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Abstract: Rare or limited access to real-world data has widely been a stumbling block for the development and employment of design
optimization and simulation models in water distribution systems (WDS). Primary reasons for such accessibility issues could include data
unavailability and high security protocols. Synthetic data can play a major role as a reliable alternative to mimic and replicate real-world WDS
for modeling purposes. This study puts forth a comprehensive approach to generate synthetic WDS infrastructural data by (1) employing
graph-theory concepts to generate multitudinous WDS skeleton layouts through retaining the critical topological features of a given real
WDS; and (2) assigning component sizes and operational features such as nodal demands, pump curves, pipe sizes, and tank elevations to the
generated WDS skeleton layouts through a multiobjective genetic algorithm (GA)–based design optimization scheme. Thousands of such
generated-optimized networks are statistically analyzed in terms of the fundamental WDS characteristics both collectively and granularly. An
outstanding novelty in this study includes an automatedly integrated algorithmic function that attempts to (1) simultaneously optimize the
generated network in a biobjective scheme, (2) rectify pipe intersections that violate pipeline embedding standards, and (3) correct the unusual
triangular loops in the generator by honoring the conventional square-shaped loop connectivity in a WDS. The proposed modeling approach
was demonstrated in this study using the popular Anytown water distribution benchmark system. Generation and optimization of such
representative synthetic networks pave the way for extensive access to representative case-study models for academic and industrial purposes
while the security of the real-world infrastructure data is not compromised. DOI: 10.1061/JPSEA2.PSENG-1358.© 2022 American Society
of Civil Engineers.
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Introduction

One of the major challenges in developing analytical models in
critical infrastructures (CIs) including water distribution systems
(WDS) for the purpose of design optimization, simulation, and as-
set management schemes is the limited access to real-world infra-
structural data (Ahmad et al. 2020; Zhang et al. 2017). Specifically,
scarcity of real-world WDS data has been a troubling hindrance for
representative mimicking of such analytical models (Menapace
et al. 2020). Moreover, hardship of collection, validation, and cal-
ibration as well as digitalization of such scarce data can be deemed
problematic to employ analytical or hydraulic applications in WDS

(de Corte and Sörensen 2014). Despite the availability of a few syn-
thetic WDS in the literature, the physical characteristics of these
benchmarks are not comparable with and applicable to the enormity
and complexity of real WDS in practice (Jaskowski et al. 2012).

It is evident that a significant number of WDS are conveniently
simplified and adopted for academic research purposes, which may
fall short of capturing the subtleties and intricacies of real-world
WDS. As physical and specifically cyber attacks have become
more prevalent in critical infrastructure systems including WDS,
security protocols have been comprehensively tightened regarding
to what extent infrastructural and cyber-monitoring data can be
overtly accessible (Tuptuk et al. 2021). Furthermore, this lack of
infrastructural data fails to provide ample granularity associated
with a calibrated hydraulic model for the research community to
implement small-scale reliable steady- or transient-state scenarios.

Addressing this scarcity of real-world WDS infrastructure data,
this paper presents an efficient approach for generating synthetic
WDS data using a topological network generation mechanism com-
bined with a subsequent physical design paradigm. The input for the
presented framework is any one WDS network, and the output en-
tails several representative WDS networks with varying topological
and hydraulic features. The approach was demonstrated using the
popular widely used Anytown benchmark network (Farmani et al.
2005; Prasad and Tanyimboh 2008), although the original layout is
somewhat atypical. Efficient, representative generation of synthetic
networks was optimized using novel algorithms that can address
oddities such as loop triangularity, node degree of connectivity,
and pipe intersections on the go. The generated network optimiza-
tion also accounts for various parameters, and some essential ones
undergo randomization for maintaining stochasticity in the process.
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Literature Review

A myriad of studies in WDS industry have been affected by the
scarcity of historical data for scenario-based and time-series analy-
ses including background leak localization (Hu et al. 2021; Momeni
and Piratla 2021) and periodic system demand or consumption data
analysis (Zhang et al. 2017), as well as condition assessment prac-
tices like pressure transients over a long-term period (Moslehi et al.
2021). The critical need is to have access to data from real WDS
infrastructures or at least have synthetic infrastructural data that
are highly representative of real WDS. Although there have been
various endeavors as to how synthetic infrastructural data can
be generated (Mair et al. 2014; Sitzenfrei et al. 2010, 2013), past
studies have encountered some limitations such as unaccounted-
for operational analysis (Mair et al. 2014), limited synthetic repre-
sentation of WDS geometric design (Sitzenfrei et al. 2010, 2011),
partial parameterization of hydraulic designs (Creaco et al. 2017),
inadequate dimensionality and inaccurate graph diameters, as well
as unorthodox edge-to-node proportion and connectivity degree
(Giudicianni et al. 2018), and finally selective analysis of synthes-
ization of WDS characteristics such as residual demand patterns
(the Overall Pulse method) (Candelieri 2017; Di Palma et al. 2017).

Costa and Rodrigues (2021) created a model for the automatic
generation of the EPANET input file from the layout of street ar-
rangements in an Auto-CAD framework and developed a set of
algorithms on binary image processing to identify nodes and pipes
on roads. Ahmad et al. (2020) presented a model entitled Synthetic
Infrastructure that leverages roadway networking, water consump-
tion, and source location to synthesize network characteristics such
as topology. They tested their model on City of Tempe, Arizona,
and scaled their model to other major cities. Zeng et al. (2017) de-
veloped a model that can generate a WDS according to real-world
counterparts on some structural properties and compared it with
existing models in terms of how realistic demand node distribution
are for the simulation of real complex networks. Muranho et al.
(2012) put forth an EPANET extension called WaterNetGen for au-
tomatic water distribution network generation that can assign net-
work topology and pipe diameters. Hallmann and Kuhlemann
(2018) presented a generator for WDS models that can create net-
works with arbitrary size and some realistic properties. In addition,
de Corte and Sörensen (2014) developed an artificial network
generating platform known as HydroGen to create networks of
arbitrary sizes and varying characteristics in EPANET and later
compared the networks with their real-world counterparts using
graph-theoretic indices.

