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Abstract

This paper introduces novel formulations for optimally responding to epidemics and cyber
attacks in networks. In our models, at a given time period, network nodes (e.g., users or com-
puting resources) are associated with probabilities of being infected, and each network edge is
associated with some probability of propagating the infection. A decision maker would like to
maximize the network’s utility; keeping as many nodes open as possible, while satisfying given
bounds on the probabilities of nodes being infected in the next time period. The model’s rela-
tion to previous deterministic optimization models and to both probabilistic and deterministic
asymptotic models is explored. Initially, maintaining the stochastic independence assumption
of previous work, we formulate a nonlinear integer program with high order multilinear terms.
We then propose a quadratic formulation that provides a lower bound and feasible solution to
the original problem. Further motivation for the quadratic model is given by showing that it
alleviates the assumption of stochastic independence. The quadratic formulation is then lin-
earized in order to be solved by standard integer programming solvers. We develop valid
inequalities for the resulting formulations.

Keywords: Nonlinear integer programming, cutting planes, network optimization, probability
bounds, cybersecurity, epidemiology.

AMS-MSC2010: 90C10, 90C35, 90B10, 90B18, 90C90, 92D30.

1 Introduction and Background

Cyber terror and other cyber threats have been on the rise with many individual incidents that
are estimated to cost billions of dollars [12, 23]. Mathematical models of biological epidemics and
their extensions to cybersecurity have been extensively investigated during past few decades; see,
for example, [10, 19, 20]. In contrast to previous work that analyzes the asymptotic growth of
infections, we consider a decision problem that arises at a given time period in a network where
a certain infection may spread. Each node is associated with the probability of being infected at a
given time period, and some of the nodes may be shut down in order to maintain desired bounds
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on the infection probabilities of the nodes. Similar decision problems involving a response to
spread of an infection or fire in a network have been introduced by [1] and [16]; as far as we are
aware, however, previous work on optimal response to network infections has considered only
deterministic models.

Probabilistic network optimization models have been extensively studied and applied in the
literature of reliable network design [7, 26]. In network reliability one is usually interested in
designing a network that can withstand the possibility that some of the terminal nodes become
disconnected, with a certain probability. In contrast in our application: We would like to remove
rather than to install nodes. The probability of a node becoming infected depends on the probabil-
ity of contracting the virus from a neighbor. A bound on the probability applies to each network
node, rather than to the entire network or to pair of terminals. Finally, the objective is to maximize
rather than minimize an increasing function of the open nodes. In the following subsections we
first expand on mathematical models of epidemics and their extensions to cybersecurity. Next, we
elaborate on previous work on the decision problems of determining which nodes to treat in the
network in order to mitigate an infection.

1.1 Models for the Spread of Computer Viruses Motivated by Epidemiology

Traditional epidemiological models use a few parameters to estimate the growth of the infected
population as a whole and, in particular, to predict whether an epidemic dies out at the limit or
whether it ensues. A key input parameter of the epidemic in these models is the virus birth rate, β,
the rate at which healthy individuals become infected with a virus when coming in contact with
infected individuals. Similarly, a virus death rate, δ, is the rate at which infected individuals are
cured. The Kephart-White model [20] applies epidemiology-based modeling to computer viruses.
Let η denote the size of the infected population and k denote the average degree of the contact
graph. The model is captured by the ordinary differential equation

dη

dt
= βkη

(
1− η

n

)
− δη.

The steady state solution of this model may provide an approximate solution of the growth of an
epidemic in networks where the contact among individuals is sufficiently homogeneous (which is
unlikely to hold for computer networks). However, this model does not model specific individu-
als, nor does it suggest which individuals should be treated with limited resources.

Some recent models address more details such as an underlying structure for the propagation
of the infection. Typically, the structure can be described by a contact graph: a graph G = (V,E)

with n nodes corresponding to individuals, or groups, of the general population and edges corre-
sponding to possible contacts among individuals. Let N(i) be the set of neighbors of node i. Let
hi,t be the probability that a node i is not infected from one of its neighbors at time period t, and
let πi,t be the probability that a node i is infected at time t (with πi,t = 1 − hi,t). Chakrabarti et
al. [10] propose a probabilistic model in which

hi,t =
∏

j∈N(i)

(1− ρπj,t−1), (1)
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where ρ is the probability of a node to contract the virus from an infected neighbor. This model as-
sumes independence of the events of a node being infected from each of its neighbors, an assump-
tion that is justified when time steps are small enough so that the effect of the positive correlation
of infection events is assumed to be negligible. Further, the assumption of stochastic indepen-
dence significantly simplifies their analysis. Chakrabarti et al. [10] analyze an epidemic threshold
for a dynamical system associated with (1); the magnitude of this threshold compared with ρ/δ

determines whether an infection ensues or becomes endemic. They determine a threshold value
that is inversely proportional to the largest eigenvalue of the adjacency matrix of the network.
Note that this result is derived under a restrictive assumption that the probability of infection
spreading along every edge equals the same probability ρ.

1.2 Deterministic Network Response Optimization Models

A well studied deterministic network response model is known as the firefighter problem; see [2]
and [16] and references therein. The problem is to iteratively decide which nodes to defend (im-
munize) while a fire (infection) is spreading in the network. At each time step the network nodes
are partitioned into three parts: inflamed (infected) nodes, defended (recovered) nodes, and sus-
ceptible nodes. The fire spreads out deterministically from each node to its neighbors. To prevent
the fire from spreading, at each step only a limited number of nodes can be defended. Once a
node is defended (or recovered), it cannot be compromised at succeeding iterations. The objective
is to contain the fire while minimizing the total number of nodes lost. The problem is known to
be NP-hard even for tree networks with a maximum node degree of three [13]. An alternative
formulation of the problem, also known to be NP-hard, has the objective of minimizing the cost
of saving all nodes from the fire [2].

The model of the firefighter problem is inherently sequential. However, the model is restrictive
in assuming that all unprotected neighbors of an infected node become infected in the next time
period. It also assumes that the fire may not spread beyond the neighbors of an infected node
within a single time period. In practice there is a decision problem to be solved at a particular
moment in time. Further, the time periods in which action can be taken to respond to the epidemic
may not necessarily correspond to periods over which the epidemic may spread.

In contrast to the firefighter’s problem, Altunay et al. [1] suggest an optimization problem
for determining an optimal response to cyber attacks. The network is modeled by an undirected
graph G = (V,E) with vertex set V , consisting of n = |V | nodes and edge set E, with |E| = m.
The set of nodes correspond to sites, servers, or individual users, and the edges may correspond
to communication links or connections. Further suppose Vc ⊆ V is a set of sites known to be
compromised or infected. Accordingly, Vu = V \ Vc is the set of uncompromised or susceptible
sites. The network operator would like to maximize the utility of the network resources that
remain open while shutting down some of the nodes to maintain an acceptable level of threat.

Let x ∈ {0, 1}n be a vector of decision variables; xi = 1 means that node i remains open, and
xi = 0 corresponds to shutting it down. A network utility function measures the usability of the
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network as a function of the node configuration x ∈ {0, 1}n, for some 0 ≤W ∈ Rn×n:

u(x) =
∑
{i,j}∈E

Wijxixj .

