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Abstract Partitioning of aminoacyl-tRNA synthetases and
their associated amino acids into two classes allows us to distin-
guish between thermophilic and mesophilic species based only on
amino acids composition. The CLASSDB program has been
developed for amino acid content analysis in organisms treated
individually or pooled together to form a pattern of characteris-
tic properties. A strong correlation has been observed between
optimal growth temperature (OGT) of organisms and class II
amino acids content. Amino acid composition in organisms clo-
sely related phylogenetically but dissimilar in their OGT testifies
that thermo-adaptation happens rather rapidly on the time scale
of evolution.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The aminoacyl-tRNA synthetases (aaRSs) family comprises

20 ancient enzymes that covalently attach amino acids to the

corresponding nucleic acid adaptor molecules, tRNA, prior

to polypeptide-chain synthesis on ribosome. The utmost

importance of aaRSs in the fidelity of the genetic code transla-

tion implies that members of the family are probably among

the earliest proteins to appear. Surprisingly, the 20 aaRSs

are partitioned into two classes of 10 enzymes each [1]. Class

I representatives exhibit catalytic domains containing the clas-

sical nucleotide-binding Rossmann fold and catalyze aminoa-

cylation reaction of Trp, Tyr, Gln, Glu, Lys-1, Val, Ile, Leu,

Met, Arg and Cys substrate amino acids. Class II aaRSs exhi-

bit catalytic domains built around an antiparallel b-sheet
flanked by a-helices and are associated with Pro, Thr, Ser,

Asp, Asn, Lys-2, His, Ala, Gly and Phe substrate amino acids.

What lies at the heart of the aaRSs separation into two struc-

turally unrelated classes? The remarkable symmetry of the

aaRS class division, sequence analyses and assumed dual recog-

nition of opposite sides of the acceptor stems of tRNAs by pairs

of class I and class II aaRSs (IleRS and ThrRS; GlnRS and
Abbreviations: aaRSs, aminoacyl-tRNA synthetases; OGT, optimal
growth temperature; LUCA, last universal common ancestor
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AspRS; TyrRS and PheRS; etc.) led to the hypothesis that dis-

tinctions between classes evolves from a gene whose sense and

antisense strands code for ancestors of two ancient aaRS classes

[2–4]. Class II aaRSs are believed to have roots stretching back

into antiquity further than class I enzymes, as they predomi-

nantly aminoacylate tRNA with simpler and small amino acids

[5,6], which play crucial roles in the formation of protein folds.

These amino acids are: Gly, Pro, Ala, Asp, Thr and Ser.

Remarkably, these are the same amino acids that were abun-

dant in the classical Miller experiments which attempted to imi-

tate primordial environments [7–9].

As noticed before [10], the biosynthetic pathways of class II

aaRSs related amino acids usually involve less intervening

stages. Amino acids Ala, Asp, Gly, Ser, Thr and class I Glu,

characterized by simpler pathways and play the role of meta-

bolic precursors for other amino acids. Moreover, the GCA

rich codons, which apparently are related to ancient codons,

are more frequently associated with class II aaRSs [10]. An-

cient proteins probably contained a larger proportion of class

II aaRSs associated amino acids than the recent ones. Ferre-

doxin, as it was proposed by Eck and Dayhoff [11], has evolved

from repeating sequences patterns of Ala, Asp, Pro, Ser, and

Gly, all of which are class II related. However, modern ferre-

doxin from Clostridium pastereurianum contains only 56% of

amino acids associated with class II aaRSs. Most likely, an-

cient signatures of proteins were lost during the long period

of evolution. Moreover, analysis of amino acids substitutions

recently proposed that currently declining amino acids were

among the first to incorporate into the genetic code while the

gainer amino acids were added in a later stage [12].