Such studies have developed sophisticated and representative
demonstrations of generative platforms proportionally, yet they
have been found to partly suffer from a systematic and robust em-
ployment of hydraulic simulation and optimization of the output
synthetic networks to ensure a resilient, cost-effective, and granular
replication of real-world WDS (Di Palma et al. 2017; Ahmad et al.
2020; Creaco et al. 2017). Besides, most of the generators in the
literature factor in a graph-theoretic approach where characteristics
of the network are arbitrarily assigned, which might compromise
the reliability of the system. As a result, this paper aims at pushing
the boundaries of network generation by tackling the problem of
paucity of large and complex WDS infrastructural data by provid-
ing an approach for generating thousands of synthetic WDS derived
from data of a given real-world WDS through preservation of the
critical topological and operational characteristics.

This study adds value and further novelty by introducing an au-
tomatedly integrated algorithmic approach in (1) optimizing the
graph-theoretic generated network in terms of hydraulic properties
in a genetic-algorithm framework, (2) removing pipe intersections

by factoring in reservoir, tank, and consumption node coordinates,
and (3) presenting a novel triangularity-removing capability that
attempts to maintain the conventional square loops (Huzsvár et al.
2019; Choi et al. 2019) in a real-world WDS rather than the un-
orthodox connectivity among three nodes. The resulting synthetic
networks were optimized for their physical design based on cost
and resilience objectives. Graph-theory principles (Zhou et al.
2020; Zverovich 2021) were employed to preserve the critical topo-
logical properties of WDS. The presented synthetic WDS generator
platform yields promising horizons in providing academic re-
searchers and industrial entities with reliable synthetic networks
in lieu of scarce and inaccessible real-world infrastructure data.

Methodology

The study methodology entails (1) generation of topology, where a
predefined WDS benchmark network undergoes various generative
modifications through multiscale graph editing methods before pro-
ducing over 1,000 networks with new skeleton layouts, (2) WDS-
tailored modifications of topological features and assignment of
specific WDS configurations to the generated WDS skeleton lay-
outs, (3) incorporation of an automated framework integrated in
the generator to remove triangular loops and pipe intersection in
a systematic manner, and (4) design optimization of the configured
WDS layouts for physical characteristics considering the objectives
of minimum cost and maximum system resilience.

Network Generation

Generating synthetic networks is one of the central questions in net-
work science (Newman 2010; Penschuck et al. 2020). Reproducing
various aspects of similarity between the synthetic and original net-
works while maintaining sufficient diversity of generated synthetic
networks are among major concerns. One large class of generative
approaches suggests the generation of a network with several pre-
defined structural properties (e.g., degree distribution) but with no
original reference network. Such approaches usually start with the
empty or small-seed network and run an iterative process in which
nodes and edges are added while preserving some properties (mea-
sured from the real instances). Examples include Barabási-Albert
and Chung-Lu models (Barabási and Albert 1999; Aiello et al.
2001). Although tens of such approaches exist, they are typically
not successful in replicating spatially engineered infrastructures be-
cause of many different domain-dependent details.

To address such issues, this paper utilizes the multiscale ap-
proach (Gutfraind et al. 2015) that belongs to the class of deviative
approaches in which the generation process makes a number of
steps to move away from the original network while preserving
some structural properties. In a simplest form, such a deviation
can be achieved by randomized rerouting of some edges. This study
specifically leverages the multiscale approach for generating planar
graphs (Chauhan et al. 2019) that are structurally similar to the
original one to account for real-world scenarios in terms of syn-
thetic generation of WDS. In particular, the multiscale method used
here for network generation belongs to the family of scalable opti-
mization solvers inspired by the algebraic multigrid (Safro et al.
2006; Safro and Temkin 2011; Ron et al. 2011).

Generation of Topology

In order to mass-generate synthetic networks out of a predefined
WDS benchmark, multiscale graph editing approach (Chauhan
et al. 2019) is hereby leveraged. It is noteworthy that graphs under-
lying WDS are typically (almost) planar, which is the version that
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this study will apply instead of the generalized approach (Gutfraind
et al. 2015). A known real WDS layout is initially converted to an
unweighted, undirected graph with no self-loops or multiedges
where water network elements such as junctions, reservoirs, and
ground or elevated storage tanks (GSTs and ESTs) are represented
as nodes of a graph and pipes; pumps and valves are represented as
edges. The generated simple graph is then used as an input to the
proposed multiscale graph generator to produce a synthetic graph
by introducing random edits at multiple scales of coarseness while
preserving structural properties such as degree distribution and
clustering coefficient.

There are three main stages in the multiscale solver, namely
(1) coarsening, i.e., the process of creating a compressed represen-
tation of the original problem, (2) the coarsest scale solution, when
the number of degrees of freedom is coarsened to be small enough
to be solved with high quality, and (3) uncoarsening, the process of
using the coarse-scale solution to obtain the next finer scale solu-
tion by interpolating and refining it. In multiscale network gener-
ation, the aforementioned second and third stages are replaced with
editing the original graph at the given scale by adding and removing
its nodes and edges and preserving some structural properties.
Because in this work the critical realistic structural property of the
water network is planarity, the generator preserves it (Chauhan
et al. 2019). The algorithm is explained in detail in the next section.