This choice of a bilinear utility function is appropriate when the graph models the application
layer of a communications network, for example when nodes and edges correspond to user groups
or servers and, respectively, communication patterns between users and servers. Different choices
of utility functions are common for performance modeling of networks; see for example [18]. For
an edge {i, j} ∈ E, Wij denotes its value as long as it remains open (an edge is open if both
endpoint nodes are open). Altunay et al. [1] formulate an optimization problem for determining
x ∈ {0, 1}n that maximizes u while the threat is determined endogenously by a decision variable
ti ∈ [0, Ti] for each node i, and its given bound Ti ≤ 1. The details of the model are described, and
the problem’s computational complexity is established in Appendix A.

2 Preliminary Analysis and Models

We first introduce a new probabilistic model of network response. A preliminary optimization
model is introduced under the assumption of stochastic independence of the events of the infec-
tion propagating along the edges of the network. We then propose an approximate model (in fact
a restriction) that also alleviates the independence assumption, and that is solved more efficiently
in our experiments.

2.1 Probabilistic Network Response

Motivation for our probabilistic model can be drawn from the application described in [1], though
some of the modeling assumptions with respect to the spread of the infection are similar to those
of the asymptotic analysis appearing in [10].

For i ∈ V , let N(i) = {j ∈ V | {i, j} ∈ E } be the set of nodes that are connected to node i by
an edge, and let

xi =

1 node i is open

0 otherwise.

In general, the probability of an open node i remaining healthy (i.e., uninfected) in a given time
period is given by

hi(x) = P

 ⋂
j∈N(i)

{i is not infected by node j | xj = 1}

 ,

where P (A) is the probability of event A. As in [10], we may assume that the events of nodes
being infected in the previous time period are independent of one another. Although it may be
more realistic to assume that the events that neighboring nodes are infected are dependent on one
another, an independence assumption simplifies the computation (i.e., allowing one to tractably
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evaluate of hi(x)) and modeling (i.e., relieving one from having to specify the joint probabilities).
Let pij be the probability of node i being infected by node j. Let πi be the probability of node i
being infected at a given time period. Then, under the independence assumption, the probability
of node i not being infected in the following time period is then

hi(x) =
∏

j∈N(i)

(1− pijπjxj). (2)

The probability of a node i being infected equals the probability of at least one of its non-removed
neighbors being infected times the probability that the neighbor infects i. Note that in the follow-
ing only a single time period is considered, although one may experiment with the effectiveness of
our models over several time periods, for example, by repeatedly applying them within a discrete
event simulation.

We would like to choose a network configuration x ∈ {0, 1}n that maximizes the utility u(x)

while bounding the infection probability of each node i ∈ V

1− hi(x) = P

 ⋃
j∈N(i)

{i is infected by node j | xj = 1}


by the given Ti. The resulting formulation is

maximize
x

u(x) (3a)

subject to xi − hi(x) ≤ Ti i ∈ V, (3b)

x ∈ {0, 1}n. (3c)

The constraint (3b) for i ∈ V ensures that either the node is shut down, that is xi = 0, or if xi = 1,
then the probability of i being infected is at most Ti. The following proposition establishes the
computational complexity of (3).

Proposition 1. Problem (3), with Wij = 1 for all {i, j} ∈ E, is NP-hard.

The proof of the proposition is deferred to Appendix B.

2.2 Bounding the Infection Probability

When assuming independence of the infection in the previous period, i.e., that each hi is given
by (2), then (3) is an integer nonlinear program (INLP) with high-order (but polynomially many)
multilinear terms. If the infection events are not independent, then to express each hi as a function
of x may become intractable as it requires an exponential number of multilinear terms using the
inclusion-exclusion formula. We now consider a restriction of the optimization problem using
a probability bound that can be used to approximate (3): it provides a feasible solution and a
corresponding lower bound on its optimal solution. Specifically, we bound the probability of the
union of events of a node being infected from each of its neighbors. A known bound for the
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probability of the union of multiple events is Hunter’s bound [17,28]: for a sample space Ω, given
a finite set of events {Ai ⊆ Ω | i ∈ N },

P (∪i∈NAi) ≤
∑
i∈N

P (Ai)−
∑
{i,j}∈T

P (Ai ∩Aj), (4)

where T is a maximum weighted spanning tree of the complete graph with vertex set N , having
the probability P (Ai∩Aj) as the weight of each edge {i, j} ∈ N×N . The union bound, which does
not use the joint probabilities, corresponds only to the sum of the positive terms on the right-hand
side of (4), and is not as tight as Hunter’s bound. Although, even tighter upper bounds exist, these
may require the computation of third- or higher-order terms; see for example [9].

For each i ∈ V , let Ti be the maximum weighted spanning tree of the complete graph with
nodes N(i), and each edge {j, k} weighted by the joint probability of i being infected by both j

and k. To simplify the notation, for each {i, j} ∈ E, let qij = pijπj . For each {j, k} ∈ Ti, let rijk
denote the joint probability that i is infected by both j and k (and note that rijk = rikj). For i ∈ V ,
let Mi be a suitably large constant; for example, it suffices to set Mi =

∑
j∈N(i) qij . Then, for each

i ∈ V , we replace the constraint (3b) by a more conservative (tighter) constraint∑
j∈N(i)

qijxj −
∑
{j,k}∈Ti

rijkxjxk ≤ Ti −Mi(xi − 1),

⇔ gi(x) ≡Mixi +
∑

j∈N(i)

qijxj −
∑
{j,k}∈Ti

rijkxjxk ≤Mi + Ti.

The resulting formulation is a INLP with a set of bilinear constraints:

maximize
x

u(x) (5a)

subject to gi(x) ≤Mi + Ti for i ∈ V (5b)

x ∈ {0, 1}n. (5c)

Although the formulation (5) has bilinear rather than general multilinear terms, and is simpler
compared with the nonlinear formulation (3), the next proposition establishes that it remainsNP-
hard.

Proposition 2. The problem (5) with Wij = 1 for every {i, j} ∈ E is NP-hard.

The proof of the proposition is given in Appendix C.
Hunter’s bound, and accordingly (5), applies in the general case that the events corresponding

to the probabilities qij are not independent for all i ∈ V and j ∈ N(i). In our current experiments,
however, we focus on the simpler case of stochastic independence, which implies that rijk = qijqik

for each i ∈ V and j, k ∈ N(i). In Appendix D we compare the quality of optimal solutions of (5)
when used to approximate the solution of (3) with hi(x) given by (2) (and hence it models the
stochastic independent case). These experiments confirm that the formulation (5) can be solved
faster than (3) while better approximating the optimal solution than a simple union bound based
formulation. We would like to emphasize, however, that (5) applies more generally when hi(x)
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is not given by (2), and in which case it may not even be tractable to write (5) as a mathematical
program when using the inclusion-exclusion formula to express hi(x).

In the next section we develop computational techniques to solve (5) more effectively as an
integer program.

3 Computational Techniques

We now consider inequalities that are valid for (5) and that tighten the continuous relaxation upper
bound in order to ultimately speed the computation of the integer program.