A number of thermophile-specific patterns at the level of

nucleotide content, codon usage and amino acid composition

have been presented in recent publications [13–16]. Partitioning

of aaRSs and their associated amino acids into two natural

classes allowed us to distinguish between thermophilic (Bacte-

ria and Archaea) and mesophilic species from different organ-

isms based on amino acids composition. We have also

demonstrated that a given clustering of amino acids correlates

with already established phylogeny of three primary superking-

doms (Archaea, Bacteria, Eukarya). Further, we revealed the

relationship between the optimal growth temperature (OGT)

and class II amino acid composition of prokaryotic organisms.
2. Materials and methods

The program CLASSDB is implemented on the Unix platform using
Java and Perl with WEB-based Graphic User Interface and is designed
for content analysis of different sets of amino acids in protein
blished by Elsevier B.V. All rights reserved.

mailto:mark.safro@weizmann.ac.il 


Fig. 1. Class II amino acid content in Archaea, Bacteria and Eukarya.
The general distribution of class II amino acids among 5032 Archaeal
proteins (marked in rhombuses), 35802 Bacterial proteins (triangles)
and 61649 Eukaryotic proteins (circles). The number of proteins in
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sequences (http://safro.weizmann.ac.il/8080). The interface is interac-
tive as it provides an input window, suitable for pasting protein se-
quences, designed to send amino acid sequences to the program for
analysis. Java environment access is required to start the program.
The program incorporates two blocks: search engine for the proteins
databases and statistical tools. At a preprocessing stage, the applica-
tion requires a data file from Swiss-Prot or TrEMBL database and
converts it into several indexes. The basic operation in this environ-
ment is setting up a query that extracts a subset of records from the
database. The query is based on the regular logical expression match-
ing database identifiers (naming conventions, source of the organism,
sequence features and other options in various logical combinations).
The search is performed over database descriptor fields and includes
analysis of the logical expressions. Prior to calculations, amino acids
subjected to statistical analysis have to be partitioned into two groups.
These groups formed by a user: charged and non-charged, or class I
and class II associated amino acids, or hydrophilic and hydrophobic,
etc. The required sequences can be analyzed in the range of their
lengths from MaxLength to MinLength. Each entry includes a check-
box that allows editing or removal of the entry from the pool of the
results. The data can be processed using several statistical applications
that have built-in textual and graphical representations of the subset’s
content. All of the above-mentioned functions can be applied to the
user’s query sequences as well. The application allows storage of both
the textual and graphical data on the disk and their printing.
The data on amino acid composition of fully sequenced genomes

was obtained from: http://www.ebi.ac.uk/proteome/index.html. The
data on OGTs was collected from German Collection of Microorgan-
isms and Cell Cultures (http://www.dsmz.de/).
Eukarya and Bacteria are normalized to those (and number of class II
associated amino acids accordingly) in Archaea.
3. Results

3.1. Predominance of class II amino acids in mesophiles

The SwissProt [17] database has been tested by CLASSDB

for the presence of class II amino acids in various protein se-

quences. The distributions of class II amino acids among three

domains of life Archaea, Bacteria and Eukarya have been cal-

culated. The 61649 protein sequences in Eukarya exhibit the

distribution maximum at 54% of class II amino acids content,

while 35802 sequences in Bacteria demonstrate maximum at

53%. The 5032 proteins of Archaea exhibits similar distribu-

tions of both classes, i.e., �50% (see Fig. 1). An interesting

application is related to the group of ribosomal proteins.

Although ribosomal proteins are found to be different among

the three primary kingdoms, a considerable number of them

are identical in different organisms. Analysis has been carried

out on 586 ribosomal proteins of Archaea, 1937 of Bacteria,

and 2470 of Eukarya. The analysis exhibits distributions of

class II amino acids that are similar to those observed for

the entire domains of life and suggests that even individual

groups of proteins still preserve characteristic amino acids con-

tent and allow distinguishing between different organisms. To

eliminate possible artifacts, resulting from unequal number of

fundamental folds among kingdoms, the limited set of univer-

sally conserved proteins among the three major kingdoms

[18,19] has been constructed. Preliminary screening revealed

that many thermophilic bacteria display class II amino acids

content very similar to Archaea, predominantly represented

by thermophilic species in various databases. This gives

grounds to separate thermophilic and hyperthermophilic pro-

teins, functioning in Archaea and Bacteria at high tempera-

tures (over 50 �C), into one subgroup. A major portion of

bacterial proteins (except for those that are classified as ther-

mophiles) and essentially all proteins in Eukarya are referred

to as mesophilic. The subsets have been tested with CLASSDB

and the results are presented in Table 1. It has been observed
that mesophilic organisms are enriched with class II amino

