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Abstract

Measuring the connectivity strength between a pair of vertices in a graph is one of the most vital concerns in nu-

merous computational graph problems. In this paper we propose a local measure, together with an efficient algorithm

that is scalable and parallelizable. In the heart of the algorithm is an iterative process that propagates and refines

random values associated with each vertex. The connectivity measure hence defined, named algebraic distance, is the

absolute difference between two values after a small number of iterations. This process is inspired by the bootstrap

algebraic multigrid (BAMG), where a similar process is employed to expose connections between variables and to

determine their role in convergence of a multigrid solver. We show convergence properties of the proposed measure,

and provide a mutually reinforcing model to explain why the algebraic distances meaningfully measure the connec-

tivity in a local sense. The practical effectiveness of the proposed measure is demonstrated on several computational

(hyper)graph problems.
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1. Introduction

Measuring the connectivity between two vertices in a graph is one of the central questions in combinatorial sci-

entific computing. In many graph optimization problems where a greedy strategy is employed, a good heuristic often

relies on choosing a pair of vertices that are strongly connected. For example, in the case of a multilevel framework

[1, 2, 3, 4], the vertex connectivity is used to expose the coupling strength between coarse and fine vertices. Prac-

tically, this connectivity measure should represent only a local effect (i.e., locally how to vertices are connected),

and it should endow an efficient computation, the cost of which does not constitute an overhead of the whole graph

solver. In this paper, we propose a measure with a simple algorithm for this purpose. We associate each vertex with

an initial random value and consider an iterative process where a portion of the vertex value is updated by a weighted

combination of the values of its neighbors. This process smooths the associated values for nearby vertices. If two

vertices share similar neighborhoods, then after a small number of iterations the two values will be similar, indicating

a strong connection between them. We call the absolute difference between two values the algebraic distance.

The algebraic distance is inspired by the bootstrap algebraic multigrid (BAMG) method [5] for solving linear

systems Ax = b. In the heart of any multigrid [6] lies a coarsening process that creates a hierarchy of projections

of an original problem domain onto the smaller spaces. In contrast to the geometric multigrid that exploits a regular
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geometric pattern (of the underlying domain) in choosing coarse variables, the algebraic multigrid (AMG) creates a

coarse system by automatic exploration of the “geometry” behind the problem using sophisticated rules of “closeness”.

BAMG defines such a closeness by running several Gauss-Seidel (GS) relaxations with a random initial vector on the

corresponding homogeneous system Ax = 0. The speed of convergence of the iterate x signifies the closeness between

variables, and it is used to determine the rules of aggregation and interpolation. This paper considers a similar process,

where GS is replaced by Jacobi overrelaxation (JOR) and A is replaced by the graph Laplacian L. To generalize, we

also consider using several initial random vectors as input.

We begin with analyzing the convergence properties of JOR (see Section 3). The associated linear system is not

positive definite, a case commonly discussed in numerical linear algebra literature, and, thus, the analysis is nontrivial.

With a concurrent scaling of all the vertex values, the algebraic distance between two vertices i and j converges to

the absolute difference between the ith and the jth entry of the eigenvector corresponding to the second smallest

eigenvalue of some generalized eigen system related to L. Note that the vertex values themselves do not converge

to this eigenvector; in fact, they converge to a constant value, and it is the special scaling that makes their absolute

differences nontrivial. This convergence is typically slow. However, we show that in practice the convergence is

not necessary because the vertex values stabilize after a small number of iterations. In Section 4 we consider a

mutually reinforcing model (which occurs in many real-life problems) and explain why these nonconverged values

are meaningful.

In essense, the proposed measure, at convergence, resorts to an eigenvector. Eigenvector approaches and spectral

analysis have been extensively studied in graph theory for problems such as graph partitioning, connectivity, and ran-

dom walks. We point out that the eigenvector related to the proposed measure is neither the same as the Fiedler vector

used for spectral partitioning nor the same as the stationary distribution of random walks. In fact, in actual computa-

tions we do not use the eigenvector at all—the iterations are prematurely terminated. This premature termination both

distinguishes our approach from other eigenvector approaches and makes the computations extremely efficient and

usefull as a tool in diverse applications. The computational cost of computing the algebraic distances is only linear

to the number of edges in the graph, and the process can be easily parallelized by adopting the same well-known

parallelization scheme as the matrix JOR solver. (For parallel matrix-vector multiplications, see, e.g., [? , Ch. 11].)

