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Abstract

This work is motivated by the needs of predictive analytics on healthcare data as repre-
sented by Electronic Medical Records. Such data is invariably problematic: noisy, with miss-
ing entries, with imbalance in classes of interests, leading to serious bias in predictive
modeling. Since standard data mining methods often produce poor performance measures,
we argue for development of specialized techniques of data-preprocessing and classifica-
tion. In this paper, we propose a new method to simultaneously classify large datasets and
reduce the effects of missing values. It is based on a multilevel framework of the cost-sensi-
tive SVM and the expected maximization imputation method for missing values, which relies
on iterated regression analyses. We compare classification results of multilevel SVM-based
algorithms on public benchmark datasets with imbalanced classes and missing values as
well as real data in health applications, and show that our multilevel SVM-based method
produces fast, and more accurate and robust classification results.

Introduction

Modern healthcare can be characterized as personalized, evidence-driven and model-assisted
[1]. As healthcare industry is becoming more integrated with data science, planners and practi-
tioners have to continuously choose the best available machine learning methods to use on
medical data that is inherently sparse, noisy, and scanned for rare events more often that for
the norm.

In the clinical environment, decisions made based on predicting risks and positive outcomes
should be ideally supported by statistical learning models. These models can be seen as either a
simplified risk-assessment model [2], or a sophisticated machine learning method [3, 4]. In
either case, it is based on a query of relevant clinical and operational history. While prediction
of real-valued health metric over time is of interest to the healthcare domain, it more properly
belongs to the field of medical simulation models.

Due to the nature of big data in healthcare, the role of data analysis, particularly classifica-
tion methods, is critical to support better decision for personalized medicine, that is, decision-
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making with awareness that patients can be classified into groups based on their personal char-
acteristics and the patterns observed in patient-provider-insurer interactions, and that patients
from different groups will have different responses to treatment and different risk outcomes.
Thus, if we describe the most common task of predictive analytics for healthcare in one infor-
mal sentence, it would be: solving classification problems on clinical data using specialized pre-
processing and specialized predictive algorithms.

Comprehensive medical information comes in multiple categories (that can be stored in
multiple databases, with different formats and rules of access). Categories include: biometric
information, medical codes referring to clinical transactions, insurance claims and payments,
results of laboratory tests, narratives such as doctors’ notes, socioeconomic data characterizing
life conditions and choices of individual patients, and molecular data (genomics, proteomics,
metabolomics). Our work is focused on the categories items placed earlier in this list. They are
considered ‘traditional medical information’, are recorded for millions, rather than thousands
of patients, and are best source material for study of large patient populations. Due to consider-
ations of patient privacy, and the proprietary nature of electronic medical records [5], the data-
bases cannot be queried continuously. Every instance of data acquisition and integration is a
separate effort that is cost-effective only when the resulting predictive model shows high qual-
ity. Thus, progress in evidence-driven healthcare depends on how well state-of-the art algo-
rithms of machine learning are adapted to clinical data.

We note that classical mathematical, and computer science issues, such as scalability, or
convergence rate are rarely a major issue for healthcare applications. Instead, an algorithm is
ranked based on its ability to process raw medical data, with such problematic features as spar-
sity, missing entries, noise and imbalanced outputs. Because of the encounter nature of
patient-provider interaction, medical data is inherently sparse: when a clinical encounter
occurs, the number of and contents of labels attached to it vary widely [6]; outside of an
encounter, the state of the patient is unknown. The outcomes of interest in classification prob-
lems are imbalanced, because, as a rule, healthcare analytics is motivated by rare events such as
healthcare emergencies, severe chronic conditions, gaps and bottlenecks in access to care.

This work was prompted by several projects completed with the Division of Applied
Research and Clinical Informatics, Dept. of Data Science; Geisinger Health System. For the
first motivating example (Example 1, see Section), we use our 2014 feasibility study [7] of
merging insurance information (6 aggregate features, based on the history of claims and pay-
ments) together with clinical encounter information (10-20 features chosen by hand from
patient biometrics, medications and diagnostic codes). The goal of the initial study was to pre-
dict the financial risk for a particular patient (a common metric in insurance practice, derived
as a ratio of individual expenses and average expenses for a large demographic group). We
attempted to use a standard clustering technique, k-nearest neighbors with empirically selected
weighting, to achieve the basic results before we developed the proposed method. Unfortu-
nately, the results were very unsatisfactory: the chance of mis-categorization (in one-against all
binary classification) was close to 50% for all risk groups. Intuitive explanations such as “some
patients have entered a high-risk state that is not yet reflected in their financial information”
could not be formally verified or used to explain the poor performance, which prompted inter-
est in using the more advanced machine learning methods.

For Example 2 (see Section), we use our preliminary investigation of patients’ response to
public outreach [8], such as annual flu awareness campaigns. We included basic demographic
and clinical information on patients targeted by 35 identically organized campaigns. (the fea-
tures included in the data were: age, sex and BMI of the patient, and binary variables identify-
ing whether the patient was assigned the most commonly occurring medication codes and
prescribed the most commonly occuring medications). The data was used to build a model
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predicting whether a given patient is likely to respond to the reminder, or to choose not to get
vaccinated, or use a different provider. Again, our initial core predictive model was standard:
logistic regression with empirically selected weighting of training data which is widely used in
healthcare informatics.