acids, while thermophilic enzymes contain a higher proportion

of class I amino acids. Statistical data for pyruvate kinase fur-

ther illustrates in graphical form predominance of class II ami-

no acids in mesophiles (see Fig. 2).

3.2. Interplay of the amino acid content and OGT

Results described previously [20] appear to propose a differ-

ent content of individual amino acids in organisms closely re-

lated phylogenetically but distinguished by OGT. An

additional analysis has been performed on phylogenetically

closely related organisms but distinctive in their OGT. The Ar-

chaea genus Methanococcus are anaerobic methanogens that

vary in OGT remaining closely related by virtue of the rRNA

phylogenetic tree [21]. Methanococcus jannaschii originally iso-

lated from a hydrothermal vent has OGT of 85 �C, while Met-

hanococcus vannielii and Methanococcus voltae have OGT

around 37 �C. It would be reasonable to expect similar distri-

butions of class II content in proteins closely related phyloge-

netically. Surprisingly, we have found that average content of

class II amino acids among 67 proteins from M. voltae and 65

from M. vannielii is �53.5%, very similar to Eukarya (�54%)

and/or mesophilic Bacteria (�53%), whileM. jannaschii proteome

revealed class II content of �49%. In addition, moderately

mesophilic Archaea proteins demonstrate a Eukaryotic-like

distribution (data not shown). Similarly, we analyzed class II

content of 36 Bacterial and Archaeal organisms, the OGTs

of which are located in different temperature zones (Table 2).

As it follows from Fig. 3, a strong correlation has been ob-

served between OGT and class II amino acids composition:

a decrease in the proportion of class II amino acids in the

organisms is observed, as the OGT rises. To make an estimate

of the slope of a given regression, we constructed the similar

graphs for ten subsets of amino acids randomly partitioned
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Table 1
Class II amino acid content for proteins that Universally Conserved between three domains of life

Enzymes Thermophiles (%) Bacteria (%) Eukarya (%)

AlaRS 49.25 54.68 56.40
ThrRS 48.10 50.80 53.57
ArgRS 49.00 52.52 52.00
ValRS 48.80 52.00 53.20
SerRS 47.01 51.41 51.41
S5 ribosomal protein 51.36 57.32 52.38
Thymidylate synthase 49.60 52.47 53.70
Enolase 53.50 56.75 57.55
Triose-phosphate isomerase 53.09 54.72 55.70
Glyceraldehyde 3-phosphate dehydrogenase 53.50 58.40 60.30
Glucosamine-fructose-6-phosphate aminotransferase 51.40 51.50 51.50
Pyruvate-kinase 53.00 58.08 58.98

Thermophiles from Archaea and Bacteria are partitioned into one subgroup. The proteins that belong to Bacteria and Eukarya do not include the
thermophilic ones.

Fig. 2. Class II amino acid distribution in Pyruvate kinase sequences
are isolated from different sources. Thermophilic proteins from
Archaea and Bacteria were partitioned into one subgroup. The
sequences of thermophilic Pyruvate kinase are marked in rhombuses,
those from Bacteria (minus thermophiles) marked by triangles and
those from Eukarya presented by circles.