Coarsening
In this step, a hierarchy of coarse graphs Gi ¼ ðVi;EiÞ, 1 ≤ i ≤ k,
is generated from an input graph G1 ¼ ðV1;E1Þ using the weighted
aggregation (Safro and Temkin 2011) of nodes and edges. The
number of levels in the hierarchy depends on the user input and
size of the graph. For example, to introduce only local changes
to the network, the editing will be done only at the fine levels with-
out creating coarse levels and going deeper in the hierarchy.

The first step of the coarsening at scale i consists of passing
through all nodes and deciding what nodes will seed coarse aggre-
gates. Two sets C and F are primarily considered, where initially
C ¼ ∅ and F ¼ Vi (i.e., contains nodes in the graph at level i).
Nodes are then added iteratively from F to C such that newly added
nodes are not strongly connected to nodes already in C. The con-
nection strength is the criterion, which is expressed

P
j∈CwðijÞP
j∈VwðijÞ

≤ α ð1Þ

where wðijÞ = weight of edge between nodes i and j; and α =
coarsening threshold bounding the required relative strength of
connection between neighbors already chosen to C and the entire
neighborhood in V. Typically, α ¼ 0.5 ensures graduate coarsening
that is not too fast or slow. Various thresholds have been evaluated
in many multiscale coarsening schemes including those for graph
generation. Too large values of α keep the number of coarse var-
iables large, which increases the number of levels. This makes the
computational process less efficient in terms of the number of op-
erations. Too small values of α exhibit an opposite effect because it
compresses the entire graph almost immediately. Overcompressing
it makes a generated structure less realistic and less similar to the
original structure because the introduced randomization tends to
change the structure more globally. Because in water networks
we are dealing with (nearly) planar graphs, the threshold of 0.5
roughly ensures having approximately log jVj levels in the hier-
archy without overcompressing or undercompressing it.

In general, it is expected that any alpha between 0.4 and 0.6 will
exhibit more or less the same robust results that will not make any
statistical difference in comparison with 0.5. If extremely high

degree of similarity is required by the application, we recommend
to sacrifice the computational time and increase α to 0.8–0.9 in
combination with keeping the node and edge edit ratio very low.
If a considerable deviation from the original network structure is
acceptable the value of α can be decreased to 0.3–0.4. It is impor-
tant to mention that different values of α are not expected to make
the optimization of physical parameters more or less difficult. They
only control the pace of coarsening and the levels of coarseness in
which randomization is introduced.

The final phase of coarsening is computing the connection
strength between the coarse nodes.The algebraic multigrid interpo-
lation matrix P of size jVj × jCj is hereby defined, in which Pij
represents the likelihood of i to belong to the jth aggregate. The
Laplacian of the coarse graph Giþ1, Liþ1, can be calculated by the
algebraic multigrid coarsening operator Liþ1←PTLiP, where Li is
the Laplacian of ith level graph, and

Pij ¼
�
1; for i ∈ C; j ¼ i

0; otherwise
ð2Þ

The edge ij, connecting two coarse nodes i and j, is assigned
with the weight

X
k≠l

PkiwðklÞPlj

and the volume of the ith coarse aggregate is
P

jvðjÞPji. To this
end, the ðiþ 1Þth level graph is generated, and thus the properties
of ith level graph can be measured and stored in Qi.

Graph Structure Uncoarsening and Editing
After the hierarchy of coarse representations is created, the un-
coarsening process will be carried out. In contrast to the multilevel
optimization solvers in which a coarse problem is locally optimized
at each level, in the context of network generation, the uncoarsen-
ing consists of graph structure modification and assignment of
WDS related parameters to nodes and edges (Chauhan et al. 2019).

At the coarsest level, the graph can only be edited through con-
trolled randomization, whereas at all other levels, the graph that has
been modified at the coarse level needs to be uncoarsened. This
process begins by uncoarsening unedited nodes and edges. In this
case, the coarse aggregates were eliminated, and fine nodes with
their forming edges were kept unmodified. In the next stage, edited
aggregates are interpolated, and edges that were trapped within
these aggregates are uncoarsened and added to connect edited node
to preserve degree distribution. The number of edges is preserved
from the corresponding original coarsened graph. In the final stage,
additional structural editing (i.e., the randomization) is leveraged,
in which some nodes and edges are removed and new ones may be
introduced. Fig. 1 illustrates the processes associated with the gen-
erative scheme in the integrated generator-optimizer framework.

Modification and Assignment of WDS Parameters

Conversion of the plain generated graph into a feasible WDS
constitutes the postgeneration step for representativeness of output
networks. In this process, fundamental features of the original net-
work in the WDS layouts (e.g., the location of tanks and reservoirs
as well as specifications of pumps) are adopted and sometimes
retained to finalize the water network configuration according
to normal operational and hydraulic specifications of a given
real-world WDS.
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Assignment of Coordinates
The first step in the generation of WDS from a planar topology is
associated with the assignment of coordinates of each WDS com-
ponent. Although the generated topology is planar, embedding of
the graph in two-dimensional (2D) space is deemed as a complex
procedure; therefore, existing visualization algorithms such as
Forceatlas2 (Jacomy et al. 2014) are employed to generate 2D rep-
resentation of the generated planar graph. The number of iterations
of the graph visualization algorithms can be controlled by the
end user.

Assignment of Reservoirs
The most essential component in a WDS that can supply water
down in the network is a reservoir, and thus ensuring the graph
generator can provide a minimum of one reservoir is mandatory.
In case the generated network is rescaled such that it is larger than
the original network, the number of reservoirs is systematically in-
creased by the rescaling factor while also introducing a decreasing
probability coefficient, β, that both adds a randomization factor and
restricts assignment of improbable or unrealistic number of reser-
voirs in the generated network.