We intend to show that in each case, the predictive models are made more effective with the
use of an advanced machine learning algorithm developed with awareness of sparsity and class
skewness (imbalance) in data.

Methods

Our study was approved by Geisinger’s Institutional Review Board. Information from individ-
ual electronic medical records was de-identified prior to use in the study.

Support vector machines (SVM) are among the most well-known optimization-based super-
vised learning methods, originally developed for binary classification problems [9]. The main
idea of SVM is to identify a decision boundary with maximum possible margin between the data
points of each class. Training nonlinear SVMs is often a time consuming task when the data is
large. This problem becomes extremely sensitive when the model selection techniques are
applied. Requirements of computational resources, and storage are growing rapidly with the
number of data points, and the dimensionality, making many practical classification problems
less tractable. In practice, when solving SVM, there are several parameters that have to be tuned.
Advanced methods, such as the grid search and the uniform design for tuning the parameters,
are usually implemented using iterative techniques, and the total complexity of the SVM strongly
depends on these methods, and on the quality of the employed optimization solvers such as [10].

In this paper, we focus on SVMs that are formulated as the convex quadratic programming
(QP). Usually, the complexity required to solve such SVMs is between O(n?) to O(n?) [11].
For example, the popular QP solver implemented in LibSVM [10] scales between O(n;n.?) to
O(n;n.’) subject to how efficiently the LibSVM cache is employed in practice, where ns and n,
are the numbers of features, and samples, respectively.

Typically, the gradient descent methods achieve good performance results on such models,
but still tend to be very slow for large-scale data (when effective parallelism is hard to achieve).
Several works have recently addressed this problem. Parallelization usually splits the large set
into smaller subsets and then performs a training to assign data points into different subsets
[12]. In [11], a parallel version of the Sequential Minimal Optimization (SMO) was developed
to accelerate the solution of QP. Although parallelizations over the full data sets often gain
good performance, they can be problematic to implement due to the dependencies between
variables, which increases communication. Moreover, although specific types of SVMs might
be appropriate for parallelization (such as the Proximal SVM [13]), the question of their practi-
cal applicability for high-dimensional datasets still requires further investigation. Another
approach to accelerate the QP is chunking [14, 15], in which the optimization problem is
solved iteratively on the subsets of training data until the global optimum is achieved. The
SMO is among the most popular methods of this type [16], which scales down the chunk size
to two vectors. Shrinking to identify the non-support vectors early, during the optimization, is
another common method that significantly reduces the computational time [10, 14, 17]. Such
techniques can save substantial amounts of storage when combined with caching of the kernel
data. Digesting is another successful strategy that “optimizes subsets of training data closer to
completion before adding new data” [18]. Summarizing computational and EMR problems
mentioned above, we note that being highly flexible and parametrizable to be applied on a vari-
ety of complex manifolds, applications of SVMs on large-scale healthcare data without significant
decrease in time complexity can be extremely expensive.
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Let us formally describe a supervised classification problem on data consisting of real-valued
variables and categorical variables converted into binaries. Given a training set J = {(x,, yi)}izl,
that is a set of data points with known labels, where (x,,,) € R""',andland n are the numbers
of data points and features, respectively, and y; € {-1, 1} denotes the class label for each data
pointiin 7. We denote by C” and C”, the “majority” (points with y; = —1) and “minority”
(points with y; = +1) classes respectively such that 7 = C* U C".

Support Vector Machines

The optimal SVM classifier is determined by the parameters w and b through solving the con-
vex optimization problem

S SR .
min 5wl +CY ¢ m
st y(wolx)+b)>1-¢  i=1,...,1 (2)
£ >0 i=1,.. .1 (3)

where ¢ maps training instances x; into a higher dimensional space, ¢ : R" — R™ (m > n).
The term slack variables &; (i € {1, .. ., I}) in the objective function is used to penalize misclassi-
fied points. This approach is also known as soft margin SVM. The magnitude of penalization is
controlled by the parameter C. Many existing algorithms (such as SMO, and its implementa-
tion in LIBSVM tool [10] that we use) solve the Lagrangian dual problem instead of the primal
formulation, which is a popular strategy due to its faster and more reliable convergence.

Weighted Support Vector Machines

Imbalanced classification tasks (when the sizes of classes are very different) are another major
problem that, in practice, can lead to poor performance measures [19]. Imbalanced learning is
a significant emerging problem in many areas, including medical diagnosis [20-22], face recog-
nition [23], bioinformatics [24], risk management [25, 26], and manufacturing [27]. Many
standard SVM algorithms often tend to misclassify the data points of the minority class. One of
the most well-known techniques to deal with imbalanced data is the cost-sensitive learning
(CSL). The CSL addresses imbalanced classification problems through different cost matrices.
The adaptation of cost-sensitive learning with the regular SVM is known as weighted support
vector machine (WSVM [28], also termed as Fuzzy SVM) [29]. The main idea is to consider
weighting scheme in learning such that the WSVM algorithm builds the decision hyperplane
based on the relative contribution of data points in training. In contrast to the standard SVM,
the penalization costs are different for the positive (C") and negative (C”) classes:

. 1 n, B n_
min o wlf+CT YT GHC Y (4)
{ilyi=+1} {ily=—1}
st y(wolx)+b)>1-¢  i=1,...,1 (5)
él Z 0 i = 17 AR l7 (6)

where C", and C are the parameters associated with the positive, and negative classes, which
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assign different importance weights to each data class. The formulations (1) and (4) are solved
through the Karush-Kuhn-Tucker conditions.
The Gaussian kernel function (radial basis function, RBF) defined as

k(x' x') = exp (_V H X, = xj||2>7 7 >0, (7)

i

is used in the dual formulation of (W)SVMs. This kernel has been confirmed as the most suc-
cessful for the UCI benchmark in multiple studies. Parameter tuning is required to set optimal
or near optimal C, C*, C, and kernel function parameters (e.g. bandwidth parameter for RBF
kernel function) to achieve good results for (W)SVM. This process becomes problematic and
time-consuming particularly when the size of data is very large. Hence we aim to develop an
efficient and effective classification method, called the Multilevel (W)SVM, that is scalable and
works with imbalanced healthcare data.

