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Abstract—Relationships between entities in complex systems
could be represented using the paradigm of networks. The net-
work representation can then reveal the evolution, structure and
dynamics of those systems. Frequently, obtaining the required
scientific data about the networks is expensive or infeasible.
In other words, the amount of available empirical data is
insufficient for simulation, validation, verification, and other
scientific tasks. In these situations, empirical data should be
augmented by synthetic data generated from models in such a
way that properties of the system are preserved in the synthetic
data, even when those properties are unique to the system or not
fully known, but existing methods only reproduce a limited set of
specified network properties. Here we introduce a novel strategy
for synthesizing artificial networks that can realistically model
a variety of network properties and that is termed multiscale
network generation, or as a specific algorithm, MUSKETEER.
This strategy first creates a hierarchy of aggregated representa-
tions of the original network, and then reformulates the network
generation problem at all levels of this hierarchy in order to
take into account properties at multiple scales of the system.
The network is then edited at any or all scales, depending on the
desired variability in the ensemble of synthetic networks. We find
that for many complex networks taken from real-world systems,
the strategy is able to preserve important properties with little
statistical bias while achieving high degree of variability and
arbitrary difference from the original.

I. INTRODUCTION

Across the sciences, networks can represent connections

between entities, and thus provide insight into the function,

dynamics, and evolution of natural and man-made systems.

However, high-quality, large-scale network data is often not

available, because of economic, legal, technological, or other

obstacles [1]. In particular, government agencies that develop

real-time and large-scale network applications name network

modeling among their key challenges [2], [3]. For example,

the human contact networks along with infectious diseases

spread are notoriously difficult to estimate, and thus, we can

misunderstand the dynamics and control of epidemics stems

from models that make highly simplifying assumptions or

simulate contact networks from incomplete or proxy data

[4], [5]. In another domain, the development of cybersecurity

systems requires testing across diverse threat scenarios and

validation across diverse network structures that are not yet

known, in anticipation of the computer networks of the future

[2]. In both examples, the systems of interest cannot be

represented by a single exemplar network, but must instead be

modeled as ensembles of networks which represent the range

of diversity of networks found in cybersystems. Realistic net-

work models are vital for evaluation of different components

in information fusion systems (IFS) such as of the methods

for situational awareness [6], and anomaly/threat detection

[7]. Such models can be used for parameters’ training, and

missing data completion that are typical requirements in IFS.

These cases point to the importance of data-driven methods for

synthesizing networks that capture both the essential features

of a system and realistic variability in order to use them in

such tasks as simulations, verification, and decision making.

A good synthetic network must meet two criteria - realism

and diversity. First, it should be realistic with respect to

structural features that govern the domain-specific processes

of interest (such as system function, dynamics, and evolution),

as the following examples illustrate: (a) models of social net-

works should be able not only to reproduce structural features

(such as the small-world property), but also, and perhaps more

importantly, emulate emergent sociological phenomena such

as interactions between individuals in a community, as driven

by their psychological needs and daily routines (that is, the

generated network should show similar interactions by its arti-

ficial individuals, as determined by implicit psychological and

social rules); (b) models of interdependent infrastructure sys-

tems (such as power grids, water, and transportation networks)

should demonstrate realistic resilience, joint performance, and

potential mutual failures; and (c) models of metabolic interac-

tions should ultimately reflect biochemical properties of a cell.

Second, a synthetic network should reflect normally-occurring

diversity in a system, but without systematic biases that

departs from reality. This feature is particularly important for

benchmarking and evaluating the robustness of network-based

algorithms, anonymizing networks, and generating plausible

hypothetical scenarios.

A number of network generation methods have been devel-

oped, and these fall into two classes: parametric generative

models and editing methods (see surveys in [8], [1], [3], [9],

[2]). The first set of methods produces (by using randomization

and replication) a network from a small initial seed network

(sometimes empty). The goal of such generation is to produce

the structure that matches real data in prespecified properties,

such as the degree distribution [10], [11], clustering [12],

and the number of small subgraphs [13]. These methods

are attractive because they often produce networks with the

desired features and are grounded in well-developed theory
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(e.g., [14]). Some of these network generators mechanistically

model network growth [15], [16], whereas others incorporate

domain-specific information such as geographic location [17]

and cyber networks topological properties [18], [2]. One of the

most successful generative strategies is based on Kronecker

graphs [19] (including stochastic Kronecker graphs; see also

related work [1], [20]). Networks generated by this model

preserve properties such as degree distribution, diameter, and

eigenvalues. Such methods often describe an evolutionary

process that can potentially lead to the original network;

however, the probability that it will lead to the structure

that is approximately isomorphic to a particular real system

is negligible, given the high dimensionality of the space.