An instant application of the proposed connectivity measure is to replace the role of the edge weights in algorithms

of various combinatorial problems. Examples of these problems include graph arrangements and graph/hypergraph

partitioning. In particular, we use the algebraic distances to replace the edge weights in some manner (“re-weighting”).

The replacement can also be done in conditional statements when some greedy algorithm has to choose the heaviest

edge. Our approach significantly improves a large number of graph algorithms that rely on the edge weights in a

major way.

2. Algebraic Distances and Graph Laplacians

Denote by G = (V, E) a connected graph, where the set of vertices V is {1, 2, ..., n} and E is a set of m edges. Let

W = {wi j} be the weighted adjacency matrix of G, where wi j is the non-negative weight of the undirected edge i j; if

i j � E, then wi j = 0. The following process (Algorithm 1) iteratively updates a vector x from a random initialization

x(0). We use superscripts to distinguish successive iterates and subscripts for vector entries.

Algorithm 1 Iterating a vector x
Input: Parameter ω, initial vector x(0)

1: for k = 1, 2, . . . do
2: x̃(k)

i ←
∑

j wi jx
(k−1)
j /

∑
j wi j, ∀i.

3: x(k) ← (1 − ω)x(k−1) + ωx̃(k)

4: end for

Based on Algorithm 1, the algebraic distance between vertices i and j, at the kth iteration, is defined as

s(k)
i j =

∣∣∣∣x(k)
i − x(k)

j

∣∣∣∣ . (1)
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With R initial vectors x(0,r), r = 1, . . . ,R, each vector is independently updated by Algorithm 1, and the extended
p-normed algebraic distance is defined as

�(k)
i j,p =

⎛⎜⎜⎜⎜⎜⎝
R∑

r=1

∣∣∣∣x(k,r)
i − x(k,r)

j

∣∣∣∣p
⎞⎟⎟⎟⎟⎟⎠

1/p

, (2)

where the superscript (k,r) refers to the kth iteration on the rth initial random vector. For p = ∞, by convention,

�(k)
i j,∞ = max

r=1,...,R

∣∣∣∣x(k,r)
i − x(k,r)

j

∣∣∣∣ .
The graph Laplacian matrix L = D−W, where D is the diagonal matrix with elements dii =

∑
j wi j, plays a central

role in spectral graph analysis. It can be easily verified that Algorithm 1 is nothing but the Jacobi overrelaxation

process for solving1 the linear system Lx = 0, using the relaxation parameter ω. The JOR process converges for any

0 < ω < 2/ρ(L), where L = D−1/2LD−1/2 is the normalized Laplacian and ρ(·) is the spectral radius. It is not hard to

show that ρ(L) ≤ 2. In practical cases we fix ω = 1/2, which facilitates later analysis.

3. Analysis

Standard iterative methods for solving a linear system can be written in a general form

x(k+1) = Hx(k), k = 0, 1, 2, . . . , (3)

where H is the iteration matrix. For JOR, we have H = I−ωD−1L. When the graph is connected, its largest eigenvalue

(both algebraic and in magnitude) σ1 = 1 is simple, with a corresponding eigenvector 1 (a column vector of all ones).

Therefore, an immediate consequence is that all the entries of x converge to the same constant, and the algebraic

distance s(k)
i j for all i j pairs converges to zero. This case is not interesting.

However, a deeper investigation allows one to scale the algebraic distance such that it converges to a nontrivial

value. We denote σ2 the second largest eigenvalue in magnitude of H, and consider scaling s(k)
i j for all i j pairs by the

kth power of σ2, namely,2

ŝ(k)
i j := s(k)

i j /σ
k
2. (4)

The following theorem establishes the convergence of the scaled algebraic distance ŝ(k)
i j as k goes to infinity.

