coupling
of node i to q turned out to be almost twice as strong as the coupling to j even with
wiq = 1 and wij = 2 (using K = 10 and r = 20).

We introduce the notion of algebraic distance, which is based on the same set of
test vectors (TVs) being used in the BAMG [9]. The key new ingredient of the adaptive
BAMG setup is the use of several TVs, collectively representing algebraically smooth
error, to define the interpolation weights. When a priori knowledge of the nature of
this error is not available, slightly relaxed random vectors are used for this task. A set
of some K low-residual TVs {x(k)}Kk=1 can first be obtained by relaxation. Namely,
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Table 3.1

Statistical results (over 100 runs) for the average (and, in parentheses, the standard deviation)
of ln(dij/di∗) (see 3.6), calculated with K TVs and r Jacobi relaxation sweeps for different relative
strengths of wij.

wuv = 1 for (u, v) nearest neighbors
K r wij = 1 wij = 2 wij = 3 wij = 4

1

10 2.47(1.51) 1.88(1.74) 1.38(1.85) 1.14(1.69)
20 2.74(1.74) 2.1(1.59) 1.4(1.26) 1.44(1.59)
50 2.65(1.36) 1.98(1.76) 1.92(1.41) 1.5(1.59)
100 3.03(1.72) 2.14(1.32) 1.51(1.42) 1.16(1.78)

5

10 1(0.502) 0.628(0.416) 0.24(0.417) -0.0484(0.397)
20 1.34(0.442) 0.825(0.415) 0.435(0.358) 0.208(0.332)
50 1.68(0.342) 1.04(0.338) 0.643(0.306) 0.362(0.296)
100 1.78(0.467) 1.06(0.392) 0.743(0.369) 0.396(0.359)

10

10 0.821(0.281) 0.443(0.294) 0.022(0.293) -0.244(0.313)
20 1.09(0.268) 0.624(0.239) 0.298(0.235) 0.0126(0.253)
50 1.49(0.263) 0.86(0.235) 0.504(0.226) 0.2(0.204)
100 1.69(0.315) 1.01(0.275) 0.572(0.264) 0.285(0.271)

each x(k) is a result of r fine-level relaxation sweeps on the homogeneous equation
Ax = 0, starting from a random approximation, where A is the Laplacian of the
graph. In particular, we have used a small number (usually r=10) of Jacobi under
relaxation sweeps with ω = 0.5. That is, the new value for each x(k), k = 1, . . . ,K (in
our tests K = 20) is

(3.1) x
(k)
NEW = (1 − ω)x(k) + ωx

(k)
JAC ,

where

(3.2) x
(k)
JAC = D−1(D −A)x(k),

D being the diagonal of A. The algebraic distance from node i to node j is defined
over the K relaxed TVs by

(3.3) dij =
K

max
k=1

∣∣∣x(k)
i − x

(k)
j

∣∣∣ .
Other definitions, such as

(3.4) dij =

K∑
k=1

(
x
(k)
i − x

(k)
j

)2

are also possible. Hence, only if dij is small may nodes i and j be aggregated into
the same coarse node. The algebraic coupling between i and j, cij is defined as the
reciprocal of dij :

(3.5) cij = 1/dij .

We return to the example in Figure 3.1 and demonstrate the outcome of definition
(3.3). We show that (a) i will not tend to be connected to j unless wij equals the sum
of i’s other couplings, (b) K, the number of the relaxed TVs, should be larger than 1,
and (c) that even if i is connected to j as a result of strong wij , i’s other neighbors
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Data: Q , ν
Result: coarse graph
For every edge ij derive its algebraic distance dij (3.3) or (3.4) and algebraic
coupling cij (3.5);
SelectCoarseNodes(Q , ν);
Define the coarse graph using the matrix P in (3.9).

Algorithm 1: Coarsening scheme

will not tend to be connected to i as well but will prefer other neighbors; hence the
neighborhoods of i and j will not tend to be connected to each other.

(a) Consider Table 3.1. The numberK of TVs is given in the leftmost column. The
number r of Jacobi relaxation sweeps varies from 10 to 100 as shown in the second to
the left column. Each of the four columns to the right presents the (natural) logarithm
of dij/di∗, where

(3.6) di∗ = min{dis|s a nearest neighbor of i}.