In this study, it was hypothesized that the generated reservoir is
assumed to be peripherally situated on the generated graph, which
ascertains a real-world characterization of system supply by being
connected to the main body of the network skeleton. It was also
assumed that the generated reservoir is connected to the network
through a single edge (link); therefore, candidate nodes whose

degree of connectivity is greater than one will be disregarded.
Finally, candidate nodes that are selected for the associated res-
ervoirs will be assigned the correct indices accordingly, and certain
elevation values will be assigned to each reservoir by reasonably
randomizing original network reservoir elevation.

Assignment of Storage Tanks
GSTs and ESTs play a significant role in the WDS operationality.
Using GST or EST storage capability, the WDS are designed to be
redundant, resourceful, and reliable in case of contingencies. GSTs
or ESTs are basically modeled on the peripheries of networks by
first dividing the network into clusters such that they mimic the
real-world WDS. This was obtained by the minimum edge cut par-
titioning graph algorithm (Fan et al. 2020). Then, a family of graph
partitioning programs known as Karlsruhe High Quality Partition-
ing (KaHip) (Sanders and Schulz 2013) were recursively employed
such that the number of partitions is equal to the number of storage
tanks to be allocated. The partitions can be considered as clusters or
communities found in real-world water networks, where each clus-
ter consists of a storage tank.

Next, a randomization is presented by introducing probability
factor β, which controls addition of unrealistic number of tanks.
Within each cluster, a candidate node with a degree of connectivity
of one was selected through employment of the random probability
factor β. If β turns out to be greater than a defined value (i.e., p), the
candidate node will be assigned to a storage tank; otherwise, no
storage tank is assumed to be assigned in that partition (cluster).

Start

Import Example of

Original WDS Layout

Generate Hierarchy of Coarse

Scale Representations and Learn

Structural Properties ( = )

Introduce Randomization at Scale

Is Generated

Graph Planar

and

Structurally

Preserved?

= - 1

Export Graph-theoretic Generated

Network for Optimization

Correct the

Graph Structure

End

Yes and = 0

NoYes but i>0

Fig. 1. Algorithmic flowchart of the generative model.
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This process was repeated for each partition assigning tanks in each
cluster according to the same probability factor of p.

Finally, fundamental tank characteristics are either randomized
based on the original network values or optimized through the
biobjective optimization platform presented subsequently in the
paper. Such storage tank parameters include minimum level, maxi-
mum level, diameter and elevation, whose detail will be discussed
subsequently. It is noteworthy that tank levels are correctly placed
within a reasonable range of minimum and maximum values,
where illogical values will be discarded using a constraint function
in the optimization platform.

Assignment of Junctions
Junctions denote the WDS demand locations as consumption nodes
where demands should be satisfied through tank or reservoir supply
in the system. The assignment of junctions are implemented after
tanks and reservoirs have been indexed and added to the network;
therefore, the remaining generated nodes will automatically be as-
signed to demand nodes. In the proposed generation model, junc-
tion parametric values were randomized within the range of the
demand and elevation of the corresponding nodes from the original
WDS. Sets of E and D, which denote elevation and demand values
in the input network, respectively, were produced to characterize
the fundamental parametric values of each demand node. However,
this act of randomization will most likely cause an uneven distri-
bution of elevation and demand values across the network skeleton
(e.g., a low-situated elevation/demand node can be in a cluster that
mostly entails fairly high elevation/demand nodes), so this may re-
sult in a nonrepresentative network layout. Therefore, in order to
resolve this issue, an ad hoc iterative smoothening approach (Lei
et al. 2020) was employed in the process of junction parameteriza-
tion such that the neighboring junctions have geologically and geo-
metrically representative characterization of demand and elevation
values.

Assignment of Pumps
An elemental property typically found in the real-world WDS
includes the placement of pumps in high proximity to supply nodes
(i.e., reservoirs and storage tanks). The proposed generator in
this study replicated this property by utilizing the identical KaHip
recursive partitioning (Sanders and Schulz 2013) as used for
assigning tanks and assigning pumps by selecting edges in a par-
tition that is comprised of a tank or reservoir, thus guaranteeing the
adjacency of pumps to supply nodes. Ultimately, random values of
pump head, flow, and pattern were assigned at the generation phase,
which will undergo optimization later by the proposed optimization
scheme.

Assignment of Pipes
After pumps were assigned onto the network layout, the remaining
edges were assumed to be assigned to pipes to maintain the con-
nectivity and redundancy in the WDS. Fundamental properties of
pipes such as length, diameter, roughness, and status were either
randomized within a reasonable range of the corresponding values
from the original layout or optimized in the optimization platform,
which will be presented subsequently in the paper.

Real-World WDS Considerations
This section doubles down on the features of a coarsened generated
graph that is meant to satisfy the fundamental characteristics of a
real-world WDS. Such considered features in this study include
(1) maximum amount of connectivity per node, (2) modification
of the generated graph to only account for square loops, (3) modi-
fication of the generated graph to avoid pipe intersections, and
(4) adjustment of pipe lengths with their associated node coordi-
nates. Such features have been embedded as ad hoc Python func-
tion blocks within the generator platform. Table 1 displays the
characteristics of the finalized generated networks.