Theorem 1. Given a connected graph, let (μi, v̂i) be the eigen-pairs of the matrix pencil (L,D), labeled in nonde-
creasing order of the eigenvalues, namely,

Lv̂i = μiDv̂i, i = 1, . . . , n, (5)

and assume that μ2 � μ3 � μn−1 � μn. Unless ω = 2/(μ2 + μn), the quantity ŝ(k)
i j defined in (4) will always converge to

a limit |ξi − ξ j| in the order O(θk), for some ξ and 0 < θ < 1.

(i) If 0 < ω < 2
μ3+μn

, then ξ ∈ span{v̂2} and θ = 1−ωμ3

1−ωμ2
.

(ii) If 2
μ3+μn

≤ ω < 2
μ2+μn

, then ξ ∈ span{v̂2} and θ = − 1−ωμn
1−ωμ2

.

(iii) If 2
μ2+μn

< ω < min
{

2
μ2+μn−1

, 2
μn

}
, then ξ ∈ span{v̂n} and θ = − 1−ωμ2

1−ωμn
.

(iv) If 2
μ2+μn−1

≤ ω < 2
μn

, then ξ ∈ span{v̂n} and θ = 1−ωμn−1

1−ωμn
.

1However, we are not interested in actually solving this system, which has infinitely many solutions.
2Readers may wonder why the eigenvalue σ2 does not appear in the rest of the section. Indeed, (1−σ2)/ω is an eigenvalue of the matrix pencil

(L,D) (see Theorem 1). The eigenvalues μi’s (replacing σ2) therefore play a central role in the analysis.
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Theorem 1 shows two possible limits (v̂2 or v̂n) for ξ depending on the value of ω. In practice, we may not be

able to know which limit ξ achieves, since the μi’s are not numerically computed, but we can analytically derive some

upper/lower bounds for the cutting point 2/(μ2 + μn) and estimate which of the cases in Theorem 1 is applied. We

note that for a graph that is not complete (e.g., a sparse graph), we have 2/(μ2 + μn) ≥ 2/3, since μ2 ≤ 1 and μn ≤ 2.

Therefore, when we set ω = 1/2, either case (i) or case (ii) applies. In other words, the scaled algebraic distance ŝ(k)
i j

converges to the difference between the ith and the jth entry of v̂2.

For real-life graphs, the θ corresponding to ω = 1/2 is so close to 1 that the theoretical convergence of ŝ(k)
i j is of

little practical use—it takes an enormous number of iterations before it gets close enough to the limit. (As observed,

θ often can be as high as 0.999.) However, an interesting phenomenon is that in practice x(k) soon becomes “stable”;

that is, the two iterates x(k+1) and x(k) are almost parallel even when k is small.

Theorem 2. Given a graph, let (μi, v̂i) be the eigen-pairs of the matrix pencil (L,D), labeled in nondecreasing order
of the eigenvalues. Denote V̂ = [v̂1, . . . , v̂n]. Let x(0) be the initial vector of the JOR process, and let a = V̂−1x(0) with
a1 � 0. If the following two conditions are satisfied,

1 − ωμn ≥ 0, (6a)

fk :=
αrk

2k(1 − rk)2

1 + αrk
2k(1 + rk)2

≤ 1

κ
, (6b)

where α =
(∑

i�1 a2
i

)
/
(
4a2

1

)
, rk is the unique root of the equation

2αr2k+2 + 2αr2k+1 + (k + 1)r − k = 0 (7)

on the interval [0, 1], and κ is the condition number of D, then

1 −
〈

x(k)∥∥∥x(k)
∥∥∥ ,

x(k+1)∥∥∥x(k+1)
∥∥∥
〉2
≤ 4κ fk

(1 + κ fk)2
. (8)

We address a few important issues about this result. First, since we use ω = 1/2, condition (6a) is satisfied.