Multilevel Support Vector Machines

The proposed algorithm belongs to the family of multilevel optimization strategies [30] whose
goal is to approximate the system at multiple scales of coarseness and to obtain a final solution
by combining the information from different scales. The multilevel framework for SVM [31]
scales efficiently for large classification problems whose hierarchy of coarser representations is
constructed based on the approximated k-nearest neighbors graphs (AkNN). We note that the
exact nearest neighbor graph methods are rather computationally expensive due to construc-
tion of the k-NN graph structure. There is a lack of exact and scalable nearest neighbor search
algorithms with good performance, when data is high-dimensional. Several attempts have been
made to propose an approximate search [32, 33], in which not all the neighbors obtained are
exact, but still generally close to the exact neighbors. The multilevel support vector machine
method (Fig 1) consists of three main phases, namely, coarsening, coarse support vector initial
learning, and uncoarsening.

The coarsening phase. The coarsening algorithms are the same for both C*, and C~, so we
provide only one of them. Given a class of data points C, the coarsening begins with a construc-
tion of an approximated k-nearest neighbors (AkNN) graph G = (V,E), where V = C, and E are
the edges of AKNN. A gradual coarsening of the training set is constructed using fast point
selection method [34] in AKNN graph. (In fact, this version of coarsening is a simplified coars-
ening developed for combinatorial optimization problems on graphs such as in [35, 36].)

The goal is to select a set of representative points V for the next-coarser problem, where
|V| > Q|V/|, and Q is the parameter for the size of the coarse level graph. In practice, it can
often be done by selecting a maximal independent set of points such as in [34]. However, we
found that ensuring a slightly denser uniform coverage of the points can lead to much better
results than finding an independent set of points (nodes in AkNN) as was suggested in [34]. (An
independent set is a set of vertices in a graph when no two vertices are connected by an edge.)
Thus, we extended the set of coarse points by setting a parameter for the minimum number of
points that in our experiments was set to 50% of the fine data points. The second requirement
for V is that it has to be a dominating set of V. (The dominating set of nodes is a subset of V/
such that each vertex in Vis either in this set or adjacent to one or more vertices in it.)

The coarsening for class C is presented in Algorithm 1. The algorithm consists of several
iterations of independent set of V selections that are complementary to already chosen sets. We
begin with choosing a random independent set (line 2) using the greedy algorithm. It is elimi-
nated from the graph, and the next independent set is chosen and added to V (lines 5-11). For
imbalanced cases, when WSVM is used, we avoid of creating very small coarse problems for
C . Instead, already very small class is continuously replicated across the rest of the hierarchy if
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Fig 1. The multilevel SVM framework consists of three phases: gradual training set coarsening, coarsest support vectors’ learning, and
gradual support vectors’ refinement (uncoarsening). Pairs of AkKNN graphs correspond to two classes of learning.

doi:10.1371/journal.pone.0155119.9001

ca S

C" still requires coarsening. We note that this method of coarsening will reduce the degree of
skewness in the data and make the data approximately balanced at the coarsest level. The mul-
tilevel framework recursively calls the coarsening process until it creates a hierarchy of r coarse
representations {7,},_, of J. At each level of this hierarchy, the corresponding AkKNNs’ {G, =
(V,,E;)}._, are saved for future use at the uncoarsening phase. The corresponding data and
labels at level i is denoted by (X, Y,) € R*"*), where |X/| = k.

Algorithm 1 The Coarsening
1: Input: G= (V,E) forclassC
: V «— select maximal independent set in G
0 —vVv\V
:while|V| < 0-|V|do
while U # () do
randomlypick i € U

o U W DN
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7: U« U\{i}
8: U« U\ {neighbors of i in U}
9: Ve~ Vu{i}

10: endwhile
11: 0« Vv\V
12: endwhile
13: return V

Supervised support vector initial learning. After the hierarchy is created, the support
vectors learning is performed at the coarsest level, where the number of data points is suffi-
ciently small.

At the coarsest level r, when | 7| << J, we can apply an exact algorithm for training the
coarsest classifier. Typically, the size of the coarsest level depends on the computational
resources. However, for the (W)SVM problems, one can also consider some criteria of the sepa-
rability between C, and C; [37], i.e., if a fast separability test exists or additional data properties
are available. We used the simplest criterion bounding 7, to 500. Processing the coarsest level
includes an application of the uniform design (UD) [38] model selection to improve the quality
of classifiers. The nested UD search is an efficient method used for automatic model selection for
SVMs. This method is applied to select the candidate set of parameter combinations and carry
out a k-fold cross-validation to evaluate the quality of each parameter combination.