Each number is averaged over 100 independent runs (obtained by random initialization
of the TVs using different reordering of the graph nodes), for graph couplings wuv = 1
when u and v are nearest neighbors, and wij = 1, 2, 3, or 4 as shown. The numbers
in parentheses are the corresponding standard deviations. Clearly the strength of the
coupling between i and j is relatively decreased when measured by the algebraic
distance. For instance, if the graph coupling between i and j is 1 (as are all other
couplings in the graph), then after 20 relaxation sweeps (with K = 10) dij is three
times bigger than the minimum of the (algebraic distance of the) edges to i’s four
nearest neighbors. Thus, the algebraic coupling between i and j is not the strongest
coupling of i (not even close to it), and hence it is guaranteed that i and j will not
belong to the same coarse node.

(b) The importance of using more than just 1 TV can be seen from the values of
the standard deviations: the use of 1 TV results in standard deviations similar to the
average, which means that ln(dij/di∗) has a significant chance to become negative, so
ij has a significant chance to be the strongest coupling of i. With 10 TVs this chance
becomes much smaller, at least for wij ≤ 2. Even with 10 TVs, however, the chance
grows with the strength of wij , becoming more than 50% roughly when wij ≥ 4. Thus,
the aggregation of i with j becomes likely. This by itself is fine and justified. What
we really need to avoid is that entire neighborhoods of i and j will, as a result, be
aggregated at some coarser level.

(c) In the case that i is aggregated with j we want to check whether the neighbors
of i will tend to be aggregated with i (and thus also with j) or will prefer their other
neighbors. To see that we calculate the (natural) logarithm of dqi/dqi∗, where

(3.7) dqi∗ = min{dqs|s a nearest neighbor of q other than i}.

As shown in Table 3.2, q would rather be aggregated with one of its other-than-i
neighbors. For example, for K = 10, r = 20, and wij = 4 out of the 100 runs, in 95 q
would have been connected with i. The main conclusion is that nodes i and j do not
tend to be connected as long as wij is smaller than the sum of all other couplings of
i or of j. When the coupling is of the same strength, they will be connected about
half the time, but then, not less importantly, the neighbors of i (and similarly of j)
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Table 3.2

Statistical results (over 100 runs) for the average (and, in parentheses, the standard deviation)
of ln(dqi/dqi∗) (see Figure 3.1 and (3.7)), calculated with K TVs and r Jacobi relaxation sweeps
for different relative strengths of wij .

wuv = 1 for (u, v) nearest neighbors
K r wij = 1 wij = 2 wij = 3 wij = 4

1

10 0.975(1.67) 0.939(1.7) 1.14(1.63) 1.07(1.89)
20 0.911(1.62) 1.09(1.31) 1.02(1.46) 0.931(1.64)
50 1.37(1.77) 1.14(1.79) 1.28(1.49) 1.24(1.45)
100 0.897(1.55) 1.23(1.45) 1.29(1.53) 1.31(1.44)

5

10 0.382(0.534) 0.482(0.428) 0.416(0.52) 0.587(0.487)
20 0.434(0.444) 0.472(0.366) 0.592(0.486) 0.663(0.458)
50 0.498(0.436) 0.755(0.53) 0.784(0.526) 0.813(0.455)
100 0.501(0.522) 0.746(0.544) 0.812(0.549) 0.816(0.535)

10

10 0.283(0.312) 0.299(0.316) 0.376(0.307) 0.401(0.357)
20 0.362(0.281) 0.419(0.295) 0.449(0.288) 0.441(0.327)
50 0.448(0.311) 0.531(0.35) 0.672(0.351) 0.604(0.333)
100 0.464(0.377) 0.682(0.348) 0.839(0.374) 0.749(0.39)

will not tend to join them but will prefer to be connected to other nearest neighbors
nodes. Similar results are obtained when using (3.4) to calculate dij .

With the notion of the algebraic coupling in mind, the coarse nodes selection and
the calculation of the aggregation weights are modified as follows.