Second, fk is defined as a rational polynomial of rk, which is the unique root of the polynomial (7) on the interval

[0, 1]. Therefore, fk can be easily evaluated and it is typically close to zero. For example, when α = 100 and k = 50,

we have rk = 0.9475, which gives fk = 4.6 × 10−4. Third, the condition number κ of D is usually not large. For

many graphs arising from application areas such as VLSI design and finite-element meshes, if the graph edges have a

uniform weight equal to 1, then dii is the degree of a vertex, and thus for the whole graph the vertex degrees may not

vary too much. All this means is that condition (6b) is a mild requirement. The final bound in (8), for k = 30 or 50,

typically drops to the order of 10−4. Note that sin2(π/180) = 3.05 × 10−4, which indicates that the angle between x(k)

and x(k+1) is around or less than 1◦.
The proofs of the two theorems can be found in [7].

4. Mutually Reinforcing Model

We have defined the algebraic distance s(k)
i j based on the JOR process and have established a result that the scaled

quantity, ŝ(k)
i j , converges to some value that depends solely on the second eigenvector v̂2 of the matrix pencil (L,D).

We have also shown that even though the convergence is slow, the iterate x(k) stabilizes quite early. In this section, we

present a model to explain how the (scaled) algebraic distance measures the connectivity between the two involved

vertices. Emphasis is placed on the neighborhood of each vertex, hence the vertex values computed in this way

represent the connectivity locally.

Consider a mutually reinforcing environment, where entities are influenced by their neighbors. A graph is such an

environment, and the vertices are mutually reinforced such that a portion of a vertex value is a weighted average of

the influences from its neighbors. Two vertices are close, or similar, if they are placed in two similar environments.
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In other words, the difference of their values is a measure of their connectivity. Specifically, let each vertex i be

associated with a real number xi. Except for a μ portion of itself, xi is a weighted average of its neighbors:

xi = μxi +
∑
j∼i

pi jx j, (9)

where the weights pi j = wi j/dii, and j ∼ i means j is a neighbor of i. Here, the edge weights wi j are normalized by dii

such that the weights in the model, pi j, are coefficients of a convex combination. The portion 0 ≤ μ ≤ 1 is an indicator

of how strongly an environment acts on a vertex. When μ tends to zero, the neighborhood plays a major role, whereas

when μ tends to one, a vertex is so stubborn that its neighbors cannot have a strong impact on it. The coefficient μ does

not need to be explicitly specified; it is an innate property of the graph. For such a mutually reinforcing environment,

a small μ is more desired. In the matrix form, (9) becomes

x = μx + D−1Wx, 0 ≤ μ ≤ 1. (10)

It is not surprising to see that the eigen-pair (μ2, v̂2) (as mentioned in Theorem 1) is a solution to the model (10)

with μ = μ2 and x = v̂2. Furthermore, μ2 is the smallest μ such that (10) is satisfied with a vector x whose entries

are not a constant, since μ has to be an eigenvalue of the matrix pencil (L,D). What is surprising is that Theorem 2

implies that the (normalized) iterate x(k) also approximately satisfies the model:

x̂(k) ≈ μ2 x̂(k) + D−1Wx̂(k), where x̂(k) = x(k)/‖x(k)‖,
which is a result corresponding to the parallelism of x(k) and x(k+1). Therefore, when k is small, say 50, the x values

computed in Algorithm 1 approximately represent the reinforcement between vertices in the graph, even though the

vector x(k) has not converged in the standard sense.

The iterating process as presented in Algorithm 1 in effect smoothes the values of nearby vertices. Thus, when

k is not large, this smoothing operation cannot be extended over a neighborhood. In other words, the computed

algebraic distances represent only a local effect. This “local distance” will be very useful in applications where vertex

connectivities are only required to be locally estimated. For example, in graph coarsening, a merging of the vertices is

a local operation, and a vertex will have little impact on the decision of merging if it is far away from the pairs being

considered. Furthermore, in a general context, a multilevel graph technique also benefits from this local consideration

if the coarsening heuristic is based on choosing the smallest algebraic distance, rather than the largest edge weight. In

Section 6, concrete numerical examples are presented.