This makes generative methods ill-suited for studies such

as simulations when one may need to work with synthetic

networks that are similar to real systems in a broad range

of properties and not just in a small number of prespecified

properties. The other class of network generators is based

on editing [21]. These methods start with a given (real or

empirical) network and randomly change its elements until

the network becomes sufficiently different from the original

network. These are designed to introduce variability while

preserving a few prespecified structural properties, such as

the degree distribution. While promising, such a process

cannot be in generally sustained for many iterations because

modifications tend to introduce shortcuts in the network that

quickly evolve it towards a random graph. For that reason,

to avoid this biasing tendency, an editing algorithm must be

calibrated based on information about the network structure.

Because networks are used in many diverse scientific and

technological domains, constructing a network generator suit-

able for even a fraction of them is challenging. Indeed,

although various models and algorithms have been proposed

for synthesizing networks, our analysis suggests that they syn-

thesize networks that fall short of what is desirable. Existing

methods (1) involve generative mechanisms or system-specific

assumptions that are not plausible across domains, (2) focus

on one or a few predefined topological features, such as degree

distribution and clustering, at the expense of others that may be

critical but are perhaps unrecognized or cannot be incorporated

into the generator easily, and/or (3) reliably reproduce a set

of target properties but fail to capture naturally occurring

stochasticity in those properties.

Here, we introduce the multiscale network generation

(MNG) approach that is cross-domain, captures many features

of real networks and incorporates an arbitrarily large or

small stochasticity. MNG is inspired by the observation that

many real-world networks exhibit a multiscale structure in

the sense that network elements can be naturally assigned

into aggregates or communities which are themselves parts

of larger aggregates, and so on in a hierarchical fashion [22],

[23]. Starting from a single known or hypothesized network

from any domain, it synthesizes ensembles of networks that

preserve, on average, a diverse set of features at multiple

scales of its structure, including several measures of centrality,

degree assortativity, path lengths, clustering, and modularity,

while introducing unbiased variability across the ensemble

in many of these properties at multiple scales. The most

important property that distinguishes MNG from all other

existing strategies is related to the realism of a synthetic

network that can be obtained at the required fine-, and coarse-

grained resolutions. The synthetic network will be similar to

the original one at multiple scales of coarseness. Moreover,

the MNG framework makes it easy to control the similarity

across the scales, i.e., if desired the coarse-grained scales can

differ, whereas the fine-grained scales can still be similar, and

vice versa. Additionally, MNG could be combined with other

methods, such as methods for anonymization and thus, it opens

a new research direction in this class of methods.

The MNG framework is inspired by adaptations of multigrid

(and general multiscale) methods [24], [25] to combinatorial

optimization on networks [26], [27]. The multiscale method

starts with a formulation of an optimization problem on a

network G, and constructs a hierarchy of networks G0 =
G,G1, ..., Gk (progressively smaller) via aggregation proce-

dure [26], solves a simpler optimization problem at the coars-

est scale when Gk is small enough, and then disaggregates

the solution by gradual prolongations from coarse to next-

finer scales. Similarly, we create a hierarchy of networks;

but, in contrast to multiscale methods for the computational

and optimization problems, we do not optimize any objective

on the network but rather edit the topology of the network

preserving some features. To prevent the editing process from

generating unrealistic structures, at any moment, we allow

only local editing because the global changes (if required)

are deferred to coarser levels. In other words, the problem

of network editing is sequentially formulated and solved at

several (possibly at all) scales.

Analogously to multiscale methods for computational prob-

lems [24], by using an appropriate aggregation method, that

could be domain-specific, MNG is able to detect and exploit

the “geometry” behind the original network at multiple scales.

This geometry is not captured by other network generation

methods. Indeed, network properties that are usually preserved

by the existing generation methods (such degree distribution,

or clustering) on the original network (i.e., at its finest scale

G0 only) can differ significantly at coarser scales. Moreover,

it is known that the topology of many complex networks is

hierarchical [22], [23], and therefore it naturally lends itself to

reproduction through iterations of generative laws at multiple

scales. In general, such generative laws often can be different

at different scales, as evidenced by the finding that complex

networks are self-dissimilar across scales [28], [22], [29].