The uncoarsening phase. Support vectors, and classifier are projected throughout the
hierarchy from the coarsest to the finest levels. At each level, a solution to the current fine level
is updated and optimized based on the solution of the previous coarse level. The locally optimal
support vectors are obtained by gradual refinement of the support vectors projected from the
coarse level.

Given the solution of coarse level i + 1 (the set of support vectors S;, ;, and parameters C;, ;,
and y;,,), the primary goal of the refinement is to update and optimize this solution for the cur-
rent fine level i. Unlike many other multilevel algorithms, in which the inherited coarse solu-
tion contains projected variables only, in our case, we initially inherit not only the coarse
support vectors (the solution that can represent the whole training set [39, 40]) but also param-
eters for model selection. This is because the model selection is an extremely time-consuming
component of (W)SVM, and can be prohibitive at fine levels. However, at the coarse levels,
when the problem is much smaller than the original, we can apply much heavier methods for
model selection with almost no loss in the running time of the framework. In particular, at
each level of ML(W)SVM, after updating the training set and before running SVM, the UD is
performed on the training data. Because the data might be imbalanced, we select the optimal
parameter set with respect to the maximum G-mean value. The optimal C;,y, ¥;,, of previous
level are used as the initial C; and y; at level i, and they will be updated at each level based on
the new training set. The C; and y; that result in higher G-mean will be selected as optimal or
near-optimal parameters at all levels.

The refinement is presented in Algorithm 2. The coarsest level is solved exactly and rein-
forced by the model selection (lines 2-5). If i is one of the intermediate levels, we build the set
of training data data) by inheriting the coarse support vectors S;,; and adding to them some
of their approximated nearest neighbors at level i (lines 6-7) (in our experiments, usually not
more than 5). If the size of data\",, is still small enough (relatively to the existing computational
resources, and the initial size of the data) for applying model selection, and solving SVM on the
whole datagi,)li,,, then we use coarse parameters C;, 1, and ¥, as initializers for the current level,
and retrain (lines 9-10,19). Otherwise, the coarse C;.;, and y;,, are inherited in C;, and y; (line

12). Then, being large for direct application of the SVM, data, is clustered into K clusters,
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and pairs of P nearest opposite clusters are retrained, and contribute their solutions to S; (lines
15-17). The number of K is determined in as

K = \datagiiin|/th. (8)

We note that cluster-based retraining can be done in parallel, as different pairs of clusters are
independent. Moreover, the total complexity of the algorithm does not suffer from reinforcing the
cluster-based retraining with model selection.

Algorithm2 The Refinement at level i
1: Input: J,,5,.1,Ci1,Vin

2:if i isthe coarsest level then

3 Calculate thebest (C;, y;) using UD

4: S;<—Apply SVMon X;

S5:endif

6: Calculate nearest neighbors N; for support vectors S;;; fromthe existing
AKNN G;

7: data(tiﬁam — Sy UN;
8:if |datal’,, | < 0, then
9: %« Civ17 Yo‘* Yi+1
10: RunUDusing the initial center (CO, yo)
11: else
120 Ci = Civ1i Vi< Viel
13: endif
14: if|datal’,, | > 0,, then
15: Cluster data(tir)am into Kclusters
16: VkeKfind Pnearest opposite-classclusters
17: S;<—Apply SVMonpairsof nearest clustersonly
18:else
19: S;«Apply SVMdirectlyon datafﬁain
20: endif
21: Return S;, C;, v:

For imbalanced data, the WSVM can easily be adopted as the base classifier for multilevel
framework (MLWSVM). The regular SVM does not perform well on imbalanced data because
it tends to train models with respect to the majority class and technically ignores the minority
class. However, the effect of imbalanced issue decreases while using multilevel framework since
we prevent creating very small coarse sets for the minority class even if the majority class can
still be coarsened.

Often, methods for imbalanced classification demonstrate poor performance on data with
missing values (such as [41]) that is a frequent situation in healthcare data. Therefore, we apply
imputation methods prior the classification model. Such imputation methods have been well
studied in statistical analysis and machine learning domains [42-46]. Problems with missing
data can be categorized into three types: data is completely at random (MCAR), missing at ran-
dom (MAR), and not missing at random (NMAR). MCAR occurs while any feature of a data
instance is missing completely random and is independent of the values of other features. Data
is MAR, when the data instance with missing feature is dependent on the value of one or more
of the instances’ other features. NMAR occurs when the data instance with missing feature is
dependent on the value of the other missing features. Even though MCAR is more desirable, in
many real-world problems, MAR occurs frequently in practice [42].

In the imputation methods, the goal is to substitute a missing value with a meaningful esti-
mation [45]. This can be done either directly from the information on the dataset or by
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constructing a predictive model for this purpose. Standard methods for imputation are mean
imputation [47], KNN imputation [48], Bayesian principal component analysis (BPCA)
imputation [49], and the expectation maximization (EM) [50]. We apply the EM method
which is one of the most successful imputation methods [51]. The EM method iteratively
applies linear regression analysis and fits a new linear to the estimated data until a local opti-
mum is achieved [50, 52]. In the regularized adaption of EM method, the conditional maxi-
mum likelihood estimation of regression parameters is replaced in the conventional EM
algorithm [53].