3.1 Valid Cover Inequalities

A cover inequality for S ⊆ V is a valid linear inequality of the form∑
j∈S

xj ≤ |S| − 1. (6)

Inequalities of this form were first developed as valid inequalities for linear knapsack problems;
see [4, 5]. In particular, (6) must hold if S is the support of x ∈ {0, 1}n for which a corresponding
knapsack constraint is violated. Such inequalities and their extensions have been used for general
mixed-integer programs (MIPs), and have also been specialized for specific applications; see for
example [21] for a recent application to a network optimization problem. Further, cover inequal-
ities have recently been extended for conic-quadratic nonlinear formulations [3]. However, we
note that these recent extensions, as well as standard applications to knapsack constraints, all re-
quire that the left-hand side of the associated constraint is monotone in x; for example with linear
knapsack constraints binary variables with negative coefficients need to be complemented (which
in turn increases the constant in right-hand side).

In the case of formulation (5), note that for every i ∈ V , gi(x) has negative quadratic coeffi-
cients. For every i ∈ V and j ∈ N(i) (assuming that rijk = qijqik), although

∂gi
∂xj

= qij −
∑

k∈N(i):
{k,j}∈Ti

rijkxk = qij

1−
∑

k∈N(i):
{k,j}∈Ti

qikxk


tends to be positive, it may be negative if

∑
k∈N(i):
{k,j}∈Ti

qikxk > 1. We note, however, that the negative

coefficients of the quadratic terms tend to be small in our application; rijk ≤ min{qij , qik} for each
i ∈ V and {j, k} ∈ Ti in general, and in particular in the case of stochastic independence when
rijk = qijqik. Also, since Ti is a tree the total number of quadratic terms of gi, is linear in the number
of nodes and is bounded by |N(i)| − 1. Further, for j ∈ N(i), the number of adjacencies in the tree
|{k ∈ N(i) | {k, j} ∈ Ti }|, which is the number of negative quadratic terms in ∂gi/∂xj , tends to
be small. Nevertheless, in general gi(x) is not monotone in x. To apply standard knapsack-cover
inequalities to constraints such as (5b), one may consider linearizing and then complementing the
negative variables. This approach, however, results in weak inequalities.
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In the following let S(x) ≡ {j ∈ V | xj = 1} and let ej denote the unit vector with one at
the jth component. Lemma 3 establishes a weaker condition than monotonicity that is useful for
deriving our novel valid inequalities.

Lemma 3. Suppose x, y ∈ {0, 1}n and i ∈ S(x)∩S(y) that satisfy S(x)∩N(i) ⊆ S(y)∩N(i). Further
suppose that for all {j, k} ∈ Ti, rijk ≤ min{qij , qik}. Then it follows that

gi(y) ≥ gi(x) +
∑

j∈(S(y)\S(x))∩N(i)

[gi(x+ ej)− gi(x)− qij ].

Proof. Letting x and y be defined as in the claim of the lemma, since
(S(x) \ S(y)) ∩N(i) = ∅we have that

gi(y) = gi(x) +
∑

j∈(S(y)\S(x))∩N(i)

qij −
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(x)

rijk −
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(y)\S(x)

rijk. (7)

By the hypothesis assuming that for all {j, k} ∈ Ti, rijk ≤ min{qij , qik} and by Ti being a tree that
spans j ∈ (N(i) ∩ S(y)) \ S(x), it follows that∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(y)\S(x)

rijk ≤
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(y)\S(x)

min{qij , qik} ≤
∑

j∈(S(y)\S(x))∩N(i)

qij ,

implying that

gi(y)− gi(x) ≥ −
∑

{j,k}∈Ti:
j∈S(y)\S(x),k∈S(x)

rijk =
∑

j∈(S(y)\S(x))∩N(i)

[gi(x+ ej)− gi(x)− qij ].

Lemma 3 identifies a lower bound on gi(y) for y ∈ {0, 1}n in terms of a given x ≤ y. In the
following proposition, we use this bound to prove a sufficient condition for a given set S ⊆ V to
define a valid inequality (6). Further, this sufficient condition is testable; it is straightforward to
determine whether this condition holds in polynomial (in fact linear) time.

Proposition 4. Suppose that for some i ∈ V and x ∈ {0, 1}n with S ≡ (S(x) ∩ N(i)) ∪ {i}, (5b) is
violated and

gi(x+ ej)− gi(x)− qij ≥ − 1

|N(i)| − |S|+ 1
(gi(x)− Ti −Mi) for all j ∈ N(i) \ S. (8)

Then (6) is a valid inequality for (5).

Proof. Assume the hypothesized conditions of the proposition hold, and that y ∈ {0, 1}n is a
feasible solution of (5) satisfying S̄ ≡ S(y) ∩ N(i) ⊇ S ≡ S(x) ∩ N(i) = S \ {i} and yi = 1. Note
that (5b) being violated by x implies that xi = 1. Then, by Lemma 3, (8), and the fact that (5b) is
violated by x, it follows that

gi(y) ≥ gi(x) +
∑

j∈S̄\S

[gi(x+ ej)− gi(x)− qij ] ≥ gi(x)−
∣∣S̄∣∣− |S|
|N(i)| − |S|

(gi(x)− Ti −Mi)

= gi(x)
|N(i)| −

∣∣S̄∣∣
|N(i)| − |S|

+ (Ti +Mi)

∣∣S̄∣∣− |S|
|N(i)| − |S|

> Ti +Mi,

thereby establishing a contradiction to the feasibility of y.
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The following example illustrates the use of inequality (6) for (5) and it will also be used to
illustrate the differences from standard knapsack-cover inequalities.

Example 1. Suppose V = {1, 2, 3, 4}. E = {{1, 2}, {1, 3}, {1, 4}}. Let q12 = q13 = q14 = 1
2 . Note that

for i = 1, M1 = 3
2 and T1 = 1

2 the constraint (5b):

3

2
x1 +

1

2
(x2 + x3 + x4)− 1

4
(x2x3 + x3x4) ≤ 2

is violated with x′ =
(

1 1 1 0
)T

. The inequality (6) with S = {1, 2, 3} is given by

x1 + x2 + x3 ≤ 2. (9)

Evidently the condition (8) is satisfied for 4 ∈ N(1) \S, for which x′+ e4 =
(

1 1 1 1
)T

. It follows by
Proposition 4 that the inequality (9) is valid for (5).

Quadratic and higher-order INLPs can be linearized through standard techniques involving
the introduction of additional auxiliary variables. For each {i, j} ∈ E, let uij ∈ [0, 1] be a real
variable used to linearize the corresponding bilinear term xixj using the following additional
constraints:

uij ≤ xi uij ≤ xj xi + xj − 1 ≤ uij uij ≥ 0. (10)

Let Ē =
⋃

i∈V Ti ∪ E. We refer to (5) with each quadratic term xixj for {i, j} ∈ Ē replaced by
uij , and with the additional constraints (10), as the linearization of formulation (5). Also, we refer
to the linearization of (5) with the integrality constraints (5c) replaced by x ∈ [0, 1]n, as the linear
relaxation of (5). We use the linearization in Section 4 in order to solve formulation (5) using a
standard MIP solver. First, we consider an example that illustrates the difference of our cover
inequalities from standard knapsack-cover inequalities that can be applied to the linearization
of (5).

Example 2. After linearizing and complementing negative variables of the constraint in Example 1, it
results in the knapsack constraint

3

2
x1 +

1

2
(x2 + x3 + x4) +

1

4
(z23 + z34) ≤ 5

2
,

where zij = 1− uij for {i, j} ∈ E.