5. Related Work

Distances between vertices in a graph can be measured by using many concepts and algorithms, the initial moti-

vation of which may or may not be for this purpose. Examples include commute times [8], diffusion distances [9],

and effective resistances [10]. Chebotarev and Shamis [11] surveyed a number of distance measures and studied their

normative properties. Here, we focus on two specific directions—spectral graph theory via graph Laplacians and

random walks—and draw connections and distinctions between these works and our approach.

Spectral graph theory is closely related to spectral graph partitioning. Let (λi, ui) be the eigen-pairs of L, labeled

in nondecreasing order of the eigenvalues:

Lui = λiui, i = 1, . . . , n. (11)

Let us compare (11) with (5). The eigenvector u2 (Fiedler vector [12, 13]) is used as an approximate partition vector

in the graph bisection problem, and the corresponding eigenvalue λ2 (algebraic connectivity) plays a central role in

the global connectivity of the graph, in the sense that λ2 � 0 if and only if the graph is connected. Furthermore, the

Cheeger’s inequality (see, e.g., [14] for a variant) bounds λ2 on the two sides by using the conductance Φ of the graph,

which implies that when λ2 is small, the graph has a cut of small Φ. An interpretation of this result is that a graph is

easy to cut if λ2 is small. Therefore, this algebraic connectivity is a global property, whereas the algebraic distance
defined in this paper works on a pair of vertices and is a local connectivity measure. Interestingly, the involved
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eigenvalue μ2 does suggest how strongly a vertex is influenced by its neighbors in the mutually reinforcing model,

which indicates that a small μ2 is desired.

A distance defined as the difference of two entries of v̂2 can be interpreted from graph embedding (or dimen-

sionality reduction in the data mining literature). As such, graph vertices are embedded on the real axis; that is, the

coordinate of i is the ith entry of v̂2. Laplacian eigenmaps [15] explains that this embedding maps “close-by” vertices

to “close-by” values, in a manner that it minimizes the difference between i and j scaled by the edge weight wi j.

The graph embedding computed in this way induces an Euclidean distance measure for graph vertices. This distance

happens to be the limit of the scaled algebraic distance ŝ(k)
i j as we analyzed. Nevertheless, in practice we do not use

the eigenvector v̂2. Apart from unexplained observations that premature termination of the JOR process yields a better

performance in graph applications, a major consideration for defining a connectivity measure is that we can afford

only a lightweight computational procedure, preferably with easy parallelization, since it is used within an external

application such as graph partitioning. Computing eigenvectors, on the other hand, is an extensively studied subject in

numerical linear algebra and parallel computing [16, 17], and it is also considered in other special situations, such as

in a decentralized distributed computing environment [18] or where only an approximate vector with high successful

probability is needed [19]. For the current setting, the Lanczos algorithm is the preferable choice to compute v̂2; the

time cost is generally linear to m with additional small overheads, depending on the eigen gap. However, it can still

not beat Algorithm 1 both in time and in memory, considering that the latter runs in km time and requires only 2n+m
memory space.

The iteration matrix (see equation (3)) of the JOR process,

H = I − ωD−1L = (1 − ω)I + ωD−1W,

suggests that H happens to be the matrix of a lazy random walk, where the walker does not change states with

probability 1 − ω. Despite this close relation, the stationary distribution of the lazy random walk is the principal
left eigenvector of H, whereas the involved eigenvector v̂2 in the analysis of algebraic distances is the second right
eigenvector of H. It would be interesting to consider an interpretation of the algebraic distances from the perspective

of random walks. Indeed, the idea of iteratively applying a vector to the left-hand side of the lazy random walk matrix

has been exploited to measure a local connectivity and to perform a local partitioning of the graph [20, 21]. In our

case, the right eigenvector of H does not correspond to any stationary distributions, and this feature distinguishes our

approach with those in [20, 21].

