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Abstract

Many combinatorial scientific computing problems are NP-hard which in practice requires using
heuristics that either decompose a large-scale problem and solve many smaller local subproblems in
parallel or iteratively improve the solution by local processing for sufficiently many steps to achieve a
good quality/performance trade-off. These subproblems are NP-hard by themselves and the quality
of their solution that depends on the subproblem size vitally affects the global solution of the entire
problem. As we approach the physical limits predicted by Moore’s law, a variety of specialized
combinatorial optimization hardware (such as adiabatic quantum computers, CMOS annealers, and
optical parametric oscillators) is emerging to tackle specialized tasks in different domains. Many
researchers anticipate that in the near future, these devices will be hybridized with high-performance
computing systems to tackle large-scale problems which will open a door for the next breakthrough
in performance of the combinatorial scientific computing algorithms. Most of these devices solve
the Ising combinatorial optimization model that can represent many fundamental combinatorial
scientific computing models. In this paper, we tackle the main challenges of problem size and precision
limitation that the Ising hardware model typically suffers from. Although, our demonstration uses
one of these novel devices, the models we propose can be generally used in any local search and
refinement solvers that are broadly employed in combinatorial scientific computing algorithms.

1 Introduction

Within the field of combinatorial optimization, driven by the physical limitations arising as a corollary
of Moore’s law [52], various research groups and institutions have started to develop novel hardware
specifically designed for combinatorial optimization. Combinatorial scientific computing (CSC) as a
field is expected to be one of the main beneficiaries of such hardware. The most realistic way to employ
it would be through hybridization with traditional high-performance computing (HPC) systems. The
main scientific computing task will be performed on HPC while its CSC accelerators and preprocessing
algorithms will use that novel hardware. Examples of such hardware include adiabatic quantum
computers [26], CMOS annealers [1, 64, 65] and Coherent Ising Machines [32, 38, 25]. Problems
such as accelerating solutions of linear systems and least squares problems [9, 10, 5] in the spirit of
CSC have been performed on quantum annealers where the solution is achieved by embedding the error
function in the Ising Hamiltonian. The D-Wave hardware has also been used for traditional CSC goals to
facilitate matrix inversion and factorization problems [44, 18, 47]. Although these emerging technologies
exhibit novelty in terms of hardware, they are all unified by the mathematical framework of the Ising
optimization model. In other words, they are all designed to solve optimization problems formulated
in the Ising model or equivalently as a quadratic unconstrained binary optimization (QUBO) problem.
According to [19, 34], these recent hardware advances enable the Ising or QUBO model to become a
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unifying framework for combinatorial optimization. They have recently been termed as Ising Processing
Units (IPU)’s [12]. Many fundamental CSC problems can be formulated as QUBO for IPU’s. Examples
include partitioning [61], clustering [58, 57], coloring [19], scheduling [60, 63], traveling salesman problem
[45], maximum cliques [11], and vertex separator [19] as well as the combinatorial problems that directly
model scientific computing tasks such as computing molecular similarity [23, 24], and protein structure
identification [43].

The focus on development of specialized hardware to solve QUBO stems from the many advantages
that QUBO offers which in fact go way beyond CSC tasks (e.g., finance [48], and machine learning
[13, 22, 31, 40, 35]). The abstraction allows a cleaner and simpler mathematical framework to study
a variety of problems arising in different disciplines. Many NP-hard CSC problems can be easily and
efficiently reformulated in QUBO. While some of them admit integer programming formulation that can
be converted to QUBO using standard techniques, others are necessarily formulated as QUBO. Secondly,
unsupervised learning techniques such as spectral clustering, statistical neural models [53] social network
problems like community detection can be naturally cast as QUBO. The model’s ubiquity and ability
to represent a wide range of scientific problems makes development of specialized hardware for solving
it a fruitful academic as well as industrial endeavor.

Challenges with local search, QUBO, and IPU Many CSC problems are NP-hard which in
practice requires using heuristics that either decompose a large-scale problem and solve many smaller
problems in parallel or iteratively improve some feasible solution for sufficiently many steps. Algorithms
such as Kernighan-Lin [30], Fiduccia-Mattheyses [17], 2-sum window minimization [49], and max-flow
min-cut refinement [51] are among many other relevant examples applied in CSC solvers. All these can
be formulated as versions of a local search (or improvement) strategy that gradually improves a solution.
With the invent of IPUs, and anticipating a hybridization of IPU and HPC systems, we envision that
such local search problems (which are themselves NP-hard) will be solved on IPU devices using QUBO
formulation. Typically, the larger a local search subproblem is the better it can affect the global solution.
However, increasing the size of subproblem comes with a price tag of its representation as a QUBO on
an IPU.