Note that the inequality x1 + x2 + x3 ≤ 2 of Example 1 is not a valid knapsack-cover inequal-
ity for the constraint in Example 2. Further, note that although Generalized Upper Bound (GUB)
knapsack cover inequalities [29] are designed to account for additional GUB constraints in con-
junction with a knapsack constraint, the inequality considered in Example 1 cannot be derived as a
GUB knapsack cover inequality either: The associated linearization constraints (10) do not follow
the form of (nonoverlapping) GUB constraints. Therefore, Example 2 illustrates that the cover in-
equalities under consideration are essentially different and cannot be generated as knapsack-cover
inequalities of the linearized formulation. Finally, valid inequalities that are stronger than (6), and
which are analogous to extended knapsack-cover inequalities are considered in Section 3.2.
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3.2 Extended Cover Inequalities

For knapsack constraints, extended covers provide stronger inequalities that can also be gener-
ated and separated efficiently in practice [4, 14, 15]. We now develop analogous extended cover
inequalities for (5).

Definition 1. Suppose (6) is a valid inequality for (5) for some S ⊆ V . ThenXS,i ⊆ V \S is an extension
of a covering set S ⊆ V , for some i ∈ V , if

qij −
∑

k∈XS,i∪S
{j,k}∈Ti

rijk ≥ max
`∈S

qi`, for all j ∈ XS,i. (11)

We refer to ES,i ≡ S ∪XS,i as an extended covering set. For such a set the following proposition
suggests valid inequalities that are stronger than (6).

Proposition 5. Suppose x′ ∈ {0, 1}n and i ∈ V so that, with S = (S(x′)∩N(i))∪{i} and x replaced by
x′, (5b) is violated and (8) is satisfied. If XS,i ⊆ N(i) \ S satisfies (11), then

(|ES,i \ S|+ 1)xi +
∑

j∈ES,i\{i}

xj ≤ |ES,i| − 1 (12)

is valid for (5).

Proof. Suppose x̂ is feasible for (5). First, considering the case that x̂i = 0, then∑
j∈ES,i\{i}

x̂j ≤ |ES,i| − 1 = |ES,i| − 1− (|ES,i \ S|+ 1)x̂i.

Otherwise, consider the case that x̂i = 1. Assume for the sake of deriving a contradiction that∑
j∈ES,i\{i}

x̂j =
∑

j∈S\{i}

x̂j +
∑

j∈ES,i\S

x̂j > |ES,i| − 1− (|ES,i \ S|+ 1)x̂i = |S| − 2.

Note that the integrality of x̂ implies that
∑

j∈ES,i\{i} x̂j ≥ |S|−1. Hence |S(x̂) ∩ ES,i| ≥ |S|. Then,
by the definition of ES,i, and (11), it follows that

gi(x̂)−Mi =
∑

j∈S\{i}

qij x̂j −
∑

{j,k}∈Ti:
j,k∈S

rijkx̂j x̂k+

∑
j∈XS,i

qij x̂j −
∑

{j,k}∈Ti
j∈XS,i or k∈XS,i

rijkx̂j x̂k ≥
∑

j∈S\{i}

qij x̂j −
∑

{j,k}∈Ti:
j,k∈S

rijkx̂j x̂k + max
j∈S
{qij}

∑
k∈ES,i\S

x̂k.

Then, since |S(x̂) ∩ ES,i| ≥ |S|, by a pigeonhole argument and since (5b) is violated by x′

gi(x̂)−Mi ≥
∑

j∈S\{i}

qijx
′
j −

∑
{j,k}∈Ti

rijkx
′
jx
′
k > Ti,

which contradicts the feasibility of x̂.
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3.3 Separation of Valid Inequalities

To apply Proposition 5 we first need to determine a subset S that violates (5b) for some i ∈ V .
Note that, for a given candidate S ⊆ V , it is straightforward to verify condition (8). Then, using S
that satisfies (8) we extend it to a set ES,i ⊇ S.

First, we motivate a greedy heuristic for determining S ⊆ V starting from S = {i} for a given
i ∈ V . If one presupposes that the condition (8) is satisfied for i then the separation problem
for determining S, given a linear relaxation solution x∗, can be simplified and formulated as a
quadratic knapsack problem

maximize
z

gi(z) (13a)

subject to
∑

j∈N(i)

(1− x∗j )zj ≤ 1− ε (13b)

zj = 0 j ∈ V \ (N(i) ∪ {i}) (13c)

z ∈ {0, 1}n, (13d)

where ε ∈
(

0,minj∈N(i)

{
x∗j

∣∣∣ x∗j > 0
})

. Note that constraint (13b) ensures that x∗ violates the
cover inequality (6) with S that is defined as the support set of z. We note that the function
gi : {0, 1}n → R, the objective (13a), is a submodular quadratic function of binary variables. This
observation motivates a greedy heuristic for the separation problem. For the special case with
monotone gi(z) (for example, if qij = p ≤ 1

|N(i)| for all j ∈ N(i), as in the proof of Proposi-
tion 2), and equal coefficients (1 − x∗j ) for all j ∈ N(i), a greedy algorithm is known to have an
(e − 1)/e approximation factor guarantee, where e is the base of the natural logarithm [25]. For
a nonmonotone submodular objective function, and with general knapsack constraints, there are
more computationally intensive extensions that yield constant factor approximations; see, respec-
tively, [27] and [22]. However, due to the computational advantage and ease of implementation,
here we only apply a simple greedy algorithm.

Let x(S) ∈ {0, 1}|V | denote the characteristic vector of a set S ⊆ V . For a given function φ :

2V ×V → R, and i ∈ V , we consider Algorithm 1 as a greedy procedure for computing an extended
covering set. These sets are then used to generate valid inequalities for the linearization of (5).
Algorithm 1 is run for i ∈ V whose corresponding constraint (5b) is tight in the linear relaxation
solution x∗; in Section 4 we invoke this algorithm for i ∈ V with the largest dual multiplier value
for constraint (5b). We consider two different variants of Algorithm 1, each corresponding to a
different definition of the function φ in line 7 of the algorithm. In particular, we consider either

φ(·, j) = x∗j , or (14a)

φ(S, j) =
gi(x(S ∪ {j}))− gi(x(S))

1− x∗i
; (14b)

these are defined analogously to the two common approaches for greedily constructing knapsack
covers.

In the context of the knapsack problem, extended cover inequalities are effectively generated
in practice by greedily constructing S to consist of j ∈ V for which x∗j is largest (where x∗ is an

11



Algorithm 1 An algorithm for computing an extended covering set ES,i ⊆ V .
1: Input: an optimal solution x∗ of the relaxation of (5), i ∈ V
2: Q1 ← {i}
3: for k = 1, . . . , n do
4: if (5b) is violated with x replaced by x(Qk), and (8) holds then
5: break
6: end if
7: Pick some j∗ ∈ argmaxi∈N(i) φ(Qk, j)

8: Qk+1 ← Qk ∪ {j∗}
9: end for

10: S ← Qk

11: XS,i = ∅
12: while Φ ≡ argmaxj∈N(i)\(XS,i∪S) {gi(x(S ∪ {j})) | (11)} 6= ∅ do
13: Pick some j∗ ∈ Φ

14: XS,i ← XS,i ∪ {j∗}
15: end while
16: Output: ES,i = S ∪XS,i

optimal solution of the relaxation); see for example [15]. This approach is similar in to our choice
of φ defined by (14a) in Algorithm 1. The choice of φ that is defined by (14b) within Algorithm 1
corresponds to a greedy heuristic for solving (13), and in the special case that gi is linear it is similar
to a heuristic proposed for separating knapsack cover inequalities in [6]. Given the cover S that
is computed by Algorithm 1 in steps 2 – 10, it is then iteratively extended; starting with ES,i = S,
at each iteration we insert into ES,i an element j∗ ∈ N(i) that maximizes gi(x(ES,i ∪ {j})) over
all j ∈ N(i) \ ES,i satisfying (11). Note that upon termination of Algorithm 1, assuming that the
continuous relaxation solution x∗ is non-integer, we are guaranteed to get a valid cover inequality;
however, the resulting cover inequality does not necessarily cut off x∗. Thus, in the experiments
of Section 4 it is verified upon termination that the resulting cover inequalities are violated before
appending them to (5).

