
18	 C O M P U T E R   P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

COVER FEATURE QUANTUM REALISM

Ruslan Shaydulin, Clemson University

Hayato Ushijima-Mwesigwa, Fujitsu Laboratories of America

Christian F. A. Negre, Los Alamos National Laboratory

Ilya Safro, Clemson University

Susan M. Mniszewski, Los Alamos National Laboratory

Yuri Alexeev, Argonne National Laboratory

Solving larger-sized problems is an important area of 

research in quantum computing. Designing hybrid quantum-

classical algorithms is a promising approach to solving 

this. We discuss decomposition-based hybrid approaches 

for solving optimization problems and demonstrate them 

for applications related to community detection.

In recent years, quantum devices with up to tens 
of qubits on universal quantum computers (UQCs) 
and a few thousand qubits on quantum annealer 
(QA) devices have become available. This enabled 

researchers to use real quantum hardware to solve toy 
problems for the first time. Unfortunately, in the near 

term, quantum computers are expected to stay very lim-
ited, in both the number and quality of qubits, which 
makes it difficult to use them for practical applications 
that often require hundreds or even thousands of qubits. 
Challenges such as qubit connectivity limitations, high 
noise levels, and full error-correction overhead and con-
cerns about scalability raise questions about near-term 
ability of quantum hardware to effectively incorporate 
a larger number of qubits and deliver the theoretical 
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speedups that have been promised 
by many algorithms developed since 
the 1990s.

A hybridization of quantum and 
classical algorithms is one of the expe-
dient answers that researchers suggest 
to tackle real-life problems with exist-
ing quantum hardware. These hybrid 
algorithms combine both classical and 
quantum computers in an attempt to 
acquire the best of both, leveraging the 
power of quantum computation while 
using a classical machine to address the 
limitations of noisy intermediate-scale 
quantum (NISQ) computers (see Fig-
ure 1). This is true not only for optimiza-
tion algorithms but also for other prob-
lems, including quantum simulation,5 
quantum machine learning,2,12,16 and 
more.10 For example, classical comput-
ers have large memories and are capa-
ble of storing the entire global problem, 
which is a challenge for NISQ devices 
that have a small number of qubits. At 
the same time, quantum algorithms 
have shown improved performance 
for certain problems. To distinguish 
unambiguously between the stages of 
computation performed on two prin-
cipally different types of hardware, we 
will refer to the classical and quantum 
stages of hybrid algorithms as CPUs 
(including accelerators as such graphics 
processing units and field-programma-
ble gate arrays) and quantum process-
ing units (QPUs), including a quantum 
annealer and a universal quantum com-
puter, respectively.

We primarily focus on two classes of 
NISQ-era devices, UQCs and QAs, using 
IBM and D-Wave as exemplars. The IBM 
devices belong to the class of UQCs that 
evolve the system by applying gates 
described using quantum assembly 
language. Other companies developing 
UQCs include Rigetti, Google, Micro-
soft, and IonQ. Alternatively, D-Wave 

devices are QAs designed to solve com-
putational problems via quantum evolu-
tion toward the ground states of the cost 
Hamiltonians that encode optimization 
problems. While the two paradigms are 
very different, they share many limita-
tions and challenges.

Certain instances of graph parti-
tioning20 and community detection, 
also known as graph clustering,11,19  
provide examples of practically impor
tant NP-hard optimization problems 
that can already be solved by quantum 
computers. A small graph problem 
can be solved directly on a QPU, while 
larger graph problems of practical 

interest require hybrid quantum-clas-
sical approaches.

As a problem becomes too large to 
run directly on quantum computers, 
decomposition methods are required to 
split it into pieces of QPU-manageable 
size, an idea borrowed from high-per-

formance computing and classical 
numerical methods. Static methods 
partition the global problem into sub-
problems that run on the QPU and 
assemble all the pieces into a final 
solution on the CPU, while dynamic 
techniques use data-driven classical 
processing that produces subprob-
lems that run on a QPU as the solution 

FIGURE 1. The hybrid algorithms combine computations performed in both (a) a clas-
sical computer (CPU) and (b) an NISQ quantum computer (QPU). These algorithms are 
designed to leverage the strengths of each mode of computation while dealing with its 
weaknesses. For example, CPUs cannot perform quantum simulation efficiently, whereas 
modern small near-term QPUs cannot compute problems with many variables.

CPU

• Large Memory
 (Compared to QPU)
• Stores the Global Problem
• Performs Problem
 Decomposition
• Cannot Solve Certain Difficult
 Problems Efficiently

• Noisy Intermediate Scale
• Performs Quantum
 Simulation
• Solves Computationally
 Difficult Subproblems
  Using Quantum Algorithms

(a) (b)

QUANTUM COMPUTERS ARE EXPECTED 
TO STAY VERY LIMITED, IN BOTH THE 
NUMBER AND QUALITY OF QUBITS, 
WHICH MAKES IT DIFFICULT TO USE 

THEM FOR PRACTICAL APPLICATIONS.
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evolves. Decomposition can be com-
bined with compression or hierarchi-
cal approaches, such as the multilevel 
method, to better utilize a problem struc-
ture before decomposing it for a QPU. 
Bian et al.3 and Shaydulin et al.19 pro-
vide examples of such schemes applied 
to hybrid quantum-classical algorithms. 