Regularized Expectation-Maximization

In our preprocessing, when the data contains many missing values, we apply the EM algorithm.
It iteratively calculates the maximum-likelihood (ML) estimates of parameters by exploring the
relationship between the complete and incomplete data (with missing features) [54]. In many
cases, it has been demonstrated that the EM algorithm achieves a reliable global convergence to
a local maximizer (from almost any starting point), and economical storage. It is not computa-
tionally expensive, and can be easily implemented [55]. The EM algorithm maximizes the log-
likelihood (L) of the incomplete data

L(©;1) =) logp(x|®), 9)
i=1
where y = {x;|li=1, ..., n} are the observations with independent distribution p(x) parameter-

ized by © and P is the distribution function of the complete data given ©. The regularized EM
algorithm (REM) is developed to control the level of uncertainty associated to missing values
[56]. The main idea is to regularize the likelihood function according to the mutual relationship
between the observations and the missing data with little uncertainty and maximum informa-
tion. Intuitively, it is desirable to select the missing data that has a high probabilistic association
with the observations, which shows that there is little uncertainty on the missing data given the
observations. It performs linear regression iteratively for the imputation of missing values. The
REM algorithm optimizes the penalized likelihood as follows:

L(®;y) = L(®;y) + T'P(x, Y[©). (10)
The trade-off between the degree of regularization of the solution and the likelihood function
is controlled by the so-called regularization parameter that is represented by I' [56]. In addition
to reducing the uncertainty of missing data, the REM preserves the advantage of the standard
EM method. This method is very efficient for over-complicated models.

The EM algorithm implementation in this paper is based on iterated linear regression
analysis. In the regularized EM algorithm, a regularized estimation method substitutes the
conditional maximum likelihood estimation of regression parameters in the conventional
EM algorithm. We used the modules from [50], which apply truncated total least squares
(with fixed truncation parameter) and ridge regression with generalized cross-validation as
regularized estimation methods. We only perform the REM imputation for all classification
datasets in the paper.

Performance Measures

Classification algorithms are evaluated using the performance measures calculated from the
confusion matrix (see Table 1).

PLOS ONE | DOI:10.1371/journal.pone.0155119 May 19,2016 9/18



@’PLOS ‘ ONE

Multiscale Weighted SVM for Healthcare Data

Table 1. Confusion matrix.

Positive class Negative Class
Positive class True Positive (TP) False Positive (FP)
Negative Class False Negative (FN) True Negative (TN)

doi:10.1371/journal.pone.0155119.t001

For binary classification problems, the performance measures are defined as sensitivity
(SN), specificity (SP), and G-mean, accuracy (ACC), namely,

TP TN

SN=———, SP=—7—72—+- 11
TP+ FN’ TN + FP’ (11)
G-mean = V/SP x SN, (12)
and
TP+ TN
ACC = + (13)

FP+ TN+ TP+ FN’

Numerical Results

Due to proprietary nature of medical data, anonymized medical records can be made available
for research purposes, but cannot be shared in open access. For validation and reproduction, it
is helpful to first examine the performance of proposed methods on standard public data sets.
Our source code is available at [57].

We evaluate the proposed classification framework on public (UCI [58], and the cod-rna
dataset [59]), and healthcare proprietary binary classification benchmarks [7, 8]. Both the
coarsest and refinement (W)SVM models are solved using LIBSVM-3.18 [10], and the FLANN
library [33] is used to create the AKNN graphs. We used a ‘composite’ algorithm of FLANN,
which is a combination of multiple randomized KD trees and hierarchical k-means trees.
According to [33], it outperforms separate KD trees and hierarchical k-means trees, so we
report only the results of the ‘composite” algorithm in FLANN. The number of requested near-
est neighbors in AkNN is selected as k = 10. Increasing k does not improve the results. We
chose P for the number of nearest opposite-class clusters as 10% of the number of clusters in
the corresponding class (Algorithm 2, line 16). In particular, after clustering each class individ-
ually, instead of training each cluster in one class with all clusters of the other class, we will pick
10% of clusters that belong to the other class, in a way that these clusters are the closest clusters
to the current cluster k. Next, we train cluster k with these 10% of nearest opposite clusters. For
example, if there are 20 clusters in the majority class and 5 clusters in the minority class, we
pick a cluster in the minority class and train it with 2 clusters of the majority class. Multilevel
frameworks, data processing and further scripting are implemented in MATLAB 2012a [60].
The C4.5 [61], Naive Bayes (NB) [62], Logistic Regression (LR) [63], and 5-Nearest Neighbor
(5NN) [64] are implemented using WEKA [65] interfaced with MATLAB. A typical 10-fold
cross validation setup is used. We create missing values on the public data training sets by dis-
carding the features randomly. The misclassification penalty or weights are selected as inversely
proportional to the size of each class in our implementation. As a preprocessing step, the whole
data is normalized such that it has a zero mean and unitary standard deviation. before classifi-
cation. The nested uniform design (UD) is performed on the training data as the model
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Table 2. Public data sets.
Dataset

Twonorm
Letter26
Ringnorm
Cod-rna
Clean (Musk)
Advertisement
Nursery
Hypothyroid
Buzz
Forest

doi:10.1371/journal.pone.0155119.t002

Fimb
0.50
0.96
0.50
0.67
0.85
0.86
0.67
0.94
0.80
0.98

selection for (W)SVM [38]. The UD methodology is very successful for model selection in
supervised learning [66]. The close-to-optimal parameter set is achieved in an iterative nested
process [38]. The optimal parameter set is selected based on G-mean maximization, since data
might be imbalanced. A 9- and 5-point run design is performed for the first and second stages
of the nested UD due to its superiority for the UCI data [38], and the performance measures
such as sensitivity, specificity, G-mean and accuracy are calculated on the testing data.