Table 2
OGT of selected prokaryotic organisms

Organism OGT (�C)

Methanopyrus kandleri (A) 98
Pyrococcus abyssi (A) 98
Pyrobaculum aerophilum (A) 98
Pyrococcus furiosus (A) 98
Pyrococcus horikoshi (A) 95
Aeropyrum pernix (A) 90
Archeoglobus fulgidus (A) 85
Methanococcus jan (A) 82
Sulfolobus solfataricus (A) 75
Sulfolobus tokodaii (A) 75
Thermoplasma acidophilum (A) 60
Methanobacterium thermoautotrophicum (A) 60
Thermoplasma volcanium (A) 60
Methanosarchina acetivorans (A) 40
Methanococcus vannielii (A)a 37
Methanococcus voltae (A)a 37
Haloarcula marismortiui (A)a 37
Halobacterium sp. (A) 37
Methanosarchina mazei (A) 37

Aquifex aeolicus (B) 85
Thermotoga maritma (B) 80
Thermoanarebacter tengcongensis (B) 75
Thermus aquaticus (B)a 70
Chlorobium tepidum (B) 47
Campylobacter jejuni (B) 37
Clostiridium acetobutylicum (B) 37
Escherichia coli (B) 37
Fusobacterium nucleatum (B) 37
Haemophilus influenzae (B) 37
Helicobacter pylori (B) 26695 37
Bacillus subtilis (B) 30
Deinococcus radiodurans (B) 30
Agrobacterium tumefaciens (B) 26
Xylella fastidiosa (B) 9a5c 26
Xanthomonas campestris (B) 26
Synechocystis sp. (B) 25

aOrganisms from partially sequenced genomes; A – organisms from
Archaea; B – organisms from Bacteria.
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into two artificial classes: ‘‘class II-art’’ and ‘‘class I-art’’. To

be consistent with the natural partitioning, we retain ten amino

acids for each of the classes. By picking nine arbitrary amino

acids of class II coupled with one amino acid of class I, we cre-

ate a new ‘‘class II-art’’ regression presented on graph 1; eight

amino acids of class II coupled with those two of class I give

rise to another distribution presented in graph 2, etc. Within

the subsets of ‘‘class II-art’’ we changed only those amino acids

that belong to the class I. Thus, graph 1 (see Fig. 4) represents

an average over the ten straight lines with different slopes; each

line was constructed from the subset that contains nine invari-

ant amino acids of class II and any one amino acid of class I.

The graph 2 in Fig. 4 represents an average over the 45 differ-

ent straight lines (the number of combinations of two amino

acids out of a pool of ten that belong to class I) with different
slopes. Subsequently for graphs 3, 4, etc., we have limited the

number of the averaged subsets by 100 different combinations.

Taken together, these graphs comprise 755 random regres-

sions. Broadly speaking, the artificially induced partitioning

into two classes can produce OGT-class II content relationship

similar to that observed in Fig. 3. However, for the most part,

random distributions failed to reveal correlation similar to the

natural class I and II partitioning.



Fig. 3. The graphical representation of the observed correlation
between the OGT and class II amino acid content in prokaryotic
organisms of Archaea and Bacteria.

Fig. 4. The graphical representation of the relationships between the
OGT and subsets of amino acids randomly distributed into two new
classes ‘‘class II-art’’ and ‘‘class I-art’’ in prokaryotic organisms of
Archaea and Bacteria. The graphical representation of the regression
corresponding to the natural partition into classes I and II is marked as
Fig. 3. Straight line numbered 1 is associated with partition into classes
when random new ‘‘class II-art’’ contains nine amino acids of natural
original class II and one amino acid from class I (9 and 1), line 2 (8 and
2), line 3 (7 and 3), etc. Each line numbered 1, 2, 3, etc., represents an
average (up to 100) over regressions where class II amino acids are
invariant while class I amino acids vary. All the regressions have been
shifted to the common origin to display the differences in their slopes.
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4. Discussion

Availability of large number of genomes from organisms

that occupy different ecological niches provides new ways for

analysis of adaptation processes on molecular level. In partic-

ular, worthy of mention are the attempts to trace a tendency of
amino acids usage in the organisms that have been adapted to

different temperature ranges.