Seed selection. The construction of the set of seeds C and its complement F
is guided by the principle that each F -node should be “strongly coupled” to C. We
will include in C nodes with exceptionally large volume or nodes expected (if used as
seeds) to aggregate around them an exceptionally large total volume of F -nodes. We
start with C = ∅—hence F = V—and then sequentially transfer nodes from F to C
as follows. As a measure of how large an aggregate seeded by i ∈ F might grow, we
define its future volume ϑi by

(3.8) ϑi = vi +
∑
ij∈E

vj · cji∑
jk∈E cjk

.

Nodes with future volume larger than ν times the average of the ϑi’s are first trans-
ferred to C as most “representative” (in our tests ν = 2). The insertion of additional
F -nodes to C depends on a “strength of coupling to C” threshold Q (in our tests
Q = 0.5), as specified in Algorithm 2.

Data: Q, ν
Result: set of seeds C
C ← ∅, F ← V ;
Calculate ϑi (3.8) for each i ∈ F , and their average ϑ;
C ←nodes i with ϑi > ν · ϑ;
F ← V \ C;
forall i ∈ F in descending order of ϑi do

if (
∑

j∈(C∩N(i)) cij/
∑

j∈N(i) cij) ≤ Q or

(
∑

j∈(C∩N(i)) wij/
∑

j∈N(i) wij) ≤ Q then move i from F to C;

end

Algorithm 2: SelectCoarseNodes(Q, ν)
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Coarse nodes. Each node in the chosen set C becomes the seed of an aggregate
that will constitute one coarse-level node. Next it is necessary to determine for each
i ∈ F a list of j ∈ C to which i will belong. Define caliber, l, to be the maximal
number of C-points allowed in that list. The selection we propose here is based on
both measures: the graph couplings wij ’s and the algebraic couplings cij ’s. Define

for each i ∈ F a coarse neighborhood ¯̄NC(i) = {j ∈ C : ij ∈ E}. Set D to be the

maximal cij in ¯̄NC(i). Construct a possibly smaller coarse neighborhood by including

only nodes with strong algebraic coupling N̄C(i) = {j ∈ ¯̄NC(i) : cij ≥ β ∗D}; we use
β = 0.5. If N̄C(i) > l, then the final coarse neighborhood NC(i) will include the first
l largest wij ’s in N̄C(i). If N̄C(i) ≤ l, then NC(i)← N̄C(i). This construction of the
coarse neighborhood NC(i) of i ∈ F is summarized in Algorithm 3. (In the results
below we have used only l = 1 and l = 2.) The classical AMG interpolation matrix P
(of size |V | × |C|) is then defined by

(3.9) Pij =

⎧⎪⎨
⎪⎩

wij/
∑

k∈NC(i)

wik for i ∈ F, j ∈ NC(i),

1 for i ∈ C, j = i,
0 otherwise.

Pij represents the fraction of i that will belong to the jth aggregate.

Data: l, i, β
¯̄NC(i)← {j ∈ C : ij ∈ E};
D = maxj∈ ¯̄NC(i)cij ;

N̄C(i) = {j ∈ ¯̄NC(i) : cij ≥ β ∗D};
if l < |N̄C(i)| then

NC(i)← the l largest wij ’s in N̄C(i);

if l ≥ |N̄C(i)| then
NC(i)← N̄C(i).

Algorithm 3: The coarse neighborhood NC(i)

Coarse graph couplings. The coarse couplings are constructed as follows. Let
I(k) be the ordinal number in the coarse graph of the node that represents the aggre-
gate around a seed whose ordinal number at the fine level is k. Following the weighted
aggregation scheme used in [43], the edge connecting two coarse aggregates, p = I(i)

and q = I(j), is assigned with the weight w
(coarse)
pq =

∑
k �=l PkiwklPlj . The volume of

the ith coarse aggregate is
∑

j vjPji. Note that if the given graph is connected, it is
guaranteed that the coarse graph will also be connected.

4. Computational results. We demonstrate the power of our new relaxation-
based coarsening scheme by comparing its experimental results with those of the
classical AMG-based coarsening for three important NP-hard optimization problems:
the M2SP ((2.1) with p = 2), the minimum linear arrangement ((2.1) with p = 1),
and the minimum 2-partitioning (2.2) problems. In all cases the results are obtained
by taking the lightest possible uncoarsening schemes, so that differences due to the
different coarsening schemes are least blurred.