Some of the well-known challenges of QUBO hardware include limited precision and the maximum
number of variables the hardware can handle. For instance, D-Wave’s 2000Q quantum annealer, even
with up to 2000 qubits, can only handle arbitrary fully-dense QUBO of maximum 64 variables. Fujitsu’s
latest Digital Annealer can handle up to approximately 8000 variables. This brings into perspective that
current optimization problems arising from real-world challenges can easily have millions of variables.
Subsequently, this motivates the investigation of the algorithmic challenge of how to utilize these
emerging technologies to efficiently solve large scale problems. Another challenge lies inherently within
the QUBO model. Many problems in practice are coupled with multiple constraints; however, QUBO are
unconstrained by definition. The natural strategy to turn a constrained problem into an unconstrained
one is to introduce quadratic penalty terms (corresponding to each constraint) to the objective function.
These penalties are introduced such that (i) if the constraint is satisfied, their contribution to objective
function is exactly zero; and (ii) if the constraint is not satisfied, their contribution to objective function
is negative/ positive for maximization/ minimization formulation. This leads to the need to tune the
coefficients of the penalty terms. A small penalty term would easily lead to a violation of the constraint
while a very large term can lead to difficulties in comparison of quality of feasible solutions, especially
when bounded by the limited precision of the hardware. Another consequence of this is that not all
feasible solutions to the QUBO formed would be a feasible solution to the original problem. Thus
for some problems, finding a feasible solution via the QUBO model may become difficult, yet finding
a feasible solution in their original formulation may be trivial. For example, problems arising from
permutations of size n lead to the formulation of a QUBO of size O(n2). This QUBO would have 2n
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candidate solutions, however only n! of them would be a candidate permutation. Since

n!
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2πn
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2ne

)n
<
( n
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)n
−→ 0

as n→∞, where ∼ means that the two values are asymptotic, we see that a candidate solution of the
QUBO is not a permutation with high probability. Thus a straight-forward QUBO formulation of a
permutation may not lead to the the ideal utilization of this emerging technology.

Our Contribution We develop different models and techniques for special-purpose hardware for
large-scale combinatorial optimization often used in CSC. Similar to previous methods [56, 57, 58], for
problems larger than current hardware sizes, we advocate the use of a local search framework to create
sequence of sub-problems that can be solved with hardware of limited size. Our novel modeling technique
also addresses the limitations of QUBO framework and demonstrates efficient use of the hardware.

Our experiments are carried out using Fujitsu’s latest Digital Annealer. In order to show the
differences in modeling methods, we compare our approach to previous methods on the quadratic
assignment problem (QAP). In addition, we give models for local search technique for the traveling
salesman problem (TSP) and the graph partitioning problem (GP) on IPU. Because of currently limited
availability of this novel hardware, we cannot demonstrate the approach on really large CSC problems.
However, we anticipate that in the near future, availability of these devices in combination with HPC
will play an important role in breaking the barriers of CSC solvers and this type of modeling will
be broadly applicable. Our multi-variable type of local search modeling can also replace typical local
search algorithms using regular global or specialized solvers by increasing the number of variables in the
subproblem, i.e., without employing IPU.

2 Background

2.1 Ising Model Ising model is a common mathematical abstraction which has been widely used
in physics. In this class of graphical models, the nodes N represent discrete spin variables (i.e.,
σi ∈ {−1, 1},∀i ∈ N ), and the edges E represent the interactions of spin variables (i.e., σiσj , ∀(i, j) ∈ E).
For each node, a local field hi, i ∈ N is specified, and for each edge, an interaction strength Jij ,∀(i, j) ∈ E
is specified. The energy of a configuration σ is given by the Hamiltonian function:

H(σ) =
∑

(i,j)∈E

Jijσiσj +
∑
i∈N

hiσi (2.1)

The most common applications of the Ising model is to find the lowest possible energy of the model,
namely, to find the configuration σ that minimizes the Hamiltonian function (2.1). Note that with a
transformation of the variables, σi = 2xi− 1, i ∈ N , where xi ∈ {0, 1}, an Ising optimization problem is
equivalent to a Boolean optimization problem.

As summarized in [12], the five most primary solution methods of Ising optimization are simulated
annealing [33], Large Neighborhood Search [20, 54], integer Programming [15, 37, 46], adiabatic quantum
computation (AQC) [16, 27], and quantum Monte Carlo [42]. Novel hardware are developed based on
these methods, for example, the D-Wave quantum annealer is based on AQC, and Fujitsu’s Digital
Annealer is based on Simulated Annealing with parallel tempering.