The nested UD method is performed in two stages. In the first stage, a 9-run UD sampling
pattern is conducted in the appropriate search range for C and y. In the second stage, the search
range for each parameter is fixed around the best point from the first stage. Then a 5-runs UD
sampling pattern is searched in the new range. The total number of parameter combinations is
13 (the center point at the second stage is the duplicate point which is trained and should be
considered only once). The optimal parameters are determined inside the MLSVM model each
time before SVM training each time. The initial range of parameter C is between 0.01 and 100,
the initial range of parameter y is between 0.005000 and 3.000078 for the nested UD. For the
REM implementation, we used multiple ridge regression within 5-fold cross-validation. We
performed the REM imputation in each fold of cross validation on the training data (90% of
the whole set). This means that there will be no transfer of information from the validation
data set into the training data through the imputation scheme to avoid biased results.

Public data sets

We compared several methods with the proposed ML(W)SVM to classify data with missing
values. We show the comparative results of MLSVM, MLWSVM, SVM, WSVM, Naive Bayes,
C4.5, LR, and 5NN algorithms evaluated on public data sets in Table 2. These methods are
examined for different missing value ratios (7,,,) selected as 5%, 10%, 20%, and 40% (Table 3).
We used the REM method for missing data imputation [50]. The best results for their corre-
sponding missing values’ levels among all methods are shown in bold which makes clear that
MLWSVM and WSVM perform better than the other methods in general for all missing value
ratios (see last row in Table 3). In fact, MLWSVM and WSVM result in higher G-mean values
in 22 out of 40 dataset-r,,, combinations followed by MLSVM, SVM, and C4.5 with 13 out of
40. Moreover, the ML(W)SVM techniques achieve faster computational time in comparison to
the standard (W)SVM (Table 4). We note that, while the results on publicly available data are
easy to relate to and reproduce, testing on relatively small and well-known data sets has its lim-
itations. Most standard methods and implementations achieve acceptable metrics of quality
because have been tested on and tuned using these data sets. In practice, we do not expect that

ny |71 IC*| Ic7|
20 7400 3703 3697
16 20000 734 19266
20 7400 3664 3736
8 59535 19845 39690
166 6598 1017 5581
1558 3279 459 2820
8 12960 4320 8640
21 3919 240 3679
77 140707 27775 112932
54 581012 9493 571519

PLOS ONE | DOI:10.1371/journal.pone.0155119 May 19, 2016 11/18



@'PLOS ‘ ONE

Multiscale Weighted SVM for Healthcare Data

Table 3. Comparative G-mean results for ML(W)SVM against the regular SVM, WSVM, NB, C4.5, 5NN, and LR on academic datasets for different

fractions of missing values (r,,,) using the REM imputation method.

Dataset Iy
Twonorm 5%
10%

20%

40%

Letter 5%
10%

20%

40%

Ringorm 5%
10%

20%

40%

Cod-rna 5%
10%

20%

40%

Clean 5%
10%

20%

40%

Advertisement 5%
10%

20%

40%

Nursery 5%
10%

20%

40%

Hypothyroid 5%
10%

20%

40%

Buzz 5%
10%

20%

40%

Forest 5%

10%

20%

40%
# of bold values

doi:10.1371/journal.pone.0155119.t003

MLSVM MLWSVM
0.98 0.98
0.98 0.98
0.98 0.98
0.97 0.97
0.97 1.00
0.98 1.00
1.00 1.00
0.95 0.97
0.97 0.98
0.98 0.98
0.98 0.98
0.98 0.98
0.95 0.96
0.95 0.96
0.95 0.96
0.95 0.95
1.00 0.99
0.99 1.00
1.00 1.00
1.00 1.00
0.87 0.87
0.87 0.87
0.83 0.85
0.84 0.86
0.99 0.99
0.99 0.99
0.96 0.96
0.92 0.92
0.83 0.87
0.85 0.86
0.84 0.86
0.86 0.88
0.94 0.94
0.94 0.94
0.92 0.94
0.93 0.93
0.90 0.91
0.92 0.93
0.91 0.92
0.88 0.89

13 22

SVM

0.98
0.97
0.98
0.97
0.99
0.98
0.99
0.96
0.97
0.99
0.97
0.97
0.96
0.95
0.95
0.95
0.98
0.99
1.00
1.00
0.87
0.86
0.83
0.87
1.00
1.00
1.00
1.00
0.81
0.78
0.72
0.84
0.94
0.94
0.93
0.93
0.90
0.91
0.90
0.88
13

WSVM

0.98
0.97
0.98
0.97
0.99
0.99
0.99
0.99
0.98
0.99
0.98
0.98
0.96
0.96
0.95
0.95
1.00
1.00
1.00
1.00
0.87
0.86
0.85
0.81
1.00
1.00
1.00
1.00
0.87
0.86
0.86
0.88
0.94
0.94
0.94
0.93
0.91
0.92
0.91
0.90
22

C4.5

0.86
0.87
0.88
0.89
0.97
0.98
0.97
0.97
0.91
0.91
0.91
0.91
0.95
0.95
0.94
0.93
0.83
0.83
0.83
0.82
0.92
0.86
0.89
0.91
1.00
1.00
1.00
1.00
0.96
0.96
0.96
0.96
0.94
0.94
0.94
0.94
0.91
0.88
0.89
0.85
13