6. Applications

In this section, we demonstrate how the algebraic distances can be used as a practical tool for improving existing

algorithms for graph applications. For this purpose, we have chosen two strategies. In the first strategy we substituted

the original edge weights with the algebraic distances while keeping the original algorithms unmodified. In the second

strategy we substituted the decision criteria based on chosing the heaviest edge with one based on algebraic distances.

We considered the following baseline algorithms: spectral graph arrangements, spectral graph bisection, multilevel

bisection of hypergraphs, and multilevel compression-firendly ordering of a network. All these problems are of

great practical significance. Thus, fast and qualitative heuristics are much appreciated in areas such as combinatorial

scientific computing, VLSI placement, graph visualization, and biological applications. The experimental graphs

were of different sizes (|E| was between 103 and 107). Most of them were selected from the UFL database [22] and

the SNAP project [23].

Spectral graph arrangements and bisection. Graph arrangements consist of a well-known family of (usually)

NP-complete problems, such as minimum p-sum, cutwidth, profile of a graph, and sum cut. The common goal of

these problems is to arrange the graph vertices along the line with integer coordinates from 1 to |V | such that some

functional will be minimized. In this paper we consider the minimum p-sum problem with p = 1 (also known as

the minimum linear arrangement) and p = 2. Both problems are known to be NP-complete [24]. The objective is to

minimize the functional

σp(G, π) =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i j

wi j|π(i) − π( j)|p
⎞⎟⎟⎟⎟⎟⎟⎠

1/p

, (12)
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where π is a bijection from V to {1, 2, ..., n}.
A graph bisection is also a well-known NP-hard problem [24]. The goal of the problem is to find a partitioning of

V into two disjoint nonempty subsets Π1 and Π2, while enforcing the following:

minimize
∑

i∈Πp⇒ j�Πp

wi j such that ∀p ∈ [1, 2], |πp| ≤ (1 + α) · |V |
2
, (13)

where α is a given imbalance factor. This problem can be easily generalized to the k-partitioning case, and many

heuristics for such a case are based on the bisection.

A well-known and successful heuristic, called the spectral approach, uses the Fiedler vector (the eigenvector u2

in (11)) as a relaxed/approximate solution to the linear arrangement [25] and partitioning [26, 27, 28] problems. It is

also widely used for solving many other problems, such as envelope reduction of sparse matrices [29]. The spectral

approach consists of the following steps: (a) calculate u2 (see (11)); (b) get φ, an ordering of the graph nodes according

to the corresponding coordinates in u2; and (c) calculate either an edge cut between φ(n/2�) and φ(n/2�+ 1) for (13)

or a sum of stretched edge lengths for (12). This approach can be viewed as a converged averaging process, which

leads to the solution of a quadratic optimization problem if the restriction on the solution coordinates is relaxed; that

is, the coordinates need not all be integers, as in the case where all vertices are equal (that is not true in many scientific

computing applications and models). It is well known that u2 provides the best nontrivial solution for this problem.

Often in the process of global averaging, the role of dominating edges can be diminished. This is a reason we use the

algebraic distance to improve the spectral approach by introducing a dominancy for the edges.

In our heuristics for minimizing (12) and (13) we use the spectral approach as a black-box algorithm. We substitute

the original graph edge weights with the corresponding algebraic distances and use the same sprectral approach on

the modified graph. This extension is presented in Algorithm 2. The experimental results for graph arrangement and

partitioning problems are presented in Figures 1(a) and 1(b), respectively, which show a favorable improvement.

Algorithm 2 Improved spectral approach

Input: Graph G, problem type: minimum p-sum (MPS) or partitioning (PART)

1: For all edges i j ∈ E calculate �(k)
i j,∞ for k = 20 and R = 5

2: G′ ← G with modified edge weights wi j = 1/�(k)
i j,∞

3: φ← order obtained from Fiedler vector of G′
4: If MPS then return σ(G, φ)
5: If PART then return cost of edge cut between φ(n/2�) and φ(n/2� + 1)

Hypergraph partitioning. A hypergraph H is a pair (V,E), where V is a set of nodes and E is a set of nets

(hyperedges). Each h ∈ E is a subset of V. Since a hypergraph is a generalization of graphs, a hypergraph bisection

is NP-hard. Similar to the goal of the graph bisection, the goal of the hypergraph bisection is to find a partitioning of

V into two disjoint nonempty subsets Π1 and Π2, while enforcing the following:

minimize
∑

h∈E s.t. ∃i, j∈h and

i∈Πp⇒ j�πp

wh such that ∀p ∈ [1, 2], |Πp| ≤ (1 + α) · |V |
2
, (14)

where α is a given imbalance factor.