4 Computational Results

In this section we show computational results for the linearization of (5) using the methods de-
scribed in Section 3. We experiment with networks that are generated randomly by using the
Erdős-Rényi random graph model (for details the reader may refer to [8]), with different graph
density values: 0.1, 0.2, and 0.25. Examples of graphs generated with 50 nodes are shown in Fig-
ure 1. For each network we randomly generated ten different sets of input parameter values for
W , π, p, and T . A set of compromised nodes Vc ⊆ V is chosen at random so that |Vc| = d0.1 |V |e,
for which πi = 1 for each i ∈ Vc. Otherwise, for i ∈ V \ Vc, πi is generated uniformly at random
from (0, 0.8). For each {i, j} ∈ E, Wij is generated uniformly at random from (0, 1). For each

12
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(a) An example network with 0.1 den-
sity.
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(b) An example network with 0.2 den-
sity.

Figure 1: Randomly generated Erdős-Renýi graphs with 50 nodes that are used in the computa-
tional study of Section 4.

{i, j} ∈ E, the probability of the infection propagating from node j to i is given by

pij =
Wij∑

k∈N(j):(k,j)∈EWkj
,

similar to the choice of parameter values in the experiments of Altunay et al. [1].
We run the linearized formulation of (5) using the open-source CBC [24] solver (trunk ver-

sion, revision #2008). Also, our cut generation routines use the open-source network algorithm
LEMON [11] library. The experiments are run in serial on a machine with Intel Xeon 2.66 GHz
CPUs with a cache size of 6 MB, and a 64-bit Ubuntu 12.04 Linux operating system. CBC was
used in its default setting1 unless otherwise indicated. In its default setting CBC invokes a variety
of MIP cuts and heuristics based on whether they are found effective at reducing the optimality
gap.

Let urelax denote the optimal objective value of the relaxation of (5) upper bound, let ucuts be the
optimal objective value of (5) with cuts (inequalities (6) or other cuts as indicated otherwise), and
let ulb,relax, and ulb,cuts, be the lower bounds computed by a feasible solution heuristic in the runs
without and with cuts, respectively. To evaluate the cuts, we consider the performance indicators
of the optimality gap closed and bound reduction,

1−
ucuts − ulb,cuts

urelax − ulb,relax
and 1− ucuts

urelax
,

respectively. Tables 1-3 show the optimality gap closed as well as bound reduction at the root node
for each setting of cuts that is indicated. The data of each row in the table is based on 100 runs with
ten different graphs and ten different sets of input parameter values for each graph. The data of the

1Due to implementation issues and missing library support for mapping variables following their elimination by
preprocessing we had CBC preprocessing switched off. Note that the random instances that we consider seldom have
redundancies, and accordingly preprocessing did not seem to significantly reduce the size of these problems (and their
running times).
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table suggests that generating a small number (a few tens) of cuts (12) can tighten the formulation
and reduce the relaxation upper bound by as much as 11%. The greatest tightening of the root
relaxation is achieved by cuts (12) together with the CBC cuts, in which case the initial relaxation
upper bound is reduced by up to 50%. The cuts generated by greedily maximizing (14b) appear to
be more effective in tightening the formulation than those generated by greedily maximizing (14a).
While in denser graphs the tightening of the LP relaxation becomes more modest, this applies also
to other MIP cuts that are generated. Also note that the number of cuts that are generated at the
root (as well as branch-and-bound nodes) in practice may depend on internal solver policies that
are implemented in the CBC solver. An effective generation of a diverse set of cuts (12) and careful
fine-tuning for a particular solver may warrant further computational studies.

Tables 4–6 show experimental results for the entire branch-and-cut algorithm with Algorithm 1
and φ defined by (14b). Experiments with cuts generated using φ defined by (14a) are omitted
since they appear to be dominated by cuts generated with φ defined by (14b) in the experiments of
Tables 1-3 (while not requiring a substantial increase in the running time of evaluating φ). The cuts
and cover methods indicated in the tables are run in addition to the CBC defaults. Each row of the
table corresponds to 50 runs – ten different graphs and five different sets of input parameters for
each graph. Also, we set CBC to emphasize generating knapsack cover inequalities (in all runs).
Otherwise, the generation of our cuts at the root node seemed to be causing CBC to disable the
generation of standard knapsack cover inequalities later, which, in some cases, seemed to degrade
the overall performance. We set the time limit in all runs to two hours. “LIMIT” is used to indicate
that the data is not displayed due to the time limit being reached. Branch-and-bound node and
CPU time averages are calculated over all of the runs. We initialized CBC to invoke our cover and
cut generation routine (Algorithm 1) once in every 50 nodes, with automatic adjustment of the
CBC solver based on the effectiveness of the cuts that are generated. The algorithm is invoked for
i ∈ V whose constraint (5b) is among the 60 with largest dual multiplier values at the root node,
and among the two largest dual multiplier values at other branch-and-bound nodes.

Tables 4 – 6 show that in most cases the valid inequalities (12), whose covering set is computed
using (14b), improved the performance of the CBC solver. In Table 4 the improvement was also
evident in fewer runs that exceeded the time limit (of two hours).

5 Conclusion

We propose a novel probabilistic formulation for responding to cyber and biological threats in
networks. Optimization problems with a similar objective were considered, for example by [1],
but with a different set of constraints that lack the motivation of a probabilistic framework that is
considered herein. In contrast with the probabilistic analytic framework considered in [10] for the
spread of cyber threats in networks, the proposed model does not rely on a restrictive assump-
tion of independence of the infection events. To solve the optimization problem, we consider
a quadratic formulation that bounds the infection probabilities using Hunter’s bound and thus
determines a more conservative solution. The advantage of this approach is twofold. First, the
quadratic formulation can be easily linearized and solved by standard MIP solvers. Second, the
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Table 1: Computational results showing the optimality gap closed and bound reduction at the root
node with random graphs of 0.1 density. Here + indicates CBC defaults w/o preprocessing, and -
signifies a run without invoking any CBC cuts; (·) indicates the use of the corresponding feature
and equation number, as defined in this paper. Each row displays the statistics of 100 runs with
ten different graphs and ten using each graph but with different values for the input parameters
W,π, P , and T .