The MNG method has been implemented in the software

tool, the Multiscale Entropic Network Generator (MUSKE-

TEER), which is made publicly available [30].

II. NOTATION

For both a graph and the underlying network we will use

the same notation G that will be clear from the context. A

graph G is represented by a pair (V,E), where V is a set of

n nodes, and E is a set m of edges. We consider simple,
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Fig. 1. The V-cycle scheme underlying multiscale network generation. The
original network is first aggregated into smaller and smaller networks, and
then the process is reversed. The number of levels is usually greater than the
four shown here and depends on the structure and size of the original network,
the aggregation algorithm, as well as the user’s input.

undirected, edge-, and node-weighted graphs, although the

MNG strategy can be easily generalized to other networks.

The edge-, and node weighting functions are ω : E → R≥0,

and c : V → R≥0. By dp =
∑

k ωpk we denote the weighted

degree of a node p. A Laplacian of a graph G is denoted

by L = D − A, where D is a diagonal matrix with entries

{dp}
n
p=1, and A is a weighted adjacency matrix with entries

ωpq . The normalized Laplacian of a graph is denoted by

L = D−1/2LD−1/2. The Moore-Penrose pseudo-inverse of

a matrix M is denoted by M†. The i-th unit vectors in R
n are

denoted by ei. Throughout this paper, we will use subscript

(·)i to denote the corresponding quantity (·) for level i in the

multilevel hierarchy. The levels of the network are indexed by

i ∈ {0, 1, . . . }, where i = 0 corresponds to the input network

prototype. For example, G0 denotes the input network and G1

correspond to network at the first level of coarsening.

III. MULTISCALE NETWORK GENERATION METHOD

The MNG framework is illustrated schematically in Fig. 1

and its pseudocode is presented in Algorithm 1. The MNG can

be expressed as a recursive algorithm where the recursion stops

based on user-defined criteria (line 1, for example when the

coarsest scale is reached or when the changes are not required).

MNG starts with a known network G0 = G, and its first

phase recursively constructs a hierarchy of network’s coarse

representations. Namely, the network is aggregated repeatedly

(Algorithm 1, line 2) in order to create the hierarchy {Gi}
k
i=1.

A hierarchy of aggregations could be thought of (in the

simplest case) as computing consecutive restrictions using

Galerkin-like operators:

Li+1 ← (Pi)
TLiPi, (1)

where Li is the Laplacian of Gi, and the Pi ∈ R
ni×ni+1 is

the restriction matrix that describes the strength of connec-

tivity between ith-level (fine) nodes and corresponding coarse

aggregates at level i+ 1.

While the aggregates are sometimes well-known from the

application (as, for example, in [31]), in most cases the

aggregated structure has to be discovered computationally,

possibly without any subject-matter input for the particular

class of networks. In the most general case, we do not rely on

a particular method for detecting the coarse representation of a

network and diverse aggregation methods may be used, includ-

ing schemes like community detection, hierarchical clustering

and others.

Algorithm 1. MNG(Gi)

1: if perturbations in levels > i then

2: Gi+1, Pi ← create aggregated network from Gi

3: Gg
i+1
← MNG(Gi+1)

4: Gd
i ← interpolate unedited aggregates from Gg

i+1

5: Gd
i ← disaggregate edited aggregates from Gg

i+1

6: end if

7: Qi ← measure properties of Gi

8: Gg
i ← editing Gd

i preserving Qi

9: Return Gg
i

Next, MNG recursively calls itself (line 3) to solve the

network generation problem on the coarse network Gi+1. Gen-

erally, the recursion terminates (or some scales can be skipped)

when changes at more coarse levels are not requested by the

user. If requested, such coarse level changes allow the user to

make changes to the larger-scale structure of the network, such

as its backbone, and may or may not be desirable depending

on the intended use of the synthetic network data. In any

case, aggregation would stop automatically if the aggregated

network is already very small or very dense.