Optimization of Generated Water Distribution System

In order to optimize a water distribution network in terms of oper-
ations, there are various approaches proposed in the literature
(Farmani et al. 2006; Odan et al. 2015; Ocampo-Martinez et al.
2009). This study considers two objectives to be optimized in a
trade-off scheme: (1) a weighted resilience metric, which character-
izes the reliability of the WDS produced by the generator; and
(2) operational and installation cost, which accounts for the cost
of WDS components and their operation over time. Evolutionary
algorithms [i.e., Non-dominated Sorting Genetic Algorithm II
(NSGA II)] (Shi et al. 2020) in Python 2.7 were coupled with EPA-
NET 2.2 software application input file of the case study in Linux
environment to optimize the trade-off between cost and resilience
as the two objective functions in this paper (Farmani et al. 2005).
Fig. 2 illustrates the algorithmic flowchart associated with the pro-
posed optimization scheme in the proposed generator-optimizer
framework.

Resilience Measure for Water Distribution Systems
Resilience of a water distribution system is defined as its ability to
recover from local or global failures in that the network is known to
be capable of adapting, recovering, and returning to its normal
functionality and status quo (Zhang et al. 2020; Lorenz and Pelz
2020; Shin et al. 2020; Diao 2020). The resilience metric Rt at time
step t is formulated and can be observed in Eqs. (3) and (4) (Todini
2000; Farmani et al. 2005) as follows:

Rt ¼
P

n
j¼1 qj;tðhj;t − h�j;tÞ þ

P
T
k¼1 T

f
k;tT

l
k;t

ðPT
k¼1 T

s
k;tT

l
k;t þ

P
S
r¼1 Qr;tHr;t þ

P
B
b¼1 Pb;tÞ − ðPn

j¼1 qj;th
�
j;t þ

P
T
k¼1 T

f
k;tT

min
k;t Þ

ð3Þ

Table 1. Features of the generator framework

Characteristics Lower boundary/desirable Upper boundary/extreme

Degree of node connectivity One connection Four connections
Node edit and growth rate 0.02–0.04 0.07–0.09
Edge edit and growth rate 0.02–0.04 0.07–0.09
Tank placement policy Adjacent to reservoirs/pumps On network edge
Pump connectivity Directly connected to reservoirs/tanks Adjacent to reservoirs/tanks

© ASCE 04022074-5 J. Pipeline Syst. Eng. Pract.

 J. Pipeline Syst. Eng. Pract., 2023, 14(1): 04022074 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

D
E

L
A

W
A

R
E

 L
IB

R
A

R
Y

 o
n 

04
/1

9/
23

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Rtot ¼
P

N
t¼1 Rt

N
ð4Þ

where Rt = resilience at time step t; n = number of demand nodes;
qj;t = demand at node j at time step t; hj;t = head available at node j
at time step t; h�j;t = minimum head required to meet constraints at
node j at time step t; S = the number of reservoirs;Qr;t = flow being
supplied to the system by reservoir r at time step t; Hr;t = head at
reservoir r at time step t; Pb;t = power produced in the system by
pump b at time step t; B = number of pumps; T = number of tanks;
Tf
k;t = flow from the system used to fill tank k at time step t; Ts

k =
flow being supplied to the system by tank k at time step t; Tl

k = level
of tank k at time step t; Tmin

k;t = minimum level of tank k at time
step t; Rtot = total resilience index for all the time steps; and
N = total number of time steps.

Cost Function
The metric representing capital cost that accounts for the installa-
tion of pipe sections and pump stations within the network plays an
integral part as to how the generated network will be financially
optimized. The most elemental parameters that affect the cost
turned out to be (1) the length and the diameter of the pipes,

(2) pump operational specifications, and (3) tank volumes. The cost
of each solution candidate includes the capital costs of pipes,
pumps, and tanks as well as the present value of the energy con-
sumed over a specified period (i.e., 20 years). Pump station oper-
ating costs are obtained according to a unit cost for energy, which
was assumed to be constant throughout a 24-h period, equalling
$0.12=kWh (Ce) (Walters et al. 1999). The aforementioned worth
of energy costs takes on an interest rate of 12% and an amortization
period of 20 years (Walters et al. 1999). Tank costs were considered
a function of unit volume in the cost function (Walters et al. 1999).
Eq. (5) summarizes the aggregate cost function associated with the
optimization objective function presented in this study as follows:

C ¼
Xm
x¼1

LxC
p
x þ

XT
k¼1

Ct
k þ

XB
b¼1

CpvNopCePb ð5Þ

where

Cp
x ¼ −10−7D3

x þ 2 × 10−4D2
x þ 0.0186Dx þ 5.351 ð6Þ

Ct
k ¼ −6 × 10−6V2

k þ 3.61Vk þ 68,800 ð7Þ
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Fig. 2. Algorithmic flowchart of proposed optimization model.
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Vk ¼ 7.48Tmax
k πD2

k ð8Þ
where C = aggregate cost estimation for the entirety of the system
components ($); Lx = length of pipe x (m); Cp

x = pipe installation
cost coefficient for pipe x; Dx = diameter of pipe x (mm); m =
number of pipes in the system; Ct

k = tank installation cost coeffi-
cient for tank k; Vk = volume of tank k (m3=h); Tmax

k = maximum
level of tank k; k = number of tanks in the system;Dk = diameter of
tank k; Cpv = present value factor, which equals 0.10367; Ce =
electricity cost, which equals 0.12 $=kW; Nop = number of hours
of operations in a year, which equals 8,760; Pb = power of pump b
(kW); and B = number of pumps in the system.