Nodes Edges Cuts/Cover Gap Closed Bound Reduction Cut Number
Avg Avg Min Max Avg Min Max Avg Min Max

50 121.3

+ 0.374 0.096 0.866 0.491 0.286 0.640 5591.9 3266 6327
-,(14a) 0.028 -0.037 0.200 0.045 0.003 0.093 16.5 4 27
+,(14a) 0.372 0.096 0.841 0.494 0.282 0.640 5571.6 4284 6266
-,(14b) 0.063 -0.014 0.291 0.111 0.070 0.170 31.6 24 42
+,(14b) 0.388 0.118 0.821 0.500 0.305 0.636 5490.9 3296 6228

60 177.6

+ 0.241 0.069 0.545 0.442 0.283 0.611 6800.1 5961 7404
-,(14a) 0.011 -0.011 0.107 0.030 0.000 0.096 14.6 4 27
+,(14a) 0.241 0.065 0.477 0.446 0.279 0.629 6776.9 3620 7652
-,(14b) 0.046 0.000 0.212 0.097 0.044 0.151 36.9 26 51
+,(14b) 0.249 0.055 0.568 0.450 0.297 0.620 6736.4 5672 7254

70 244.0

+ 0.163 0.065 0.363 0.423 0.268 0.532 5930.6 3774 7909
-,(14a) 0.008 -0.023 0.059 0.023 0.000 0.070 11.6 0 26
+,(14a) 0.166 0.064 0.400 0.425 0.272 0.543 5887.5 3224 7953
-,(14b) 0.033 0.000 0.105 0.085 0.052 0.119 41.1 30 53
+,(14b) 0.173 0.082 0.475 0.430 0.272 0.557 5913.1 3050 8053

80 315.9

+ 0.122 0.043 0.276 0.378 0.283 0.494 5739.8 3284 7599
-,(14a) 0.004 0.000 0.033 0.016 0.000 0.048 10.0 0 21
+,(14a) 0.126 0.043 0.308 0.380 0.285 0.503 5814.4 3063 7730
-,(14b) 0.027 0.000 0.102 0.078 0.048 0.113 45.7 32 59
+,(14b) 0.129 0.052 0.295 0.385 0.297 0.480 5600.0 3224 7506

90 394.2

+ 0.101 0.043 0.237 0.365 0.283 0.451 5882.1 3316 7715
-,(14a) 0.003 0.000 0.033 0.014 0.000 0.049 8.3 0 24
+,(14a) 0.097 0.043 0.233 0.366 0.292 0.447 5816.6 3428 7364
-,(14b) 0.019 0.000 0.090 0.071 0.054 0.095 49.7 39 61
+,(14b) 0.101 0.043 0.247 0.372 0.292 0.458 5938.7 4043 7848
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Table 2: Computational results showing the optimality gap closed and bound reduction at the root
node with random graphs of 0.2 density. Here + indicates CBC defaults w/o preprocessing, and -
signifies a run without invoking any CBC cuts; (·) indicates the use of the corresponding feature
and equation number, as defined in this paper. Each row displays the statistics of 100 runs with
ten different graphs and ten using each graph but with different values for the input parameters
W,π, P , and T .

Nodes Edges Cuts/Cover Gap Closed Bound Reduction Cut Number
Avg Avg Min Max Avg Min Max Avg Min Max

50 249.7

+ 0.093 0.021 0.218 0.365 0.260 0.489 5177.6 2543 6494
-,(14a) 0.002 -0.011 0.034 0.008 0.000 0.037 3.6 0 12
+,(14a) 0.094 0.021 0.218 0.367 0.264 0.497 5097.7 2552 6403
-,(14b) 0.018 0.000 0.069 0.062 0.035 0.092 27.4 15 41
+,(14b) 0.095 0.032 0.207 0.372 0.249 0.506 4934.7 2141 6495

60 350.7

+ 0.065 0.010 0.196 0.334 0.242 0.466 5502.4 2880 7052
-,(14a) 0.002 0.000 0.023 0.008 0.000 0.037 3.9 0 21
+,(14a) 0.065 0.021 0.196 0.332 0.240 0.446 5284.7 2882 6702
-,(14b) 0.014 0.000 0.120 0.056 0.028 0.084 32.3 21 47
+,(14b) 0.069 0.021 0.185 0.339 0.249 0.480 5467.9 2804 6694

70 480.9

+ 0.055 0.021 0.121 0.315 0.262 0.387 5944.3 3779 7426
-,(14a) 0.001 0.000 0.031 0.005 0.000 0.023 2.9 0 11
+,(14a) 0.055 0.021 0.120 0.313 0.262 0.380 5845.4 3779 7427
-,(14b) 0.009 0.000 0.055 0.047 0.030 0.065 37.0 25 56
+,(14b) 0.056 0.021 0.135 0.317 0.247 0.385 5816.3 2851 7250

80 619.5

+ 0.041 0.010 0.088 0.292 0.215 0.378 6359.2 3616 8833
-,(14a) 0.000 0.000 0.011 0.004 0.000 0.024 2.7 0 24
+,(14a) 0.041 0.010 0.130 0.290 0.215 0.378 6282.5 3286 8461
-,(14b) 0.006 0.000 0.033 0.043 0.023 0.060 42.3 28 56
+,(14b) 0.043 0.010 0.109 0.295 0.211 0.362 6219.3 3900 8830

90 796.6

+ 0.034 0.010 0.076 0.260 0.200 0.312 6464.2 3709 9281
-,(14a) 0.001 0.000 0.011 0.003 0.000 0.017 2.7 0 19
+,(14a) 0.033 0.010 0.076 0.258 0.207 0.313 6370.3 3231 9764
-,(14b) 0.005 0.000 0.033 0.036 0.022 0.056 46.0 32 61
+,(14b) 0.035 0.010 0.087 0.263 0.207 0.328 6413.8 4152 9017
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Table 3: Computational results showing the optimality gap closed and bound reduction at the root
node with random graphs of 0.25 density. Here + indicates CBC defaults w/o preprocessing, and
- signifies a run without invoking any CBC cuts; (·) indicates the use of the corresponding feature
and equation number, as defined in this paper. Each row displays the statistics of 100 runs with
ten different graphs and ten using each graph but with different values for the input parameters
W,π, P , and T .

Nodes Edges Cuts/Cover Gap Closed Bound Reduction Cut Number
Avg Min Max Avg Min Max Avg Min Max

50 305.4

+ 0.068 0.011 0.222 0.337 0.250 0.427 5076.7 2593 6291
-,(14a) 0.001 0.000 0.021 0.006 0.000 0.035 2.7 0 18
+,(14a) 0.069 0.011 0.188 0.337 0.231 0.418 5103.6 2533 6431
-,(14b) 0.014 0.000 0.106 0.051 0.028 0.076 26.6 19 37
+,(14b) 0.075 0.010 0.267 0.342 0.247 0.431 5027.3 2460 6350

60 454.9

+ 0.049 0.010 0.120 0.304 0.235 0.445 5559.1 2608 6831
-,(14a) 0.000 0.000 0.012 0.003 0.000 0.025 1.8 0 14
+,(14a) 0.048 0.010 0.125 0.302 0.221 0.441 5389.0 3101 6852
-,(14b) 0.007 -0.010 0.034 0.043 0.022 0.066 31.1 20 43
+,(14b) 0.049 0.010 0.135 0.306 0.237 0.446 5424.3 2416 7322