2.2 Digital Annealer Fujitsu’s Digital Annealer (DA) is a hardware accelerator for solving fully
dense QUBO problems [1]. Internally the hardware runs a modified version of Metropolis-Hastings
algorithm [21, 39] for simulated annealing. The hardware utilizes massive parallelization and a clever
sampling technique. The novel sampling technique speeds up the traditional Markov Chain Monte
Carlo (MCMC) method by almost always moving to a new state instead of being stuck in a local



minimum. Digital Annealer also supports Parallel Tempering (replica exchange MCMC sampling) [59]
which improves dynamic properties of the Monte Carlo method. In our experiments we used this
mode, as it requires less parameter tuning and better for consistent benchmarking. We used the second
generation of the DA also known as the Digital Annealing Unit (DAU), which supports eight thousand
binary decision variables with up to 64 bits of precision for the individual entries of the weight matrix.

2.3 Related Work With respect to solving problems larger than the current hardware can
accommodate, a large number of work has focused on formulating the original problem as a large
QUBO and then using some decomposing technique to create sub-problems or sub-QUBOs that can
be individually solved directly on the hardware. The tool qbsolv [4] developed by D-Wave systems
is one such example. For example, with the limitation that the D-Wave 2X and D-Wave 2000Q
quantum annealers can solve fully dense QUBO of up to approximately 45 and 64 variables respectively,
researchers at Volkswagen [41] solved a traffic flow optimization problem that modeled traffic from 418
cars that required 1254 boolean variables. In [61, 40], problems in Graph Partitioning and Community
Detection were solved for graphs larger than hardware size.

An alternative approach to solve problems larger than the hardware size is to first identify a
subproblem, and then model this subproblem as a QUBO and solve with a given hardware. The
authors in [56, 57, 58, 62] generally took this approach for solving the graph partitioning and community
detection problem on available quantum computing hardware. In their work, they solved problems on
the D-Wave quantum annealer and the gate-model IBM quantum computer by creating and solving
smaller QUBOs. Their approach is referred to as Quantum Local Search (QLS). A straight forward
extension of QLS applied to general problem does not take the limitations of the QUBO model into
account. In this work, we consider modeling of sub-problems while taking limitations of the QUBO
model into account.

3 Modeling Local Search

Local Search is a class of metaheuristic methods for solving large scale combinatorial optimization
problems. A local search algorithm moves from one feasible solution to another by applying some local
changes to the current solution. The use of local search in combinatorial optimization dates back to the
1950s when the first edge-exchange algorithms were introduced for the Travelling Salesman Problem
[2, 14, 36]. Since then it has been broadened with various levels of success in different problems.
The scaling of Moore’s law together with the use of sophisticated data structures has made local
search algorithms the state-of-the-art for many problems. With the introduction of the special-purpose
hardware for combinatorial optimization, in a post-Moore’s law era, hybrid techniques in combination
with hardware that leverage the existing sophisticated data structures must be developed to fully utilize
these technologies. However, since sub-problems within local search are not traditionally described
with respect to Ising model, it remains unclear how well established algorithms can take leverage these
technologies. In this section, we take steps to demonstrate the use of this technology. We do this by
giving different ways in which a sub-problem in existing algorithms can be efficiently modeled as a
QUBO. In particular, we give models for sub-problems from TSP, Graph Partitioning and QAP that
are unconstrained by definition.

3.1 Modeling Constraints Many well known binary optimization problems are formulated with
constraints. While modeling a given problem as a QUBO, one of the most common constraints are the
constraints that are usually referred to as 1-Hot constraints or 1-Hot encodings. For n boolean variables,



a 1-Hot encoding is simply the constraint that

n∑
i=1

xi = 1. (3.2)

For n2 boolean variables a 2-Way 1-Hot encoding are the constraints

n∑
i=1

xi,j = 1, j = 1, . . . , n

n∑
j=1

xi,j = 1, i = 1, . . . , n.

(3.3)

The 2-Way 1-Hot encoding are particularly common because they model permutations which have
common occurrence in combinatorial optimization problems.

If x = {xi,j}1≤i,j≤n and Q(x) is a quadratic function we want to minimize, subject to 2-Way 1-Hot
constraints, it is well known, that for appropriate choice of positive constants λi and λ′j ’s, the above
set of constraints can be encoded as a QUBO problem where the goal is to minimize

Q(x) +

n∑
i=1

λi

( n∑
j=1

xi,j − 1
)2

(3.4)

+

n∑
j=1

λ′j

( n∑
i=1

xi,j − 1
)2
.