We have implemented and tested the new coarsening scheme by using the linear
ordering packages developed in [41] and in [40] and the Scotch package [35] on a
Linux machine. The implementation is nonparallel and has not been optimized. The
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results should be considered only qualitatively and can certainly be improved by more
advanced uncoarsening. Thus, no intensive attempt to achieve the best known results
for the particular test sets was done. The details regarding the uncoarsening schemes
for the above problems are given in [41, 40, 17].

4.1. The minimum p-sum problem. We present the numerical comparison
for two MpSPs: the M2SP and the minimum linear arrangement. For these problems
we have designed a full relaxation-based coarsening solver and evaluated it on a test set
of 150 graphs of different nature, size (|V | ≤ 5·106 and |E| ≤ 107), and properties. The
test graphs are taken from [19] and from real-life network data such as social networks,
power grids, and peer-to-peer connections. Our solvers are free and can be downloaded
with detailed solutions for every graph from [39]. To emphasize the difference in the
minimization results between the two coarsening schemes (the relaxation-based and
the classical AMG-based schemes), we measure the results obtained at the end of
the multilevel cycle before the final local optimization postprocessing (Gauss–Seidel
relaxation and the LP in [41, 40]), as well as after its application. Moreover, we use
small calibers, l = 1, 2, since these demonstrate more sharply the quality of matching
between the F -points and the C-points. For higher calibers it is also important to
use the adaptive BAMG scheme [9] for calculating the interpolation weights, which is
beyond the scope of this work. Small calibers are important for maintaining the low
complexity of the multilevel framework, which is vital, for example, for hypergraphs
and expanders.

The minimum 2-sum problem (M2SP). A comparison of the relaxation-
based and AMG-based coarsenings with calibers 1 and 2 is presented in Figures 4.1(a)
and 4.1(b), respectively. Each x-axis scale division corresponds to one graph from the
test set. The y-axis corresponds to the ratio between the average cost obtained by 100
runs of the AMG-based coarsening and the one obtained by 100 runs of the relaxation-
based coarsening. (To obtain different results for a given graph we have reordered
the nodes. That is, while coarsening the nodes are scanned in different orders. This
reordering affects the set of seeds being chosen for the next coarse level and thus
the entire coarsening itself.) Each figure contains two curves: the dashed curves with
cost measurements before applying the postprocessing of local optimization (e.g.,
Gauss–Seidel relaxation, window minimization [41]) and the regular curves with cost
measurements after adding such optimization steps. Clearly most graphs benefit from
the relaxation-based coarsening, showing a ratio greater than 1. The ratio decreases
when more optimization is used, especially since the Gauss–Seidel relaxation is a
powerful algorithmic component for this problem and thus brings the results of the
two coarsening schemes closer to each other as is indicated by the regular curves.
All these results were obtained with K = 10 TVs. When we lowered K to 5, we
observed no significant change in the results. Our number of Jacobi overrelaxation
sweeps r = 20 cannot be reduced by more than twice since this relaxation scheme
is expected to evolve slowly. The detailed analysis of the convergence properties is
presented in [16].

The minimum linear arrangement problem. Similarly to the previous prob-
lem, we designed a relaxation-based solver and established a series of experiments
for the minimum linear arrangement problem. The experimental setup was identical
to that of the M2SP. It was based on the solver designed in [40]. In this case we
can observe even more significant improvement when employing the relaxation-based
coarsening than for the M2SP.
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Fig. 4.1. Results for the M2SP.
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Fig. 4.2. Results for the minimum 1-sum (linear arrangement) problem.

Which graphs are most beneficial? It is remarkable that the most beneficial
graphs in our test set come from VLSI design and general optimization problems. We
know that these graphs are very irregular (compared, for example, with finite-element
graphs and with those that pose 2D/3D geometry). Thus, we may conclude that the
algebraic couplings help to identify the weakness of nonlocal connections and prevent
them from being aggregated. In several examples, we achieved the best known results
with caliber 1, while using classical AMG-based approaches they can be achieved with
bigger calibers only.

An algebraic coupling-based algorithm.We have also tried a straightforward
algorithm in which, during coarsening, the weights of the graph are simply replaced
by their algebraic couplings. That is, in the if statement at the end of Algorithm 2,
only the first term is taken into account (namely, (

∑
j∈(C∩N(i)) cij/

∑
j∈N(i) cij) ≤ Q).