In the next steps (lines 4 and 5) the edited network

Gg
i+1

from level i + 1 is disaggregated at level i, i.e., the

newly generated network Gd
i will be created from its coarse

representation Gg
i+1

. Processing of unedited aggregates (line

4) is a straightforward lossless reverse projection operation

that reverses aggregation based on stored data Pi (line 2). A

unique aspect of MNG as compared to conventional multigrid

is the need to construct (i.e. fill-in) fine-level structure in

nodes and edges which were added to Gg
i+1

but are not

found in Gi+1. In order to make the structure realistic, MNG

measures the fine-level structure of a random unedited node

or edge from Gi, respectively, and copies this structure (with

randomization) into the newly-created node or edge. When the

reverse projection is ready, the network is fully disaggregated

(line 5). An alternative scheme for disaggregation (line 5)

may instead use information from other networks in the same

domain, rather than necessarily Gi. It is critical for realism that

any new structures retain properties of a comparable network

at the ith level of aggregation.

Once disaggregation is complete, MNG measures the prop-

erties of the unmodified network Gi (line 7) at the i level

of coarsening (a specific fast measurement approach based on

random walks is described in more detail below.) Next, the

disaggregated coarse “replica” network Gd
i receives controlled

perturbations (line 8) to obtain Gg
i . These perturbations take

into account properties of the clustered networks from the

corresponding scales and preserve similarities with them if

needed (dashed arrows in Fig. 1). Measurement and editing
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of networks in MNG can be informed by various domain-

specific considerations. In general, editing at level i should be

appropriate to that level, that is, avoid edits that inadvertently

modify the hierarchical structure at some higher level j > i.
The disaggregate-and-edit process is repeated all the way up

until the original coarseness level is reached. At that point the

final result is generated, namely, a new network Gg
0.

The editing process performs only simple operations, but

those operations can generate high-entropy changes because

they could be applied everywhere in the entire hierarchy

{Gi}
k
i=0. As a result, when nodes are added to the fine levels

of the hierarchy, they have the effect of just adding nodes

to the replica; but when this same addition occurs at deeper

levels, the new nodes will correspond to several nodes or

large communities in the final synthetic network. The deeper

the network in which the change occurs, the more significant

is change to the topology. In this way, one can make large,

nontrivial changes to the topology of the replica through a

simple random process at deeper levels. Usually the creation

of a node is accompanied by the creation of edges to it, and

the ultimate effect of those edges on the replica depends on

the level: at the finest level, edges are just edges, whereas

at deeper levels of aggregation, an edge represents many

interconnections across entire communities of aggregated fine

nodes. The algorithm constructs those structures using a deep

copying processes, where the contents of newly-created the

nodes and edges exactly copies the structure of existing

aggregates at all levels of clustering. This copying process can

also preserve annotation of the nodes including any categories

(e.g. student vs. teacher) and relationship type.

MNG is expected to produce realistic replicas because it

reproduces the original network everywhere except at the

edited components, and the edited components are copied from

the original network. As the edit rate is lowered, the replicas

become arbitrarily close to the original in every respect,

including properties that are unknown or unspecified, provided

the property is not highly sensitive to small perturbations of

the network. Furthermore, since all edits in MUSKETEER are

constrained by the properties of the network at the appropriate

structural level, the replicas are expected to preserve scale-

dependent features and can be self-dissimilar across scales (in

accordance with the original network). In contrast, random

graph model generators are often unable to reproduce unspec-

ified and scale-dependent properties, as demonstrated below.

A. MUSKETEER - a cross-domain implementation of MNG

Our implementation of MNG is a high-performance cross-

domain algorithm termed MUSKETEER. In MUSKETEER,

aggregation uses a high performance approximate weighted

matching algorithm [32] because it gives aggregates of uni-

form size (typically 2 nodes). In this setting, there is only

one nonzero entry in each row of Pi (see Eq. (1)), and at

most two nonzeros per column which preserves the sparsity

without additional efforts as is required in most optimization

solvers [26]. We considered other algorithms such as algebraic

distance-based [33] and community detection [34] and they

produced qualitatively similar results.

For editing, MUSKETEER uses a higher-performance

scheme based on random walks which preserves the small

loop structure of the network while avoiding any insertion of

edges that bridge nodes of the network which were previously

separated by large distances. Before making the edits, it

estimates (line 7) the probability distribution of closed random

walks in the graph Gi. Starting at a node u with at least two

neighbors, it performs a random walk of up to rmax steps

which steps to a random neighbor v1 and then stops if it finds

any neighbor v2 of u where v2 6= v1. The probabilities of a

random step are proportional to the edge weights (and self-

intersect is allowed, but not return to u or to v1). Thus, at every

node p, the random walk selects node q, a neighbor of p, with

probability given by P[q] = −(Li)pq/(Li)pp. An estimate for

rmax is the random walk hitting time upper bound

H(v1, v2) = 2mi

〈

1
√

dv2

ev2
,L†

i

( 1
√

dv2

ev2
−

1
√

dv1

ev1

)

〉

.