If the above problem forms a sub-problem in a local search framework, the 2-Way 1-Hot encoding would
significantly reduce the feasible solution search space compared to if there were no such constraints.
The formulations of the TSP and Graph Partitioning contain such constraints that reduce the feasible
solution search space significantly. However, in the following sub-sections we use these two problems
as examples where sub-problems can easily be developed that do not require any constraints and thus
increases the search space the QUBO solver can search per iteration. We then give a general modeling
technique where one can control the solution space searched per iteration of the QUBO solver. We
present this general modeling technique with respect to the Quadratic Assignment Problem (QAP)
mainly because a large class of problems form special cases of QAP.

3.2 Travelling Salesman Problem The travelling salesman problem is by far one of the most well
known combinatorial optimization problems. Many algorithms, both heuristics and exact methods have
been proposed. As such it’s instructive to describe any new general approach with respect to TSP
for ease of exposition. In QUBO representation, it has a formulation with n2 variables which makes
solving current real size TSP instances directly on near term hardware unlikely. If we cannot directly
solve a large TSP instance with hardware, the next best thing is to accelerate current TSP algorithms
and heuristics. Current state-of-the-art methods consist of using local search with sophisticated data
structures. From the hardware perspective, improving the speed or quality of local search moves seems
like the best option to enhance current methods. The k-opt heuristics is one of the most popular
heuristics for solving TSP. However, a straight-forward implementation of k-opt would require at least
k2 variables due to the 2-way 1-hot encoding of the sub-problem. Within a QUBO model, adding
constraints reduces the number of feasible solutions searched per iteration. In this sub-section we give
an alternative model whose formulation does not require constraints thus can search at most up to 2H

feasible solutions per each iteration, where H is the hardware size.



k-opt Algorithm k-opt is a well-known local search heuristic for the TSP. A k-opt move consists of
removing k edges from a given tour and then reconnecting the k segments to possibly get a shorter tour.
In this sub-section, we use the TSP as an easy example to give a QUBO formulation of a sub-problem
that does not contain 1-Hot encoding although the main problem does. For ease of exposition, for a
binary variable y ∈ {0, 1}, we use the notation y such that

y = 1− y. (3.5)

In the case of the 2-opt algorithm. A move consists of whether 2 edges in the tour should be replaced
with 2 other edges. In an effort to motivate our modeling technique, we first model a move in 2-opt, and
3-opt as a QUBO. An equivalent and alternative way of stating a 2-opt move is as follows: remove two
edges from the current tour, thus creating two disjoint paths which we shall refer to as segments. Then a
2-opt move is to decide whether or not to reverse one of these segments. A tour segment (v1, v2, . . . , vm)
is reversed if it appears in the new tour in the reversed order (vm, vm−1, . . . , v1). Therefore a 2-opt move
represented as a QUBO with one variable as

min (wu1v2 + wu2v1)y + (wu1u2 + wv1v2)y

s.t. y ∈ {0, 1}. (3.6)

Figure 1 depicts a 2-opt and 3-opt move with respect to decision variables that constitute of reversing
a tour segment or not.

We can then extend this approach for larger k and define a move as a k-reversal as shown in Figure
2. At each iteration, the hardware would reverse up to k segments of the tour. In general, since yi
is 1 if segment i is reversed and yi is 1 if it is not reversed, then product yiyj is 1 if and only if
segment i is reversed and segment j is not. Thus, the quadratic terms can only be in the form of either
yi yj , yi yj , yiyj or yiyj . Therefore, if

q(yi, yj) = wviujyi yj + wuiujyiyj

+ wvivjyi yj + wuivjyiyj
(3.7)

then q(yi, yi+1) and q(yi−1, yi), contain all the quadratic terms in a k-reversal move with respect to yi,
for i = 2, . . . , k − 1.

min q(yk, y1) +
k−1∑
i=1

q(yi, yi+1)

s.t. yi ∈ {0, 1} i = 1, . . . , k

(3.8)

In particular, all 3-opt moves are also 3-reversal moves. The main advantage of this model is that it
does not model any constraints thus any feasible solution of the QUBO is a feasible solution of the TSP.
In other words, at most 2k feasible solutions are considered at each iteration of the local search. The
major drawback of this approach is that it is not equivalent to a k-opt move. In particular, there are
(k − 1)!2k−1 possible ways to reconnect k segments. However, out of all these moves, k-reversal only
considers 2k of them. With this in mind, we believe that this model gives the reader a more intuitive
understanding on how to model sub-problems of a given problem. In the next subsection, we discuss
about the Kernighan-Lin algorithm which is based on swapping nodes between parts. These moves can
efficiently be modeled as a QUBO without modeling any constraints.