70 594.9

+ 0.038 0.010 0.097 0.285 0.216 0.365 5919.6 2986 7929
-,(14a) 0.001 0.000 0.011 0.003 0.000 0.020 2.1 0 12
+,(14a) 0.036 0.010 0.108 0.282 0.207 0.351 5825.7 2986 7933
-,(14b) 0.007 0.000 0.076 0.039 0.017 0.055 36.5 23 50
+,(14b) 0.041 0.010 0.128 0.290 0.219 0.370 5855.2 2634 7458

80 800.9

+ 0.027 0.010 0.065 0.255 0.206 0.303 6216.7 3202 8784
-,(14a) 0.000 0.000 0.011 0.002 0.000 0.016 2.0 0 12
+,(14a) 0.027 0.010 0.076 0.250 0.195 0.302 6096.1 3511 8650
-,(14b) 0.003 0.000 0.022 0.033 0.021 0.046 41.6 28 55
+,(14b) 0.028 0.010 0.059 0.255 0.204 0.306 6014.1 3029 9203

90 994.6

+ 0.025 0.010 0.077 0.245 0.204 0.301 6678.9 3813 9668
-,(14a) 0.001 0.000 0.011 0.002 0.000 0.014 2.7 0 19
+,(14a) 0.024 0.010 0.076 0.238 0.190 0.297 6424.5 3118 9647
-,(14b) 0.003 0.000 0.033 0.028 0.018 0.037 48.4 34 66
+,(14b) 0.026 0.010 0.114 0.244 0.187 0.299 6538.8 2425 9791
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Table 4: Computational results with random graphs of 0.10 density. Here + indicates CBC defaults
w/o preprocessing; (·) indicates the use of the corresponding feature and equation number, as
defined in this paper. Each row displays the statistics of 100 runs with ten different graphs and
ten using each graph but with different values for the input parameters W,π, P , and T .

Nodes Edges Cuts/Cover B&B Nodes CPU sec # over
Avg Min Max Avg Min Max Limit

50 123.4
+ 110.6 10 381 11.0 4.1 24.4 0

+,(14b) 92.1 10 604 10.5 4.4 32.4 0

60 180.3
+ 823.9 68 4902 45.3 16.8 169.2 0

+,(14b) 848.4 54 3895 45.0 15.3 145.3 0

70 236.1
+ 4311.3 170 22266 185.4 23.4 716.9 0

+,(14b) 3225.8 206 15203 148.4 31.7 510.1 0

80 310.8
+ 14830.6 684 52501 883.8 83.7 3638.9 0

+,(14b) 15664.0 728 77422 875.3 75.8 3890.9 0

90 396.2
+ 72787.6 24719 135896 5799.3 1863.8 LIMIT 26

+,(14b) 68326.7 15284 124864 5572.2 1395.9 LIMIT 25

Table 5: Computational results with random graphs of 0.20 density. Here + indicates CBC defaults
w/o preprocessing; (·) indicates the use of the corresponding feature and equation number, as
defined in this paper. Each row displays the statistics of 100 runs with ten different graphs and
ten using each graph but with different values for the input parameters W,π, P and T .

Nodes Edges Cuts/Cover Nodes CPU sec # over
Avg Min Max Avg Min Max Limit

50 256
+ 3227.2 319 11302 129.9 25.4 439.4 0

+,(14b) 3082.7 466 13638 122.2 29.3 354.2 0

60 328
+ 17284.0 4594 47602 890.8 295.4 2097.3 0

+,(14b) 17351.5 4169 62974 903.5 238.8 3257.5 0

70 471
+ 65210.7 17338 112893 5399.8 1662.6 LIMIT 14

+,(14b) 62406.2 19742 114868 5072.4 1669.3 LIMIT 14
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Table 6: Computational results with random graphs of 0.25 density. Here, + indicates CBC defaults
w/o preprocessing; (·) indicates the use of the corresponding feature and equation number as
defined in this paper. Each row displays the statistics of 100 runs with ten different graphs and
ten using each graph but with different values for the input parameters W,π, P and T .

Nodes Edges Cuts/Cover Nodes CPU sec # over
Avg Min Max Avg Min Max limit

50 301.9
+ 5967.1 790 16168 266.4 68.8 696.7 0

+,(14b) 5741.7 694 14280 247.3 53.9 693.3 0

60 447.3
+ 30775.0 7668 101299 1845.4 389.6 7123.1 0

+,(14b) 29767.2 5096 116839 1855.2 346.3 6634.9 0

application of the quadratic probability bound, and thus the resulting formulation, need not re-
quire stochastic independence.

To improve on the solution time of standard solvers, we develop novel cover inequalities as
cutting planes for the quadratic formulation and its linearized counterpart. We also show stronger
extended-cover inequalities to be valid for our problem. While knapsack-cover inequalities are de-
rived for constraints whose left-hand side is monotone and convex, these properties do not hold
in our case (i.e., convexity does not hold before our constraints are linearized). We prove the va-
lidity of our inequalities upon verifying a simple, testable condition. This condition is verified in
runtime before appending the inequality as a cutting plane in the course of the branch-and-cut
algorithm. In nearly all computational experiments, generating a small number of the proposed
cuts results in modest and in some cases substantial improvements in terms of tightening the root
relaxation bound, overall branch-and-bound CPU time, and branch-and-bound nodes. In future
work we will further investigate the tightening and generation of a diverse set of our extended-
cover inequalities. Further, we will consider extensions and simulation experiments with this
work in a dynamic setting when a network response problem is solved repeatedly as an epidemic
is spreading through the network. We will consider multilevel methods to scale the solution ap-
proach for solving larger instances.

Disclaimer The submitted manuscript has been created by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (”Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.
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A Analysis of the Deterministic Model

For i ∈ V , let T 0
i ∈ [0, 1) be the level of threat of node i if it is isolated (i.e., if none of its neighbors

are open). A nonlinear model based on [1] for network response is

maximize
x,t

u(x) (15a)

subject to ti = T 0
i xi +

∑
j∈N(i)

pijtjxixj i ∈ Vu (15b)

0 ≤ ti ≤ Ti i ∈ Vu (15c)

ti = Ti = 1 i ∈ Vc (15d)

x ∈ {0, 1}n. (15e)

The formulation (15) relaxes a set of additional constraints that are present in the site model of
Altunay et al. [1] in order to discourage shutting down uncompromised sites. Instead we may
add a term −C

∑
i∈Vc

xi in (15a); here, C ≥ 0 is a penalty for compromised sites that remain open.
For small values of C the parameter serves as a tiebreaker among different optimal solutions,
favoring those that shut down more compromised sites.

Altunay et al. [1] formulate their problem as a mixed-integer nonlinear program (MINLP)
similar to (15) and show that it can be solved as a MIP through a particular linearization scheme.
This solution approach is well justified for problems that are recognized to be computationally
hard (otherwise, more efficient and scalable solution methods may exist). We now show that their
network response problem (more precisely, its relaxation (15)), is NP-hard.

Proposition 6. The problem (15) with Wij = 1 for every {i, j} ∈ E is NP-hard.