5NN

0.97
0.97
0.97
0.97
0.98
0.98
0.98
0.98
0.61
0.62
0.62
0.62
0.92
0.91
0.91
0.90
0.92
0.91
0.91
0.92
0.81
0.85
0.83
0.85
1.00
1.00
1.00
0.99
0.76
0.76
0.75
0.76
0.93
0.93
0.93
0.94
0.87
0.85
0.84
0.82
4

NB

0.98
0.97
0.97
0.98
0.86
0.86
0.87
0.88
0.99
0.98
0.98
0.98
0.66
0.66
0.67
0.68
0.79
0.79
0.79
0.79
0.60
0.62
0.61
0.62
0.00
0.00
0.00
0.46
0.97
0.96
0.97
0.97
0.89
0.89
0.88
0.86
0.80
0.78
0.77
0.73

LR

0.98
0.97
0.98
0.98
0.81
0.80
0.80
0.83
0.76
0.76
0.76
0.76
0.93
0.92
0.92
0.91
0.89
0.89
0.89
0.89
0.82
0.82
0.83
0.82
1.00
1.00
1.00
1.00
0.88
0.89
0.90
0.89
0.94
0.94
0.93
0.94
0.00
0.00
0.00
0.00
10

a specialized method will show a dramatic, consistent improvement in quality. A fast computa-

tional time without any loss in quality is the most significant result in this work, which illus-
trates the advantage of multi-level approach that inherits flexible SVM parameters found at

coarser levels.
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Table 4. Computational time in seconds (not including the REM method).

Twonorm
Letter
Ringnorm
Cod-rna
Clean
Advertisement
Nursery
Hypothyroid
Buzz
Forest

doi:10.1371/journal.pone.0155119.t004

MLSVM SVM MLWSVM WSVM
5 28 5 28
30 138 32 139
4 25 4 26
266 1831 281 1857
17 95 15 82
98 227 100 231
25 187 31 192
2 3 2 3
2209 25257 2999 26026
13328 352500 13360 353210

Healthcare data sets

We present the results of comparison of classification algorithms on the real-life healthcare
data sets. We show the results on Example 1 (see Section, and Table 5) in Table 6, a classifica-
tion task of assigning a patient in a correct group by financial risk, which are ordered in ascend-
ing manner from group 1 with the lowest level of risk, to group 5 with the highest level of risk.
The data used in the study was provided by Geisinger Health System in a follow-up study to
the internal report on prediction on integrated clinical and financial data [7].

The motivation behind the original study was to determine how much integration of the
medical and financial data changes the outcomes of clustering and classification operations
based on financial data alone. In the original study, a logistic regression (LR) (implemented as
mnrfit in MATLAB) was used as a default binary classifier; other standard choices such as near-
est-neighbor or naive Bayesian classifiers were rejected in the original report as producing
lower quality of prediction. Our comparison illustrates the point that a specialized method
developed for imbalanced, incomplete data here outperforms an approach that is accepted as
default for a healthcare application.

We compare the accuracy of commonly used in healthcare data analysis LR with that
obtained by ML(W)SVM. The strategy “one-against-all” is used for multi-class classification.
This strategy performs training a classifier per class with the data points of that class as positive
class and the rest of the data points are trained as negative class. Results in Tables 6-8 have also
been obtained using 10-fold cross validation.

To interpret the results, we note that correct identification of intermediate risk categories is
a very difficult problem in medical informatics. To our knowledge, there is no good definition
of “average health”, either evidence-driven or philosophical, that would help an expert to iden-
tify such patient features that do not indicate an acute crisis, or an almost certain safety from
crisis. Accordingly, it is not surprising that neither approach does well on the risk categories
2-4; there is also not a lot of motivation to improve the model there. On the other hand, it is

Table 5. Healthcare datasets. The set “Example 1” has 10000 observations in each class. In set “Example
27, the majority and minority classes contain 50400, and 33600 observations, respectively. For details about
the data see [8].

Data ne || No. of classes
Example 1 16 50000 5
Example 2 13 84000 2

doi:10.1371/journal.pone.0155119.t005
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Table 6. Accuracy of financial risk problem with five risk classes (Example 1) using the REM imputa-
tion method.

Class 1 2 3 4 5
LR 0.58 0.54 0.53 0.51 0.59
MLSVM 0.83 0.78 0.77 0.78 0.90
MLWSVM 0.86 0.76 0.76 0.77 0.91

doi:10.1371/journal.pone.0155119.t006

important to identify and predict the very low-risk patients (knowing that status ahead of time
allows resource re-allocation leading to savings and improved service for everyone) and the
very high-risk patients (so that clinical and financial resources could be prepared for the forth-
coming crisis).

Accordingly, it is important that the use of an advanced method of machine learning changes
the quality of prediction from almost worthless ('toss a coin’) to workable (accuracy of 0.7).

In Table 8, we compare results for the widely used basic approach and ML(W)SVM predic-
tion for Example 2 (see Section), a study of patient’s response to hospital flu outreach. In this
problem, the goal is to find a binary classifier that will predict whether the patient will get vacci-
nated after reminder, or not (this includes using a different provider for vaccination). In the
preliminary study, we used adaptive linear regression model (LASSO for adaptive selection of
features, logistic regression on actual prediction).