3.3 Graph Partitioning Problem The graph partitioning problem (GP) is another well known
combinatorial optimization problem with many applications in CSC [6]. Formally, let G = (V,E) be an
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Figure 1: 2-Opt and 3-Opt sub-problems
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an unconstrained problem thus does not require modeling any constraints as a QUBO. As such, all 2k
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undirected graph of vertices V and edges E. Let |V | denote the number of vertices of the graph, and
wij be the weight of the edge with endpoints i and j. For a fixed integer K, the K-way GP is to find
a partition Π = (Π1, · · · ,ΠK) of the vertices V into K equal parts such that the number of cut-edges
is minimized, where a cut-edge is defined as an edge whose endpoints are in different partitions. The
QUBO formulation for GP [61] is given as follows:

min
Π

A

|V |∑
i=1

(

K∑
`=1

xi` − 1)2 +B

K∑
`=1

 |V |∑
i=1

xi` −
|V |
K

2

+
∑

(i,j)∈E

K∑
`=1

wij(xi` − xj`)2

where A,B are large positive constants to penalize the violation of constraints. For a feasible solution,
the binary variables xi` are interpreted as follows:

xi` =

{
1, if vertex i is in partition `

0, otherwise.

Kernighan-Lin Algorithm The Kernighan-Lin (KL) algorithm is a very popular algorithm for
graph partitioning dating back to the seminal paper [30] and used in a variety of multilevel solvers
[28, 50, 3, 55]. The KL algorithm is an iterative algorithm whose goal is to reduce the number of cut
edges between two parts. The main concepts used in the algorithm can be described as follows. Let
|V | = 2n, V1, V2,⊂ V such that |V1| = n = |V2| and V1 ∩ V2 = ∅. For u ∈ V1 define

Eu =
∑
v∈V2

wuv; Iu =
∑
v∈V1

wuv (3.9)

as the External and Internal degree of node u ∈ V1 respectively. Let

Du = Eu − Iu (3.10)

be the cost reduction of moving node u ∈ V1 to V2. We refer to this as the D-value of u. Then the cost
reduction from swapping u and v is given by

guv = Du +Dv − 2wuv. (3.11)

This is usually referred to as the gain of swapping. We can express a similar process in a QUBO
formulation. Let s : V1 → V2 be the one-to-one function that identifies a node in V2 that will potentially
be swapped given a node in V1. Then let

M =
{
{u, s(u)}|u ∈ V1

}
(3.12)

For every {u, v} ∈M , define the binary variable yuv such that

yuv =

{
1, if u swaps with v

0, otherwise
(3.13)

Since the function s is a one-to-one function, we simplify the notation and refer to the variable yuv
simply as yu or yv. In other words,

yuv = yvu = yu = yv (3.14)



Thus yv simply represents the variable associated to moving node v for any v ∈ V . Then we can write
the external degree of a node u ∈ V1 as

Eu =
∑
v∈V2

wuv(yu yv + yuyv)

+
∑
v∈V1

wuv(yuyv + yu yv)
(3.15)

Since the sum of the external degree for every node in V is in fact equal twice the cut, we thus have
an optimal move as

min
∑
u∈V

Eu

yu ∈ {0, 1} u ∈ V
(3.16)

We now generalize this to give an optimal move in a k-way partitioning.
Let P (u) ∈ {1, . . . , k} be the part number of node u ∈ V , and M be the set of non-intersecting

pairs of nodes being considered for the decision to be swapped, such that if {u1, u2}, {u3, u4} ∈M , then
ui 6= uj for i 6= j and if {u, v} ∈ M then P (u) 6= P (v), i.e, they are distinct and nodes in each pair
belong to different parts. Similar to the bisection case, define yuv = yvu = yu = yv as the binary variable
that is 1 if and only if node u swaps parts with v. Define the Neighborhood of u ∈ V as

N(u) := {v ∈ V |P (u) = P (v)} (3.17)

and
N (u) := {v ∈ V |{w, v} ∈M,w ∈ N(u)} (3.18)

then since each node is restricted to moving to only one other part, we can describe this move as a
QUBO similar to the one in the graph bisection problem. In what follows, we follow the notation and
treatment of KL algorithm as in the from the developers of METIS [29].

The external degree of a node u ∈ V can be defined in terms of the disjoint sets N(u) and N (u).