Similarly, in Algorithm 3, wij (in the first if) is replaced by cij . We present the compar-
ison of the obtained simple algebraic coupling-based coarsening scheme with the mixed
scheme described in Algorithms 2 and 3 and in Figure 4.3. The comparison was done
for the M2SP including postprocessing (of local optimization) using the same exper-
imental setup. The bold curve corresponds to the ratios between the classical AMG-
based results and the simple algebraic coupling-based coarsening scheme. To see the
difference between this algorithm and the more elaborate one, we add a copy of its re-
sults, that is, the bold curve from Figure 4.1(a). The mixed version is clearly better: in
about 25 more graphs the results are improved. The average improvement was 1.5%.
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Fig. 4.3. Results for the M2SP. Comparison of the algebraic distance based only and mixed full
relaxation-based algorithms.
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Fig. 4.4. Results for the minimum 2-partitioning problem.

4.2. The minimum 2-partitioning problem. We compared the relaxation-
based coarsening and the classical AMG-based coarsening by combining two packages.
The coarsening part was the same as in the MpSPs. The uncoarsening was based on
the Scotch package; details of its fastest version can be taken from [17].

The comparison of the relaxation-based and the AMG-based coarsenings with
caliber 1 is presented in Figure 4.4. The interpretation of x- and y-axes is similar to
Figure 4.1. Included are 15 graphs of different nature and size. The details regarding
the numerical results can be obtained from [39]. The four best ratios are obtained for
graphs with power-law degree distributions. More results for the graph and hypergraph
partitioning problems are reported in [16]. Even though the algorithm used there
only substitutes the original given couplings by their algebraic couplings, it is already
clear that better results are observed for most tested instances of both graphs and
hypergraphs.

4.3. Running time. The implementation of stationary iterative processes and
their running times is a well studied issue. These topics are beyond the scope of
this paper; we refer the reader to two books in which one can find discussions about
sequential and parallel matrix-vector multiplications and general relaxations [25, 26].
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Typical running time of an AMG-based framework for linear ordering problems on
graphs can be found in [40, 41, 42]. The introduction of the algebraic distance did not
increase significantly those running time estimations.

5. Multiscale distance definition and hierarchical organization. As men-
tioned in the introduction, the algebraic distance defined above is only a crude local
distance, measuring meaningful relative distances only between neighboring nodes
while also detecting which nodes should not be considered as close neighbors. This
fuzzy local distance, which can be calculated rapidly, is all we need for coarsening.
A similar distance is then calculated at each coarser level, thus yielding a multiscale
definition of distances through the entire graph, where at large distances one defines
the distances only between (usually large) aggregates of nodes, not between any indi-
vidual pair of distant nodes. Such multiscale distances are not only far less expensive
to calculate: we next list several reasons why, in principle, distances in a general large
graph should be defined better in such a multiscale fashion.

• At large distances the detailed individual distances (the exact travelling time
from each house in Baltimore to each house in Boston, say) are usually not
of interest.
• The distance in a general graph is a fuzzy notion, whose definition is to a
certain extent arbitrary. Consider two neighboring nodes a and b and a third
node c which is far from both. The difference between the distances between
a and c and between b and c is not really meaningful for a few reasons: it will
come out differently when measured by two different legitimate distance defi-
nitions, and it might change by much when a slight change is introduced into
the graph data (e.g., into its edge weights), or upon inaccurately solving the
equations that define these distances (e.g., when measuring diffusion maps;
see below).
• The most important reason is that at different scales different factors should
in principle enter into the distance definition. In particular, at increasingly
larger distances, intrinsic properties of increasingly larger aggregates should
play a progressively more important role. For example, in image segmentation,
while at the finest level the “closeness” of two neighboring pixels (i.e., their
chance to belong to the same segment) can be defined by their color similarity,
at larger scales the closeness of two neighboring patches should be defined in
terms of the similarity in their average color (which is different from the direct
color similarity of neighboring pixels along the boundary between the patches)
and also in terms of similarity in various texture measures (color variances,
shape moments of subaggregates, average orientation of fine embedded edges,
etc.) and other aggregative properties [43, 44]. Another example is that in
the problem of identifying clusters in a large set of points in Rd, at the finest
level the distance between data points can simply be their Euclidean distance,
while at coarser levels the distance between two aggregates of points should
also take into account similarity in terms of aggregative properties, such as
density, orientation, and dimensionality [32].
• The multiscale definition of distance also brings much needed flexibility into
the way distances at one level are converted into distances at coarser levels.
For example, in a graph whose finest level consists of face images and their
similarity scores, if at some coarse-level node A is the union of two fine-level
nodes A1 and A2, and node B is the union of B1 and B2, then the coarse
weight wAB of the edge (A,B) can be defined either as some average of
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wA1B1 , wA1B2 , wA2B1 , and wA2B2 , or alternatively as the maximum (or Lp