Response to outreach is not a crucial life-or-death issue, we are performing this study to see
if predictive modeling can assist with resource allocation (which patients to contact, how much
medical personnel effort to dedicate to outreach and then vaccination). Arguably, accuracy is
more important than specificity here. Even the basic results (using linear regression) were met
with approval the CPSL (Care Patient Service Line: a division responsible for coordinating
efforts of local, small-scale healthcare providers operating under Geisinger). SVM methods
(almost 10 percent improvement) provide additional justification for the use of machine learn-
ing on merged data to assist planning in clinical practice.

Table 7. Sensitivity, specificity and G-mean of financial risk problem with five risk classes (Example 1) using ML(W)SVM and REM imputation

methods.

SN
Class 1 0.86
Class 2 0.89
Class 3 0.89
Class 4 0.88
Class 5 0.96

doi:10.1371/journal.pone.0155119.t007

MultilevelSVM Multilevel WSVM
SP G-mean SN SP G-mean
0.73 0.79 0.89 0.74 0.81
0.34 0.55 0.86 0.36 0.56
0.28 0.50 0.88 0.29 0.50
0.40 0.60 0.87 0.40 0.58
0.69 0.81 0.96 0.70 0.82

Table 8. Comparison of Multilevel WSVM against Multilevel SVM and Adaptive Logistic Regression (LR) using the REM imputation method.

Improved results are in bold.

Adaptive LR
MLSVM
MLWSVM

doi:10.1371/journal.pone.0155119.t008

G-mean SN SP ACC
0.7516 0.8903 0.6345 0.7619
0.8012 0.9750 0.6583 0.8496
0.8016 0.9739 0.6598 0.8495

PLOS ONE | DOI:10.1371/journal.pone.0155119 May 19, 2016 14/18



@’PLOS ‘ ONE

Multiscale Weighted SVM for Healthcare Data

Discussion

Large-scale data, missing or imperfect features, skewness distribution of classes are common
challenges in pattern recognition of many healthcare problems. We have successfully extended
a powerful machine learning technique, support vector machines, to the scalable multilevel
framework of cost-sensitive learning SVM to deal with imbalanced classification problems.
Our multilevel framework substantially improves the computational time without losing the
quality of classifiers for large-scale datasets. We have shown that MLWSVM produces superior
results than MLSVM and the regular SVM methods in most cases. This work can be extended
to tackle other classification problems with large-scale imbalanced data (combined from differ-
ent sources) with missing features in healthcare and engineering applications.

From the perspective of evidence-driven healthcare, our work shows that application of cut-
ting edge machine learning techniques (in this case, fast multilevel classifiers) makes enough of
a difference to justify the additional development effort for typical examples from clinical prac-
tice. While the improvements in precision and specificity we show in this study are both under
10% and are modest in general perspective, the result in healthcare is significant.

To our knowledge, such complex combined behavioral/operational phenomena as infer-
ence of financial risk from medical history (Example 1), or prediction of effectiveness of pub-
lic outreach (Example 2), don’t have a satisfactory casual explanation. The classical (1990s)
clinical practice offered two equally unsatisfactory options: not having a capability for predic-
tion at all, or relying on very basic statistical techniques (based on a single data source, with
very high rate of false-positive classification outcomes). The existing mature models (such as
actuarial projections of financial risk) do not benefit from integration of data from multiple
sources, and may, in fact, turn out to be ineffective outside of their scope in patient popula-
tion and metrics of interest (as we have shown in [7]). Thus, in the modern clinical practice
we have to rely on newly developed machine learning tools, tuned on data from multiple
sources. Thus, our work can also be extended to handle other classification problems on mas-
sive, multi-format medical data.

The long-term healthcare impact of this type of work consists of two parts: to demonstrate
general advantages of applying a specialized machine learning approach to healthcare data,
and to argue for the use of multi-scale representation on complex medical data, integrated
from multiple sources and containing rare events. Although the results presented here are not
ideal (possibly due to complexity of the studied phenomena), they are sufficient to reccommend
the method for future use in healthcare predictive analytics.

Supporting Information

S1 File. This file contains the entire Supplementary Materials section within it. Table A,
Comparative sensitivity results for ML(W)SVM against the regular SVM, WSVM, NB, C4.5,
5NN, and LR on Twonorm, Letter, Ringnorm, and Clean academic datasets for different frac-
tions of missing values (,,,) using the REM imputation method. Table B, Comparative speci-
ficity results for ML(W)SVM against the regular SVM, WSVM, NB, C4.5, 5NN, and LR on
Twonorm, Letter, Ringnorm, and Clean academic datasets for different fractions of missing
values (,,,) using the REM imputation method. Table C, Comparative accuracy results for ML
(W)SVM against the regular SVM, WSVM, NB, C4.5, 5NN, and LR on Twonorm, Letter, Ring-
norm, and Clean academic datasets for different fractions of missing values (r,,,,) using the
REM imputation method. Table D, Computational time (sec.) for C4.5, 5NN, NB, LR, and
MLSVM (excluding model selection) on public datasets. The results show that MLSVM is
faster than other machine learning methods. In addition, we note that the average computa-
tional time of the REM imputation for public datasets over all missing value ratios are:
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Twonorm 1.22, Letter 6.89, Ringnorm 1.18, cod-rna 33.76, Clean 7.85, Advertisement 0.57,
Nursery 1.41, Hypothyroid 0.16, Buzz 1705.60 sec. respectively.
(PDF)
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