Eu =
∑

j∈N(u)

wuj(yuyj + yu yj)

+
∑

j∈N (u)

wuj(yuyj + yu yj )

+
∑

j∈V \N(u)∪N (u)

wuj

(3.19)

Then for a partition given by V1, . . . , Vk, the cut is given by

1

2

k∑
j=1

∑
u∈Vj

Eu (3.20)

where the 1
2 is added to include the double counting of each edge in the cut which can be ignored for

optimization purposes. Therefore an optimal move of swaps would be

min
k∑
j=1

∑
u∈Vj

Eu

yu ∈ {0, 1} u ∈ V
(3.21)



or simply as

min
∑

{u,v}∈M

Eu + Ev

yuv ∈ {0, 1} {u, v} ∈M
(3.22)

where the formulation given in (3.22) is independent from k. Note that if there exists a node u ∈ V
such that u /∈ m for any m ∈M , then by definition, yu = 0, thus not every node need to be considered
to be move at each iteration of the algorithm.

3.4 Quadratic Assignment Problem Quadratic Assignment Problem (QAP) is one of the funda-
mental combinatorial optimization problems. In fact, many other famous problems including TSP, GP
can all be formulated into QAP.

Consider a set of facilities N = {1, . . . , n} and a set of N = {1, . . . , n} locations. For each pair
of facilities, a weight or flow is specified and for each pair of locations, a distance is specified. The
quadratic assignment problem (QAP) is to assign all facilities to different locations with the goal of
minimizing the allocation cost, taking the costs as the sum of all possible distance-flow products.

Consider fij the flow between facility i and facility j, and dkl the distance between location k and
location `. The QAP can be formulated as the following QUBO:

min
n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

fijdk`xikxj` (3.23)

+A
n∑
k=1

(
n∑
i=1

xik − 1)2

+A

n∑
i=1

(

n∑
k=1

xik − 1)2

s.t. xik ∈ {0, 1}, i, k = 1, 2, · · · , n

where A is a positive constant to penalize the violation of constraints.
For a feasible solution, the binary variables xik can be interpreted as follows:

xik =

{
1, if facility i is assigned to location k

0, otherwise.

Note that this is a classical example of problem with 2-Way 1-Hot constraints, and each feasible solution
is an encoding of a permutation.

It is not practical to directly solve the original problem exactly when the size of the problem gets
larger, and this leads to the development of a large collection of local search algorithms.

Local Search Algorithm As summarized in [7], much research has been devoted to the
development of local search heuristics to provide good quality solutions of QAP in a reasonable time.
All such algorithms start with an initial feasible solution and iteratively refines the current solution.
The most frequently used neighborhoods for QAPs are the pair-exchange neighborhood and the cyclic
triple-exchange neighborhood.

A straight forward implementation of QLS in [56, 57, 58] would be: Given an initial feasible solution
(permutation) of QAP, in each iteration, select a subset of the current permutation, formulate a sub-
QUBO that search through possible permutations inside the subset. The sub-QUBO formulated in each
iteration will have k2 binary variables, where k is the size of the subset selected.



We first extend QLS by choosing multiple subsets that are pairwise disjoint. Given an initial feasible
solution (permutation) of QAP, in each iteration, we first select m pairwise disjoint subsets of size k
from the permutation (For the sake of simplicity, we assume that the subsets are equally sized, but in
general they can be different in sizes). Next, we try to refine the current solution by finding the optimal
allocation of each subset we select simultaneously, and we achieve this by formulating it into a QUBO
and solve the QUBO. To make it more clear, We use figure 3.4 to further explain. In figure 3.4, there
are 4 disjoint subsets, each with size 3, thus m = 4, k = 3, we allow facility f1, f2, f3 to relocate to
location l1, l2, l3, facility f4, f5, f6 to relocate to location l4, l5, l6, etc.

f1
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f3

f4

f5

f6

Facilities

...

l1

l2

l3

l4

l5

l6

Locations

...
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f11
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Facilities

...

l7
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l10

l11

l12

Locations

...

Figure 3: Multiple Local Search Simultaneously with k = 3

Notice that here, k determines the degree of freedom of each facility, with larger k, the search space
for each facility gets larger, while m determines the breadth of the search, with larger m, we can update
the allocation of more facilities simultaneously. In each iteration, we search for a better solution from
(k!)m possible permutations.

Suppose in an iteration, the initial solution is a permutation π : N → N , and we select refinement
subsets C = {Cj}j∈[1,m], where Cj : Nj → π(Nj), j ∈ [1,m] are pairwise disjoint. Here, Nj = {nj`}`∈[1,k]

are subsets of the permutation, and we define π(Nj) = {π(nj`)}`∈[1,k], j ∈ [1,m]. Since we only allow
permutations inside each subset, the QUBO we formulate is equivalent to the formulation (3.23) with
multiple variables fixed as zero. Namely, xik = 0 for all i ∈ Nj , k 6∈ π(Nj), j = 1, 2, · · · ,m. Therefore,
the number of binary variables in (3.23) will be reduced to mk2. However, in this formulation, we still
have the 2-Way 1-Hot encoding.