The algorithm records the number of steps s in a random

walk that found v2 through this random process, obtaining an

empirical distribution of Qi[s] for s by using several hundreds

of starting points u. For graphs with a relatively large number

triangles, s would be small and frequently of length 2, while

graphs with a high number of longer loops would see a

different typical value of s.

As mentioned earlier, the number of edits in terms of

fraction of modified nodes and edges is defined by the users

of MNG based on their requirements and can be as high as

50% of all nodes and/or edges. In forming new edges, the

editing process (line 7) imitates the typical structure found in

the measurement of the original topology. The first endpoint

of the edge is selected at random, while the second is selected

by performing a random walk for s steps, where s is sampled

from Qi[s]. The sampling is repeated several dozen times,

all the nodes reached at the end of the random walks are

recorded. The node found most frequently in terms of the

number of hits is selected for the other endpoint. Ties are

broken randomly, and existing neighbors are not allowed.

Such a random walk approach is a computationally fast local

process for constructing new edges consistent with the existing

topology. It is possible to replace such path sampling with the

estimated hitting times for all nodes but sampling replicates the

local structure much more realistically than the global measure

of a hitting time.

This sampling process tends to maintain multiple structural

properties of the network at multiple levels even at high

rates of editing. For example, the clustering coefficient (in

the sense of Watts and Strogatz [12]) is preserved because in

clustered networks the probability of s = 2 is elevated and

the edge uv above would construct a triangle. Other distance-

based properties such as the average geodesic distance are

also preserved under this sampling because the probability

of inserting an edge with a large d is low (if inserted, such
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an edge would significantly reduce the average distance).

When new nodes are inserted, their degree is randomly chosen

based on the degree of an existing node in the network The

new node is connected to a random existing node, and then

subsequent edges from it are inserted by sampling from Qi[s].
Deletion of nodes occurs through random sampling, while

edge deletion selects a non-singleton node and deletes an

edge to a randomly-selected neighbor. The number of such

edits (i.e., the edit rate) can be controlled by the user and can

also be tuned for a particular class of networks. MNG applies

the same editing process at all scales, unless the user adds

new adjustment requirements (line 8 in Algorithm 1) such as

control of some invariant (like the connectivity). By default, if

the original Gi is connected, the Gg
i is forced to be connected

by inserting edges between components.

When the editing rate is large, it is best for realism to split

large perturbations over q chained v-cycles (not shown), where

each performs a fraction 1/q of the required perturbations.

This functionality is supported by our implementation as a

command-line parameter.

IV. EXPERIMENTAL EVALUATION

Our first analysis examined how MNG in general and

MUSKETEER in particular model networks at multiple scales

of coarseness. The model networks should be able to resemble

an existing system except at a selected scale of aggregation, for

example, preserving either the system’s coarse-level backbone

or its fine level structure. To study this characteristic, we

applied MUSKETEER to a regular mesh (grid), and power

grid network from [17], each edited at two different scales

Indeed, as Figures 3 and 2 show, fine-level changes appear

to produce small edits while leaving intact the large-scale

structure; coarse-level changes change the overall structure

without perturbing the local structure (can be clearly visualized

in Fig. 3 only).

(a) (b) (c)

Fig. 2. Illustration of multiscale network editing using a power grid network
from [17] (The US Western Interconnection): (a) original network; (b) fine
level changes only (node/edge edit rate: 5% at i = 0); (c) deep level changes
only (node/edge edit rate: 0, 0, 0, 0, 0, 0, 5%).

Turning to more detailed practical instance, we evaluate

MUSKETEER in terms of both the fidelity and the variability

of the replicas, using an empirical example network from

infectious disease epidemiology and two well-studied network

models. A number of network properties are known to influ-

ence the dynamics of infectious disease outbreaks, including

the number of nodes (individuals); the degree distribution

(contacts) [11], [5]; clustering coefficient (number of triangles

out of all possible triangles) [12], [35]; degree assortativity

(tendency for nodes to connect to others with similar degree)

(a) (b) (c)

Fig. 3. Illustration of multiscale network editing using a toy input: (a) original
network (33x33 mesh); (b) fine level changes only (edge edit rate: 1% at level
i = 0); (c) deep level changes only (edge edit rate: 0, 0, 0, 0, 1%).