average with large p) of those four weights. The former choice (average) is
more suitable if one wants to cluster faces having a similar pose, while the
latter choice (max or Lp) is more suitable if we need clusters of images each
belonging to the same person (or, generally, when the clustering should be
based on transitive similarity).

An ingenious rigorous definition of distances in a general graph, introduced in
[18], is called diffusion distance. Denoting by p(t, y|x) the probability of a random
walk on the graph starting at x to reach y after t steps, the diffusion distance between
two nodes xi and xj is defined by

(5.1) d(xi, xj , t)
2 =

∑
y

w(y)[p(t, y|xi)− p(t, y|xj)]
2

with some suitable choice of the node weights w. This is, in fact, a multiscale definition
of distance, with the diffusion time t serving as the scaling parameter. And indeed
the definition is used for hierarchical organizations of graphs (even though large-scale
distances are still defined in detail for any pair of nodes). The calculation of our “al-
gebraic distance” can be viewed as just a fast way to compute a crude approximation
to diffusion distances at some small t.

The essential practical point is that this crude and inexpensive “algebraic dis-
tance” is all one needs for solving graph problems by repeated coarsening. The cal-
culation of the diffusion map (the diffusion distances at various scales t) for a large
graph is, on the other hand, quite expensive, requiring computing (possibly many)
eigenvectors of the graph Laplacian. The fast way to calculate them should involve
using a multiscale algorithm such as AMG (which is likely to work well in those cases
where hierarchical organizations of the graph are meaningful; the AMG solver can,
by the way, calculate many eigenvectors for nearly the same work of calculating only
one [33]). However, instead of calculating the diffusion map and then using it for or-
ganizing the graph, the AMG structure can itself be used directly, and more efficiently
for any such organization.

Indeed, as pointed out in [9], the same coarsening procedures used by the AMG
solver can directly be used for efficient hierarchical organizations (such as multiscale
clustering) of a graph (as in [32]) or for multiscale segmentation of an image (as in
[43, 44]). As exemplified in this article (and also in [41, 42]), this kind of procedure
can also be used for many other types of graph problems; in particular, it can also be
used for detecting small hidden cliques in random graphs [20].

Thus, for discrete graphs, and analogously also for related continuum field prob-
lems, although the diffusion map is a useful theoretical concept, it is often not the
most practical tool. We believe this to be true for most if not all spectral graph
methods (using eigenvectors of the graph Laplacian): the same AMG structure that
would rapidly calculate the eigenvectors can be better used to directly address the
problem at hand. As pointed out in the discussion of multiscale distances, this can
yield not just faster solutions, but also, and more importantly, better definitions and
more tunable treatments for many practical problems.

6. Conclusions. We have proposed a new measure that quantifies the “close-
ness” between two nodes in a given graph. The calculation of the measure is linear
in the number of edges in the graph and involves just a small number of relaxation
sweeps. The calculated measure is all that is required for coarsening purposes. A simi-
lar notion of distance is then calculated and used at each coarser level. We demonstrate

D
ow

nl
oa

de
d 

05
/2

3/
19

 to
 1

30
.1

27
.4

8.
28

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

422 DORIT RON, ILYA SAFRO, AND ACHI BRANDT

the use of this new measure for the minimum (1,2)-sum linear ordering problem and
for the minimum 2-partitioning problem. The improvement in the results shows that
this measure indeed detects the most important couplings in the graph and helps in
producing a better coarsening, while at the same time preventing nonlocal vertices
from belonging to the same coarse aggregate.
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