Next, we consider the special case when k = 2, namely, each subset only contains 2 elements, as
shown in Figure 3.4. There are only two possibilities for each subset, swap the current allocation or keep
the current allocation. If we formulate this local search with binary variables interpreted as follows:

xi =

{
1, if apply pairwise exchange on Ci

0, otherwise.

We can further reduce the number of variables to m, what’s more, since the permutation constraints



f1

f2

f3

f4

f5

f6

Facilities

...

l1

l2

l3

l4

l5

l6

Locations

...

f7

f8

f9

f10

f11

f12

Facilities

...

l7

l8

l9

l10

l11

l12

Locations

...

Figure 4: Multiple Local Search Simultaneously with k = 2

are automatically satisfied after the local change, the 2-Way 1-Hot encoding in (3.23) will be dropped.
The QUBO formulation is given as follows:

min
∑

Ci,Cj∈C

(
xixj

∑
a,b∈Ni∪Nj

fabdπi(a)πi(b)

+ xi xj
∑

a,b∈Ni∪Nj

fabdπj(a)πj(b)

+ xixj
∑

a,b∈Ni∪Nj

fabdπij(a)πij(b)

+ xi xj
∑

a,b∈Ni∪Nj

fabdπ(a)π(b)

)

+
∑

Ci∈C,n` 6∈∪jCj

(
xi

∑
a,b∈Ni∪{n`}

fabdπi(a)πi(b)

+ xi
∑

a,b∈Ni∪{n`}

fabdπ(a)π(b)

)
.

Here, π is the initial solution (permutation), πi is the permutation that apply pairwise exchange on
Ci only, πj is the permutation that apply pairwise exchange on Cj only, and πij is the permutation that
apply pairwise exchange on both Ci and Cj .

The special case when k = 2 we present here restrict each local change as pairwise exchange, this can
be generalized further, we can define various kinds of local changes, and interpret the binary variables
as decision variables: apply this local change or not. With this modeling of local search, the 2-Way
1-Hot encoding will always be automatically satisfied, meaning no penalizing parameters to scale in the
QUBO. Moreover, we use less variables in the formulation.



Another important factor of the algorithm is the order in which the neighborhood is scanned, or in
other words, the rules of selecting the subsets. This order can be deterministic or chosen at random. In
our experiments, we explore a greedy selection rule. Namely, we scan the pair exchange neighborhood,
that is, all permutations which can be obtained from the given one by applying a transposition to it.
We then rank the pairs by the improvement of the solution, and finally select the subsets based on this
ranking.

3.5 General Algorithm In this sub-section, we summarize the general algorithm for modeling local
search with special-purpose hardware while comparing our approach to previous methods.

For a general combinatorial optimization problem, QLS algorithm in [56, 57, 58] can be summarized
as follows:

Algorithm 3.1.

1: Starting from a feasible solution of the original problem of size n
2: for i = 1, 2, · · · do
3: Choose a subset of the n variables
4: Formulate the sub-QUBO and use a QUBO solver to find a new feasible solution
5: if new solution is better then
6: accept the new solution
7: end if
8: end for

We extend the above algorithm in such a way that instead of only choosing one subset from the
n possible variables, we choose m pairwise disjoint subsets from the n variables. Within each
subset, we search through all possible feasible configurations by formulating it into a sub-QUBO.
The subsets need not to be equally sized, but for the sake of simplicity, we assume that all subsets
are of size k. We note that the unlike similar methods for local search in parallel, the m subsets
do not need to be mutually independent, which makes this a powerful approach. The general algorithm

can be summarized as follows:

Algorithm 3.2.

1: Starting from a feasible solution of the original problem of size n
2: for i = 1, 2, · · · do
3: Choose m pairwise disjoint subsets of size k from the n variables
4: Formulate the sub-QUBO and use QUBO solver to find a new feasible solution
5: if new solution is better then
6: accept the new solution
7: end if
8: end for

Algorithm 3.2 for k > 2 creates an optimization problem that has constraints, therefore there is the need
to introduce penalty terms to the QUBO. The case when k = 2 can be reduced to a sub-problem that
does not have any constraints therefore we give a different algorithm for this case as it does not require
any penalty terms. In summary, for this case, a binary variable represents the decision of whether or
not a specified local change should be applied.

The algorithm can be described as follows:

Algorithm 3.3.