HMetis2 [30] is one of the fastest and most successful modern multilevel solvers for partitioning problems. We

use it as a black-box solver but modify the hyperedge weights before invoking it (see Algorithm 3). First, we construst

a bipartite graph model for the hypergraph. In particular, we create G = (V, E) with V = V⋃E and i j ∈ E if i ∈ V
appears in j ∈ E. The edge weights are preserved with no changes. Second, we compute algebraic distances on G,

from which we assign new weights to the hyperedges of H . The numerical results of comparing the two algorithms

are presented in Figure 1(c). Clearly, a significant improvement can be obtained by using the algebraic distance

substitutes.

Compression-friendly ordering. Qualitative solutions of the minimum logarithmic arrangement problem (MLogA,

also NP-hard) can be used to achieve a better network compression [31]. We demonstrate the role of the algebraic
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Algorithm 3 Hypergraph multilevel bisection with algebraic distance based preprocessing

Input: HypergraphH , k = 20, R = 10

1: G = (V, E) ← bipartite graph model

2: Create R initial vectors x(0,r)

3: for r = 1, 2, . . . ,R do
4: for m = 1, 2, . . . , k do
5: x(m,r)

i ← ∑ j wi jx
(m−1,r)
j /

∑
j wi j, ∀i.

6: end for
7: end for
8: return algebraic distances s(k)

h ←
∑

r maxi, j∈h
∣∣∣∣x(k,r)

i − x(k,r)
j

∣∣∣∣, ∀h ∈ E.

Input: HypergraphH with net weights 1/s(k)
h

1: C ← net cut obtained by HMetis2 onH with the modified net weights

2: return cost of C with original net weights

distance in a recently developed fast multilevel method for MLogA [32]. Similar to (12), the goal of MLogA is to find

a permutation of nodes that minimizes
∑

i j wi j lg |π(i)− π( j)|. In contrast to the previous approach of substituting edge

weights by algebraic distances, we substitute all decision statements that chose the heaviest edge (during a coarsening)

with decisions based on the smallest algebraic distance. The numerical results are shown in Figure 1(d), which also

demonstrate favorable improvement by using our approach.

7. Conclusion

We have presented an iterative process for smoothing values associated with graph vertices and defined a notion of

algebraic distance between vertices when the process stabilizes (not converges). The distances thus defined represent

the local connectivity of a pair of vertices; that is, two vertices are strongly connected if their algebraic distance

is small. We show several applications to demonstrate how the algebraic distance can be used to define quantities

that replace the graph edge weights in algorithms for combinatorial optimization problems. The experiments show

that with an algebraic distance preprocessing, the quality of several baseline algorithms can be greatly improved.

Furthermore, its easy parallelization makes it particularly attractive for dealing with large-scale graphs and problems.
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Figure 1: Improvement of several baseline algorithms with algebraic distance preprocessing. Each point corresponds to the average of ratios

between minimization results produced by the original and our algorithms. A value larger than one implies improvement. In all experiments the

averages were calculated over 50 repeated executions with different random initializations. (a) Spectral ordering. The solid and dashed curves

correspond to the minimum linear arrangement and the minimum 2-sum problems, respectively. (b) Spectral bisection. (c) Hypergraph bisection.

(d) Minimum logarithmic arragement. In the improved algorithm all conditions involving the heaviest edge have been replaced by ones with the

smallest algebraic distance. Rounded values of bits-per-link improvements create a “ladder”-like graph.
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