Decision Variables
Subsequent to the finalization of the generated network, design
decision variables in the genetic algorithm (GA) optimization plat-
form are assigned accordingly and are characterized in the optimi-
zation objective function as follows:

Z ¼ fðRe;Tl;Tmin;Tmax;U;D;PaÞ ð9Þ
where

Re ¼ ðre;1; re;2; : : : ; re;jÞ ð10Þ

Tl ¼ ðtl1; tl2; : : : ; tlkÞ ð11Þ

Tmin ¼ ðtmin
1 ; tmin

2 ; : : : ; tmin
k Þ ð12Þ

Tmax ¼ ðtmax
1 ; tmax

2 ; : : : ; tmax
k Þ ð13Þ

U ¼ ðu1; u2; : : : ; ubÞ ð14Þ

D ¼ ðd1; d2; : : : ; dmÞ ð15Þ

Pa ¼ ðpa;1;pa;2; : : : ;pa;bÞ ð16Þ
where Z = objective function representation; fðÞ = combinative
function of the hydraulic simulation and optimization scheme;
Re = elevation of reservoirs in the network; re;j = elevation of
the jth reservoir; j = number of reservoirs in the generated network;
Tl = level of tanks in the network; tlk = level of the kth tank; Tmin =
minimum level of tanks in the network; tmin

k = minimum level of the
kth tank; Tmax = maximum level of tanks in the network; tmax

k =
maximum level of the kth tank; k = number of tanks in the gen-
erated network; U = available pump curves for the network; ub =
assigned curve to the bth pump; b = number of pumps; D = set of
diameters assigned to the pipes in the network; dm = diameter of the
mth pipe; Pa = pump pattern assigned to each of the pumps; and
pa;b = pump pattern of the bth pump. The boundary conditions of
each of the decision variables are also demonstrated in Table 2.

According to Table 2, for each pipe, the considered integer val-
ues for optimization platform input, i.e., 1–12, correspond to the

12 available discrete pipe diameters, respectively, accounting for
152.4 mm (6 in.), 203.2 mm (8 in.), 254 mm (10 in.), 304.8 mm
(12 in.), 355.6 mm (14 in.), 406.4 mm (16 in.), 457.2 mm (18 in.),
508 mm (20 in.), 609.6 mm (24 in.), 762 mm (30 in.), 812.8 mm
(32 in.), and 914.4 mm (36 in.).

Design Constraints
Table 3 summarizes the design constraints in the optimization of
the generated networks. Specifically, the main constraint for the
WDS design is to deliver at adequate amount of pressure that would
satisfy customers’ demands. The existence of storage tanks and
pumps in the network complicate the optimization because these are
the two most difficult components to model (Lansey et al. 1989). In
this case, tank level variations were optimized according to (1) the
optimal operations of pumps, (2) peak-hour-demand level consid-
erations, (3) prevention of exhaustion or overfilling of storage tanks
(thus avoiding closing the associated inlet/outlet pipe) to ensure their
availability around the clock to be leveraged as surge tanks to avoid
water hammer and excessive pressure transients, (4) imposition of a
maximum range for initial and final tank levels over the 24-h cycle,
(5) penalization of fluctuating tank levels on an hourly basis, and
(6) imposition of the start point of storage tanks to fall within
the middle third of the range of minimum and maximum tank levels.

The accumulated sum of the mismatch in levels is used as the
tank operating level difference (TLD) constraint. Lastly, in order to
maintain pump life span and decrease the maintenance costs, it was
assumed that a reduction in the number of pump switches results in
the reduction of the pump maintenance costs (Lansey and Awumah
1994). Furthermore, including subconstraints such as preventing a
pump from running for a single hour improves the life cycle of the
pump station collectively (Chen et al. 2021; Cimorelli et al. 2020).

Most importantly, it is vital to note that the most essential con-
straint was deemed to be the nodal minimum pressure to ensure the
satisfaction of water demands; therefore, because pump and tank

Table 2. Decision variable boundaries

Variable type Lower bound Upper bound

Pipe size 152.4 mm (6 in.) 914.4 mm (36 in.)
Pump design head 30.48 m (100 ft) 48.7 m (160 ft)
Pump design flow 1,817 m3=h (8,000 gpm) 5,223.8 m3=h (23,000 gpm)
Pump status 0 (Off) 1 (On)
Storage tank diameter 9.1 m (30 ft) 30.48 m (100 ft)
Storage tank minimum level 2.74 m (9 ft) 3.04 m (10 ft)
Storage tank maximum level 7.62 m (25 ft) 18.2 m (60 ft)
Reservoir elevation 18.2 m (60 ft) 60.9 m (200 ft)

Table 3. Design constraints

Constraint function
Constraint

form Constraint limit

NPS at average day flow ≥ 172.6 kPa (25 psi)
NPS at instantaneous peak flow ≥ 172.6 kPa (25 psi)
NPS at fire flow condition ≥ 172.6 kPa (25 psi)
Maximum nodal pressure ≤ 1,034.21 kPa (150 psi)
TLD at average day flow = 0.0
Tank level ≠ Min/max tank capacity
Allowed number of pump
switches

≤ 4 switches

Minimum successive hours
of pump operation

= 2 h

Note: NPS = nodal pressure shortfall; and TDL = tank operating level
difference.
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operations and maneuvers are optimized simultaneously, some of
their associated constraints might be considered as flexible re-
straints (i.e., marginally violating some of the constraints in Table 3)
for a greater good to ensure a reliable water supply and optimized
pressure heads.

Randomized Parameters
Apart from the parameters involved in the optimization platform,
there are certain other geometric ones that are randomized to ac-
count more deeply for a real-world scenario (Kostrzewski 2020;
Konstantinov et al. 2019). Table 4 characterizes such parameters
along with their randomization range.

To maintain some of the features of the original network to
mimic a realistic replication of the baseline system, the number of
reservoirs and pumps was considered equal to those of the original
network.