Proof. The proof follows by reduction of the maximum independent set problem. Let Ḡ = (V̄ , Ē)

with V̄ = {1, . . . , `} denote an input graph of the independent set problem. Let V = {1, . . . , 2`}
and E = Ē ∪ {{i, `+ i} | i = 1, . . . , `}. For an (arbitrary) constant ε > 0 set T 0

i = Ti = ε for all
i ∈ V , and let

pij =

0 {i, j} ∈ E \ Ē,

ε otherwise,

and let Wij = 1 for all {i, j} ∈ E. Evidently, since T 0
i = Ti > 0 and pij > 0 for all {i, j} ∈ Ē, every

solution (x, t) that is feasible for (15) satisfies xixj = 0 for all {i, j} ∈ Ē and thus corresponds to
an independent set in the graph Ḡ. Conversely, given an independent set S ⊆ V̄ , its (extended)
characteristic vector x ∈ {0, 1}n with xk = 0 for all k ∈ V̄ \ S, must satisfy xixj = 0 for all
{i, j} ∈ Ē, and hence (x, εx) is feasible for (15). For a solution (x∗, t∗) that is optimal to (15), it
follows that ∑

{i,j}∈E

Wijx
∗
ix
∗
j =

∑
{i,j}∈E:
i∈V \V̄ ,j∈V̄

x∗ix
∗
j =

∑
i∈V̄

x∗ix
∗
i+` =

∑
i∈V̄

x∗i . (16)

The last equality followed from optimality; pi,i+` = 0, for all i ∈ V̄ , implies the feasibility of
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(x, t) ∈ {0, 1}n × [0, 1]n defined by

xj =

x∗j j ∈ V̄ ,

1 j ∈ V \ V̄ ,
and tj =

x∗jε j ∈ V̄

1 j ∈ V \ V̄ ,

for (15). By (16) and the correspondence of feasible solutions of (15) and independent sets, it
follows that the optimal solution of (15) in G yields a maximum independent set in Ḡ.

B Proof of the Proposition 1

The proof follows by a similar reduction of the maximum independent set problem in the input
graph Ḡ = (V̄ , Ē), as in the proof of Proposition 6; specifically, let G and W be defined as in that
proof. For arbitrary constants (independent of n) ε, δ ∈ (0, 1) with 0 < ε < δ < 1, let Ti = ε for
i ∈ V̄ , and let

pij =

δ {i, j} ∈ Ē

0 {i, j} ∈ E \ Ē
.

It follows that every solution x that is feasible for (3) has xixj = 0, for every {i, j} ∈ E; otherwise,
by the fact that the left-hand side of (3b) is increasing in x,

xi −
∏

k∈N(i)

(1− δxk) ≥ 1− (1− δ) = δ > ε = Ti,

a contradiction to the feasibility of x. Conversely, for an independent set S ⊂ V̄ , if xi = 0 for every
i ∈ V̄ \ S, then x is feasible for (3). Further, the fact that qij = 0 for {i, j} ∈ E \ Ē implies that (16)
holds. Therefore, an optimal solution of (3) yields a solution that is optimal to the maximum
independent set problem.

C Proof of Proposition 2

The proof follows by a similar reduction of a maximum independent set problem in the input
graph Ḡ as in the proof of Proposition 1. Let G = (V,E), W , q, and T be as defined as in that
proof, but choosing δ, ε > 0 so that δ = 1/n > ε. Evidently δ and also the ε can be selected so
that both are represented using at most an O(log n) number of bits. Further, for all i ∈ V and
j, k ∈ N(i) let rijk = qijqik. It follows that for all x ∈ {0, 1}n with xj = 0, for some j ∈ V ,

gi(x+ ej)− gi(x) = qij

1−
∑

k∈N(i):
{j,k}∈Ti

qikxk

 ≥ 1

n
−N(i)

(
1

n2

)
≥ 1

n
− n− 1

n2
> 0.

Now, assume x′ is feasible for (3). Then, x′ix
′
j = 1 for some {i, j} ∈ Ē implies that

gi(x
′) ≥Mi + qij = Mi + δ > ε+Mi = Ti +Mi,
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a contradiction. Therefore x′ix
′
j = 0 for all {i, j} ∈ Ē. So, applying the converse argument as in the

proof of Proposition 1, it follows that a solution x′ is feasible for (5) if an only if
{
i ∈ V̄ | x′i = 1

}
is an independent set. Then, it follows from (16) that each solution x∗ that is optimal for (5) yields
a maximum independent set in Ḡ.

D Comparison of probability bounds under stochastic independence

In the following we empirically compare (3) with two formulations: the first-order (union bound)
formulation, with all bilinear terms in (5) satisfying rijk = 0, and formulation (5) with rijk = qij =

qik. To evaluate each, we consider the relative error, defined as

u(x(3))− u(x(5))

u(x(3))
,

where x(·) is an optimal solution of the corresponding formulation (·). The computational exper-
iments are run using the state-of-the art CPLEX solver, version 12.3, to compute (the linearized
version of) (5) with rijk = 0 and (5) with rijk = qijqik for all i ∈ V , and {j, k} ∈ Ti. To compute (3),
we use the open-source state-of-the-art MINLP solver BARON, Version 9.3.1.

The results of the experiments are shown in Table 7. Each row displays an average of 10 runs,
each with a randomly generated subset of Vc ⊆ V of the indicated cardinality having πj = 1 for
all j ∈ Vc. For each i ∈ V \ Vc, πi is generated uniformly at random from (0, 0.8).

Table 7: Error rates and running times over ten runs with the aggregated Open Science Grid
example network, OSG-1 appearing in [1]; each run corresponds to a random subset Vc of the
indicated cardinality, and which contains all nodes i with πi = 1.

|Vc| Runs of (5) with r = 0 (union bound) Runs of (5) (Hunter’s bound) Runs of (3)
Avg Err Max Err Avg CPU Max CPU Avg Err Max Err Avg CPU Max CPU Avg CPU Max CPU

1 0.10 0.15 0.21 0.31 0.07 0.13 0.37 0.43 0.76 1.29
2 0.08 0.14 0.21 0.27 0.02 0.07 0.45 0.59 0.66 1.55
3 0.06 0.14 0.20 0.28 0.01 0.06 0.51 0.62 1.12 4.10
4 0.09 0.16 0.22 0.29 0.02 0.06 0.52 0.81 0.72 2.96
5 0.12 0.16 0.28 0.49 0.01 0.05 0.58 0.69 0.80 2.32
6 0.12 0.17 0.26 0.35 0.03 0.07 0.77 2.14 0.84 2.90
7 0.13 0.20 0.26 0.41 0.02 0.06 0.86 2.38 1.24 4.76
8 0.14 0.17 0.28 0.50 0.01 0.09 0.65 0.97 0.74 2.19
9 0.15 0.19 0.38 0.64 0.01 0.05 0.85 1.43 1.61 5.49

10 0.15 0.21 0.33 0.50 0.02 0.10 0.92 1.75 1.09 1.55

Table 7 shows that the relative error of the formulation (5) with gi(x) having bilinear terms
is substantially smaller than the relative error of the formulation involving only linear terms in
gi(x). Further, the error does not significantly grow as |Vc| increases in contrast to the formula-
tion involving only linear terms. The running times of the exact (assuming the independence of
infection probabilities) nonlinear formulation (3) are about twice as much as that of the quadratic
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approximation (5). However, the full product formulation (3) becomes increasingly difficult to
solve: the running times of (5) with |V | = 60 and |E| = 328 are on the order of a few minutes,
while the full product form (3) could not be solved to optimality within two hours. Thus, we can
use the quadratic formulation (5) as a suitable surrogate for the nonconvex multilinear formula-
tion (3), which is much harder to solve. Moreover, the quality of the quadratic approximation
significantly improves on the quality of the linear approximation.
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