(a) (b)

Fig. 4. Replica of an empirical sexual contact network (2a) The original
contact network estimated from [41] and its replica generated by MUSKE-
TEER (2b). The replica has 2% difference to the original network, yet still
appears visually to retain its general structure. Node and edge annotation of
the original (not shown) is also realistically retained in the replica.

[11], [36], which we measure according to [37], [38]; node

centrality [11]; average distance, and modularity as measured

by [34], which can give rise to multi-wave epidemics [39].

Many of these properties are also highly relevant to system

function and dynamics in other domains [40]. One particu-

larly well-studied epidemiological network is based on data

collected in Colorado Springs by Potterat et al. ([41] Fig. 4a).

It contains 250 individuals who were in contact in the 1980s

through sex or injection drug use. In our experiments we edited

8% of the nodes at level i = 6 and the same edit rates were

assigned to the edges at those levels. This gave approximately

23% topological differences between the original and the repli-

cas, as measured by the Jaccard coefficient on the edge sets.

The network and a replica of it are shown in Fig. 4. Generally,

large-i editing tends to have higher topological effect and

is useful for preserving finer level structures like clustering

and degree-degree correlations. In practical applications the

appropriate edit rate could be much lower and determined by

the application: the edit rate should be high only when the

input network is highly different from other networks in its

class. The edit rate could be increased to 100%, while still

retaining realism, by using the multiple V-cycles capability of

MNG. As well, the size of the network could changed to create

much larger or much smaller networks than the input data.

To evaluate the performance of MUSKETEER, we gener-

ated a large number of networks and compared them to the

original network for a variety of local and global structural

properties (Fig. 5a). For most properties, the ensemble yields

a median value close to the original value and range of
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Fig. 5. Performance of MUSKETEER on a sexual contact network (Fig.2A in
[41]). (a) Structural properties of 150 generated networks (boxplots) compared
with the original network (black dots). All properties of the replicas are
normalized so that the value in the original network is mapped to 1.0. The
standard boxplots indicate the middle 50 percent of the data (from the 25th to
75th percentile), and whiskers extend to points in either direction whose values
are 50% greater than the range of values inside the box (interquartile range).
Generally, the replicated networks reflect the properties of the original network
with unbiased variation around the median. (b) Average cumulative degree
distribution of generated and original networks. Average degree distribution
and one standard deviation across replicas (green line and error bars) are
compared to original network (blue lines and points).

values that is fairly symmetric about the median. The degree

distribution as a whole is preserved with slight variation across

the generated networks (Fig. 5b).

We applied MUSKETEER to a variety of networks from

application domains as diverse as power systems, sociology

and biology with positive results (not shown here due to

lack of space). As an illustration of the versatility of the

algorithm across domains, we applied it to synthesize ensem-

bles of networks starting from 300-node networks generated

under two well-understood random graph models: the Erdős-

Rényi (ER) model, which yields simple random networks

with binomial degree distributions (Poisson in the limit of

large networks) [14], and the Barabási-Albert (BA) preferential
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Fig. 6. Comparison of two network models with 150 replicas (top) Erdős-
Rényi Graph. (bottom) Barábasi Albert Scale-Free Graph. Lines show the
properties of individual networks (black dots: original, boxplot: replicas). In
most properties the replicated networks are distributed about the original with
desirable variation. There is little or no bias in the properties of the replicas
despite the fact that 38− 42% of the edges in those networks are new. The
generation parameters are p = 0.05 for ER and m = 10 in BA and edit rates
were 8% for nodes and edges at level i = 4.

attachment model, which yields scale free networks, with

power law degree distributions [15]. As with the sexual contact

network, MUSKETEER produces network ensembles with

high fidelity and unbiased variability (Fig. 6).

Synthetic networks should not only reflect realistic struc-

tures at multiple scales but also capture emergent properties

such as expressing the dynamics or evolution of the system.