Demonstration: Anytown WDS Benchmark

This section aims at presenting a slightly modified Anytown WDS
benchmark (Walski et al. 1987; Farmani et al. 2005) to (1) showcase
the mass-generation of the input network in the generator model;
and (2) investigate the performance of the optimization procedure
implemented on each of 1,079 generated networks. The hydraulic
and geometric design of Anytown WDS has been adopted from the
literature (Farmani et al. 2005), which consists of 43 pipes, 22 no-
des, one reservoir, two tanks, and three pumps.

It is noteworthy that a realistic demand pattern in the original
version of Anytown WDS has been adopted from the literature
and modified accordingly in order to guarantee a meaningful,
representative generation. Fig. 3 characterizes the diurnal demand
pattern for the original and generated networks because it remains
constant through the generation-optimization procedure.

Results and Discussion

To account for all the generated-optimized networks (GONs) in this
study, this section presents (1) a discussion of two sample cases of

these optimized networks; and (2) tabulation of the main character-
istics of the optimized-network pool.

Granular Analysis and Validation of Sample Optimized
Networks

For assessing the robustness of the generator-optimizer platform,
two sample GONs were randomly selected to be analyzed in terms
of their hydraulic, geometric, and operation characteristics as well
as their resilience index and cost evaluation.

Hydraulic and Operational Analysis
Fig. 4 depicts the skeleton layouts and collocations of the hydraulic
components of two random samples out of the pool of over 1,000
optimized networks whose granular hydraulic and operational
specifications are showcased in Figs. 5 and 6 in terms of (1) pressure
and demand ranges of five sample nodes, (2) pump operations and
scheduling over a 24-h cycle, and (3) tank level variations over a
24-h period.

As can be seen in Figs. 5 and 6, pressure values for both of the
sample networks varied roughly between 172 kPa (25 psi) and
586 kPa (85 psi), and most of the pressure variations occurred
around demand peak hours in the morning and evening. More-
over, storage tanks were designed to be both drafted around peak
hours while experiencing a near-maximum level and filled during
regular off-peak hours. The tank fill cycle was well-operated
through optimal pump scheduling in each network during mid-
night hours and early afternoon hours when consumption was
found to be at its minimum. This guarantees a maximum life cycle
for pump stations.

Resilience and Cost Analysis
To assess the reliability aspects of the GONs, Table 5 displays the
trade-off between the resilience index and cumulative installation
and operational cost of each of the sample networks.

As can be viewed in Table 5, the resilience and cost values
exemplify a fairly resilient and cost-effective operation of these net-
works, which can be the representatives of the pool of 1,079 GONs.
Awider variety of feasible solutions including cheaper/costlier and
more/less resilient networks may be produced provided that higher
numbers of population size and generations are considered in the
optimization framework.

Operational and Hydraulic Assessment of the
Optimized Network Pool

Because over 1,000 layout-varied optimized networks have been
produced in this study, this section aims at effectively summariz-
ing the assessment and validation of the whole pool collectively.
For comprehensively accounting for the validation of the entire
pool of networks, this section is therefore categorized into three

Table 4. Randomized parameters

Randomized parameters Lower boundary Upper boundary

Nodal demands 30% of original values Original values
Pipe length 30% of original values

scaled to the start and
end coordinates

80% of original values
scaled to the start and
end coordinates

Roughness coefficients 120 130
Number of tanks 1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Fig. 3. Diurnal demand profile starting at 12:00 a.m. for original and generated networks.
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subsections covering the assessment of robustness based on
(1) distribution analysis of geometric specifications, (2) distribu-
tion analysis of hydraulic and operational characteristics, and
(3) cost-resilience distribution assessment of the pool.

Geometric Assessment
In this section, six essential geometric characteristics of the GONs
are assessed: (1) number of pipes, (2) number of demand nodes,
(3) tank elevation/level, (4) demand node elevation, (5) pump
power range, and (6) pipe diameter range.

As can be seen in Fig. 7(a), the majority of networks tended
to have between 20 to 27 pipes compared with the 43 pipes that
the original network contained. This deliberate reduction specifi-
cally accounts for the removal of unorthodox features of the
original network such as triangular loops as well as degrees of
connectivity of up to seven at a single node. Moreover, the pipe
and node growth rate factors, listed in Table 1, along with
the removal of pipe intersections yielded out of the generator,
also contributed to this ultimate reduction of pipes and nodes
in the network pool. According to Figs. 7(a and b), it is also

noteworthy that the average node-to-pipe ratio of 0.866 in the
network pool is indicative of the presence of redundancy loops
in them.

Furthermore, according to Figs. 7(c and d), the tank elevation
ranged from 36.57 m (120 ft) to 54.86 m (180 ft) for the majority
of the networks compared with the corresponding demand node
elevation range of 18.28 m (60 ft) to 30.48 m (100 ft). Such values
are comparable to the original network tank elevations of 65.5 m
(215 ft) and demand node elevation range of 22 m (72 ft). This
also suggests that the tanks are designed to either be ESTs at nor-
mal level or GSTs at elevated areas for more proper supply of
pressure and flow in the systems by including an appropriate
hydraulic grade line in the associated pressure zone.

Also, Figs. 8(a and b) demonstrate average operational pump
power ranges of 25 to 100 kW in the majority of the networks in
the pool along with average pipe diameters of 500 mm (20 in.) to
650 mm (25.59 in.). This dominant concentration of frequency in
these ranges suggests a well-consistent distribution of pipe diam-
eter allocation, which both reduces constrictive pipe fittings and
thus pressure transients and facilitates the procurement, installation,

Fig. 4. Two sample generated-optimized network layouts.
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(a)

(b)

(c)

(d)

Fig. 5. Sample network 1’s 24-h operational analysis: (a) pressure values; (b) demand values; (c) pump flow and scheduling; and (d) tank level
variations.