Amino acid composition analysis has been recently used to

build phylogenetic tree and to distinguish between thermo-

philic and mesophilic prokaryotes [14]. Natural classifications

of amino acids associated with two classes of aaRSs demon-

strate novel and simple approach for study of genome signa-

tures. Suggested classification allows us to distinguish

between Archaea, Bacteria and Eukarya based on the amino

acids content only. We also show that such analysis is robust

even for reduced set of non-homologous proteins.

It is of interest that thermophilic Bacteria and Archaea which

in general do not represent one evolutionary group display sim-

ilar distributions of class II amino acids. As it was pointed by

Pe’er et al. [22], amino acid composition analysis also show sim-

ilar clustering of thermophilic bacteria and archaea. This stems

from two probable reasons: (a) massive horizontal gene

exchange between the two kingdoms [23] that tangles up the

lines in family trees; (b) the proximity of thermophilic bacteria

and archaea to the root of the universal phylogenetic tree as it

followed from the sequence analysis of 16S rRNA [24]. It is sur-

prising that hyperthermophilic Bacteria and Archaea being

located on the deepest branches of rRNA phylogenetic tree,

and thus supposed to be ancient, have the predominance of com-

plex amino acids. Yet hyperthermophilic last universal common

ancestor (LUCA) hypothesis [25,26] has recently been chal-

lenged using a novel method of phylogenetic tree reconstruction

[27] and observation that the GC content of rRNA sequences of

the LUCA does not support thermophilic origin of life [28]. At

present it is generally agreed that thermal stability may be

achieved with a number of subtle changes in local weak interac-

tions without significant conformational rearrangements in

basic topologies of protein folds [29]. Thus, retaining the set of

amino acids that determine the characteristic protein folds,

and these are mostly the class II amino acids, proteins can shift

their stability profile to thermophilic temperature range. Biasing

of statistically significant number of thermophilic proteins (see

Fig. 4) by class I amino acids testifies that thermal adaptation

is sequenced-based rather than structure-based process. What

is more, thermo-adaptation is a rather rapid process on the time

scale of evolution since differences in amino acid content have

been observed in organisms closely related phylogenetically

but distinctive in their OGT (e.g., within genus Methanococcus

and Thermus/Deinococcus group).

Amino acid composition analysis testifies that mesophilic

organisms are enriched with class II amino acids while pre-

dominance of class I associated amino acids in thermophiles

has been detected (see Fig. 3). Investigations have been under-

taken towards the adaptation processes that exhibit some pref-

erences in amino acid composition of thermophilic proteins

[30–32]. Specifically, amino acids that are abundant in thermo-

philes are Glu, Arg, Lys, Pro, Tyr, Ile and Leu. Most of these

amino acids are associated with class I aaRSs.

All Archea, many Bacteria, and the organelles of eukaryotes

lack the canonical GlnRS and AsnRS [33]. However within

these domains there is a possibility to charge tRNAAsn and

tRNAGln with Asn and Gln, respectively, by using tRNA-

dependent amidotransferases [34]. The absence of these aaRSs

in Archaea correlates with instability of amino acids Gln and

Asn at high temperatures. In addition, genome sequences of

some thermophilic Archaea do not contain genes encoding

class I CysRS that is consistent with decreasing of cysteine
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content in thermophiles. This paradoxical situation was re-

solved by revealing of O-phosphoseryl-tRNA synthetase

SepRS, displaying amino acid sequence similarity to a-subunit
of PheRS, class II enzyme and capable of charging tRNACys

with Cys [35]. However, narrow phylogenetic distribution of

SepRS makes it unclear whether this enzyme recently diverged

from PheRS or, instead, coevolved with PheRS from a com-

mon ancestor [35]. Further calculations may then carry out

to estimate contribution of specific organisms lacking conven-

tional pathways of tRNA charging in class I and class II amino

acid distributions.
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