1: Starting from a feasible solution of the original problem of size n
2: for i = 1, 2, · · · do
3: Choose m pairwise disjoint subsets from the n variables
4: Define a possible local change and assign a binary variable for each subset to represent whether

or not to apply that local change
5: Formulate the QUBO and use QUBO solver to find a solution
6: if new solution is better then
7: Accept the new solution
8: end if
9: end for

Further comparison of the approaches can be found in the supplementary material. With our
approach, for problems with 2-Way 1-Hot constraints like TSP and QAP, in each iteration, we solve
a QUBO to explore the search space of size (k!)m. Moreover, in the case when k = 2, since there are
no constraints, all solutions searched by the QUBO solver are feasible solutions, while for other values
of k, a large number of the solutions searched are infeasible since they will violate the permutation
constraints.

Finally, in general, parallel local search requires that if more than one local search is performed at
the same iteration, these sub-problems must be mutually independent, whereas our approach does not
have this requirement making it a more powerful approach.

4 Experiments on QAP

We implemented the algorithm using Python 2.7. As a QUBO solver, we compared the modeling
approaches using the Fujitsu Digital Annealing Unit (DA) with the parallel tempering mode. We test
our algorithm on problem instances from the QAP benchmark library, QAPLIB [8]. There are mainly
two parameters in DA we tuned in our experiments. The first is the number of iterations. This refers to
the number of MC steps in the DA algorithm [1]. As pointed out in [1], each MC step takes the same
amount of time, therefore can be considered as a time limit on DA. The second is the choice of initial
state for the DA. We carried out experiments in both setting, (i) initialing from a random state and (ii)
initializing from a given state.

The main goal of the experiments is to compare the different modeling strategies for local search
on special-purpose hardware of fixed size. The modeling techniques presented in this work can be
summarized by the parameters k and m, therefore, in our experiments we vary these values and
demonstrate the advantages of one over the other. (Additional plots can be found in the supplemental
material.)

The parameters k and m: We first compare the performance of the algorithm with different
values of k and m. We have tested the algorithm on multiple problem instances from QAPLIB, and they
all have similar results. Figure 5 gives the value of the objective function with respect to the number
of iterations of the algorithm. We start with a randomly generated initial solution, and apply greedy
selection rule to select the refinement clusters. We can see that with k = 2, we can reach close to
optimal within 5 iterations, and the quality of the solution is the best among all choices of k and m.

Since at each iteration, we are solving a QUBO in the DA, the configuration in DA will also effect
quality of the solution. Figure 5 shows the result when we did not give any starting initial solution
in the annealing process, and Figure 6 shows the result when we assign an initial solution to DA. The
advantage of assigning initial solution is that we will never get a solution that is worse than the initial
feasible solution, and the drawback is, we will be more likely to stay in a local optimal. From the plots,
we can see that k = 2 in both cases achieve the best result among all choices of k and m.
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Figure 7: Dependence of objective value on the number of iterations using the greedy selection, assigning
initial solution to DA with each refinement subset size is k = 32. Dataset: ’tai150b’

Time limit per iteration Next, we compare the performance of the modeling strategies with
different time limit for solving the QUBO. We give the DA different number of iterations to control the
annealing time. We found that when k = 2, with a small number of iterations (10,000), we can find a
solution that has good quality, as shown in Figure 8. While for larger k, in most cases, as what shows
in Figure 7, we need more iterations in DA to guarantee the quality of the solution.
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initial solution to DA with each refinement subset size is k = 2. Dataset: ’tai150b’

5 Conclusions and Discussions

Post Moore systems such as special-purpose hardware are being developed for different scientific
domains. In combinatorial optimization, different novel hardware is emerging that are unified with
respect to the Ising model, that is, they are designed to solve problems formulated in the Ising model
or as a QUBO. As the hardware emerges, there is a challenge for existing well-established algorithms
to take advantage of these hardware especially for large-scale problems. We have tackled this challenge
by proposing different models, modeling techniques and algorithms that utilize the hardware efficiently.
In particular, for large problems, we have demonstrated how to model multiple sub-problems that are
not necessarily mutually independent as a step in a local search framework. Given that the QUBO is
unconstrained by definition, we have further showed how to model sub-problems as a QUBO that
implicitly satisfy the constraints, thus searching an exponentially larger search space per iteration
compared to previous methods and also utilizing the given hardware more efficiently. This then provides
new possibilities to escape from local optima. Our novel modeling techniques and algorithms can easily
be adopted to a large class of local search algorithms thus demonstrating one step in which well-
established algorithms can utilize this emerging technologies.
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