(a)

(b)

(c)

(d)

Fig. 6. Sample network 2’s 24-h operational analysis: (a) pressure values; (b) demand values; (c) pump flow and scheduling; and (d) tank level
variations.
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and maintenance of similar pipe sections and pump types in an
associated municipality.

Operational and Hydraulic Assessment
The hydraulic functionality of the GONs was hereby assessed
according to (1) nodal demands; and (2) nodal pressure, which
constitute the most vital features a properly operational WDS must
maintain optimally. In this respect, Figs. 8(c and d) demon-
strates that the majority of nodal demands fell within 36.34 m3=h
[160 gallons per minute (gpm)] to 54.50 m3=h (240 gpm) on aver-
age, and the nodal pressure values stoond between 275.79 kPa
(40 psi) to 448.16 kPa (65 psi) on average. These values suggest
normally operated networks by maintaining a minimum pressure
boundary and making sure extreme pressure transients/spikes are
restricted.

Cost-Resilience Assessment
Ultimately, Figs. 9(a and b) represent the ranges of the estimated
costs and resilience index for the pool of data, where the majority of
the former falls between $10 million to $40 million per the instal-
lation and operation of each of the networks, whereas the majority

of the latter turns out to be between 0.65 and 0.95, both of which
covered a wide span of both highly resilient and cost-effective
networks.

Discussion: Utility and Variety of the GONs

The proposed generator-optimizer scheme in this study offers prom-
ise for a powerful tool for the research and industrial communities
to replicate real-world WDS layouts and produce representative
operationally optimized benchmarks for various purposes because
this tool will be publicly available. One such application is applying
the presented GONs as reliable synthetic case studies to the design,
modeling, optimization, or rehabilitation studies of WDS. Because
scarcity of real-world infrastructural data is evident in the research
realm, the network variety that the proposed generator-optimizer
platform offers instead provides ample flexibility to generate and
optimize tailor-made networks. Such variety and flexibility include
(1) tuning geometric parameters such as desired magnitude and
ratios of available nodes or links and thus redundancy, (2) tuning
operational parameters and fundamental component sizes including
but not limited to nodal demands and node elevations, (3) tweaking
optimization bounds and parameterization to produce more var-
ied, feasible, and optimal solutions, and (4) fine-tuning the con-
strainability of the optimization scheme to include or exclude
certain boundaries to the operational and geometric design at one’s
convenience.

The fundamental characteristics in these GONs are essentially
preserved to be representative of the original layout; therefore, the
convenience and leeway that the framework provides can be taken

Table 5. Cost-resilience analysis of the sample networks

Network ID
Resilience
index

Estimated cost
(millions of USD)

Sample network 1 0.792 44.9
Sample network 2 0.873 42.6

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
0

50

100

150

Number of Pipes

F
re
q
u
en
cy

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

50

100

150

Number of Demand Nodes

F
re
q
u
en
cy

100 - 110 120 - 130 140 - 150 160 - 170 180 - 190 200 -210
0

100

200

300

Tank Elevation Range ( )

F
re
q
u
en
cy

50 - 60 60 - 70 70 - 80 80 - 90 90 - 100 100 - 110
0

200

400

600

Node Elevation Range ( )

F
re
q
u
en
cy

(a)

(b)

(c)

(d)

Fig. 7. Frequency of geometric values in the generated-optimized networks: (a) number of pipes; (b) number of demand nodes; (c) frequency of tank
elevation ranges; and (d) frequency of the demand node elevation ranges.
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advantage of to subject these GONs to specific case-study research
purposes such as water quality modeling, reliability and resilience
studies, or leakage localization and detection modeling. Another
essential utility of the proposed platform turns out to be the

significant number of varied networks it can produce at a fairly
short amount of time. Most of the benchmark-included studies
in the literature have utilized only a handful of renowned WDS
benchmarks such as Anytown over the years. However, the
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Fig. 8. Frequency of (a) range of pump power; (b) pipe diameter ranges; (c) nodal demand ranges; and (d) nodal pressure ranges.
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proposed platform can generate a considerable number of mutually
exclusive networks, which promotes the diversity and exclusivity
of future research studies in the water industry.

Conclusions and Recommendations

This study presented an interactively robust platform for generating
and optimizing synthetic water distribution systems by employing
graph theory, the EPANET 2.2 software application, and genetic
algorithms in Python to account for inaccessible, scarce, and often
unreliable real-world infrastructural data. By leveraging a renowned
WDS benchmark from the literature, this paper has (1) introduced a
graph theoretic–based generative platform that synthesizes geomet-
ric, hydraulic, and operational characteristics of the given real-world
WDS benchmark, (2) produced thousands of layout-varied graph-
theoretic generated networks that characterize real-world applica-
tions and specifications of the original layout, (3) implemented
operational and hydraulic optimization of each generated network
through a robust and inclusive genetic algorithm framework in
Linux using Python 2.7, and (4) provided public access for the re-
search and industrial communities to a pool of over 1,000 generated-
optimized networks whose geometric, hydraulic, and operational
characteristics were assessed at granular and distributive levels.

Limitations of the study include (1) the fact that the current
platform needs to be generalized for any given WDS benchmark,
(2) assumption and randomization of some of the network fea-
tures like node elevations and nodal demands that might affect
the resilience and installation cost estimates, and (3) restriction
of the node and edge growth and edit rates that could potentially
produce more diverse network skeleton layouts. Future work also
involves the generalization of the generative platform for other
WDS benchmarks as well as reduction in the number of assump-
tions made in this study. It is essential that the future directions for
this study involve a higher level of stochasticity as well as rep-
resentation and robustness amid being exposed to any given real-
world data.
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