In the case of the sexual contact network (Fig. 4), we ask

whether the replicas produced by MUSKETEER give rise to

similar epidemiological dynamics, in terms of the size and

timing of a disease outbreak simulated on the network. We

compare the MUSKETEER replicas to networks generated

by using the configuration model [42] preserving the degree

distribution and the BA scale free model [15] calibrated

to preserve the density of the network. Both models have

been used extensively to model epidemiological processes [5],

[43]. Specifically, we simulate a susceptible-exposed-infected-
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Fig. 7. SEIR epidemics on the original and replica Colorado Springs sexual
contact network. Network shows average and one standard deviation (error
bars) in incidence on each day of the simulated epidemics, across 1000 runs
on the original network and, for each class of synthetic network, 1000 runs
on each of 150 replicas (a total of 150, 000 runs per class). Replica networks
were generated using MUSKETEER, the configuration model preserving the
original degree sequence [42], and the BA scale free model [15].

recovered (SEIR) model [4] on the original and replica net-

works. For simplicity, we use discrete time steps of 1 day,

and infected individuals have a latent period of 2 days (±1)

followed by an infectious period of 9 days (±1). An infectee

has 50% chance per day of infecting each susceptible neighbor.

Another important emergent property of many networks, in-

cluding epidemiological networks, is the betweenness central-

ity (BC) of nodes. A node’s BC correlates with its likelihood

of playing an important role in the network, or of contracting

an infection [43]. MUSKETEER appears to be able to generate

networks that on average have the appropriate average betwen-

ness centrality (Fig. 8), while alternative approaches produce

biased betweenness centrality values. Low average centrality

might reflect networks with a many leaf nodes and many hubs,

or multiple cycles of equal length.

Theoretically, the running time of MNG scales as O(m),
where m is the number of edges of the original graph. Our im-

plementation of MNG, MUSKETEER, uses the functionality

of the Python programming language (version 2.7.3) and the

NetworkX package [44] (version 1.8.1) both of which sacrifice

running time for ease of implementation. We benchmarked the

algorithm on a 1GHz CPU (U520 quadcore) with 3.8GB of

physical memory. A network of 30000 edges can be generated

in less than a minute even under a very high edit rate (such as

10% over several scales); With over 110, 000 nodes, a network

can be replicated in under 1 minute. Extensive tuning options

are provided that can improve both the accuracy and running

time for a specific network modeling problem.

V. DISCUSSION

In this study we suggested a novel practical strategy to

model network structures termed multiscale network gener-

ation (MNG). The basic step in MNG is to apply multiscale
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Fig. 8. Average betweenness centrality in networks generated by different
strategies. Realism is measured by comparing to the Colorado Springs
network ([41]) The average centrality appears to be correctly produced by
MUSKETEER, but not alternative approaches.

perturbation to the original network, which makes it highly

suitable for such needs as verification and simulation of

different methods on networks similar to real examples. Un-

like network generation approaches that generate a synthetic

network starting with an empty network, networks synthesized

with MNG retain a large number of latent properties of the

input network across multiple scales. This is a key advantage

over existing approaches which attempt to imitate a small num-

ber of predefined structural properties but cannot efficiently

reproduce other properties. In the case of emergent properties,

such as epidemic transmission, we saw concretely that the

MUSKETEER replicas achieve greater realism in terms of

epidemic peak timing than commonly-used existing methods.

This finding is attributable to the ability of MNG to avoid

establishing bridges, i.e. connections across distant parts of

the network that accelerate the breakout of the epidemic.

Overall, the MNG framework has several attractive charac-

teristics as a strategy for modeling networks. First, it allows

to control the magnitude of the changes to the input data.

Therefore the diversity of the output network ensemble could

be both close to and distant from the input as required by

the demands on the synthetic data. This means that MNG

also accurately preserves many types of annotations, such as

node category or edge type found in the original data. Second,

MNG can preserve and control the properties of the generated

networks at multiple scales. We observed experimentally that

local editing inherent in MNG preserves many network proper-

ties including the different centrality measures, modularity and

clustering. Clearly, in the applications with concrete properties,

this method will raise theoretical questions of guaranteeing

property-friendly network editing. In practice many properties

can be preserved across the entire hierarchy by measuring

them at all levels during the aggregation and then correcting

the network at the disaggregation stage of MNG.
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VI. CONCLUSIONS

This paper introduced the multiscale network generation

(MNG) framework to synthesizing ensembles of networks with

realistic properties and the MUSKETEER implementation of

MNG. In our evaluation, MUSKETEER was able to reproduce

all local and global network properties considered without

a priori specification of those properties. Thus, it can be

applied right out of the box to generate networks across diverse

domains. A software implementing the framework, including

the source code, is available for free download [30].
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