The decomposition scheme we dis-
cuss is a natural evolution of variational 
quantum algorithms like the varia-
tional quantum eigensolver (VQE) algo-
rithm and the quantum approximate 
optimization algorithm (QAOA). The 
classical computer not only finds better 
parameters but also finds an optimal 
subproblem size to solve on a quantum 
computer followed by an aggregation 
step. Given the size of current quan-
tum computers, this approach does not 
allow for quantum speedup because 
it is limited to the speedup achieved at 
the subproblem level. The fundamental 
difference with this classical scheme is 
that the subproblem size is chosen to 
maximize the quantum speedup, which 
means running calculations on as many 
qubits as possible. Of course, two n-qu-
bit quantum computers would be less 
powerful than one 2n-qubit computer. 
Using decomposition schemes limits 
the attainable multiplicative speedup as 
the size of the global problem increases. 
When quantum hardware improves 
enough to be able to tackle a given prob-
lem directly, decomposition methods 
might not be the best approach because 

of the overhead introduced. However, 
in the absence of 2n-qubit computers, 
decomposition-based methods provide 
a way to take advantage of the computa-
tional power of existing hardware.

In this overview, we do not focus on 
analyzing the performance and speed-
ups from quantum optimization algo-

rithms like D-Wave quantum anneal-
ing and QAOA. For an overview of these 
state-of-the-art methods, refer to a 
recent report by the U.S. Department of 
Energy’s Office of Scientific and Techni-
cal Information13 that shows that QAOA 
provably outperforms the best-known 
classical approximation algorithm for 
especially difficult cases of the MAXCUT 
problem. Instead, we focus on a different 
question: if these methods work, how 
can we use them to solve practical prob-
lems (i.e., find solutions of satisfactory 
quality) under the limitations of NISQ-
era hardware? Assuming the methods 
can deliver speedups on problems that 
can fit on small near-term quantum 
computers, how can we leverage these 
speedups to solve problems of practical 
importance? All decomposition-based 
methods described in this article rely 
on the ability of quantum optimization 
methods to deliver quantum speedups 
on NISQ devices. Demonstrating the 
quantum advantage on NISQ devices is 
an active area of research.

Only a few frameworks provide 
a n ea s y way to i mplement hybr id 
algorithms. Examples include the XACC 

framework,8 which was developed at 
Oak Ridge National Laboratory for both 
UQCs and D-Wave QAs, the Hybrid 
workflow platform1 by D-Wave, and 
Rigetti’s Quantum Cloud Services for 
UQCs. These frameworks follow the tra-
ditional coprocessor model, i.e., treating 
QPUs as coprocessors to execute spe-
cialized kernel code, while considering 
the complexity of the interplay between 
classical and quantum hardware.

OVERVIEW OF ALGORITHMIC 
APPROACHES
In this section, we provide an overview 
of the QA and UQC paradigms and 
their specific hybrid methods for opti-
mization. This is followed by a descrip-
tion of a general hybrid approach using 
the local search method, an optimiza-
tion technique, solving subproblems 
on NISQ QPU devices (referring to both 
UQC and QA) with the main driving 
routine working on the CPU.

Quantum annealing
QA devices are available from D-Wave 
in the form of the 2X (up to 1,152 qubits) 
and 2,000 Q (up to 2,048 qubits). Using 
entanglement, they minimize the 
Ising model objective function, which 
is composed of biases and strengths 
that encode the Hamiltonian problem. 
QAs are able to solve problems that 
arise in optimization, machine learn-
ing, sampling, and simulation. The 
D-Wave solves problems formulated 
as a maximization by using the nega-
tive of the objective function. On many 
occasions, it is easier to use 0 and 1 as 
possible values for variables, which 
leads to the problem formulated as a 
quadratic unconstrained binary opti-
mization (QUBO).

Currently, D-Wave annealers have 
physical constraints such as limited 
precision, sparse connectivity, and a 

DEMONSTRATING THE QUANTUM 
ADVANTAGE ON NISQ DEVICES IS AN 

ACTIVE AREA OF RESEARCH.



	 J U N E  2 0 1 9 � 21

limited number of available qubits. 
Problem variables do not map one to one 
with the available qubits. Each problem 
variable is represented by a chain of 
qubits obtained by embedding or mapping 
a problem onto the hardware Chimera 
graph prior to annealing. Quantum-only 
solutions are limited by the largest num-
ber of graph nodes/variables that can be 
represented on the D-Wave hardware. 
On the 2000Q, problems up to size 
64 can use the same embedding for 64 
fully connected nodes/variables. Quan-
tum-classical approaches are required for 
larger problems.

D-Wave’s qbsolv tool is available for 
solving large QUBO problems using a 
hybrid quantum-classical algorithm.4 In 
this case, an optimization solver drives 
dynamic decomposition. During each 
iteration of this algorithm, a large neigh-
borhood local search is performed, in 
which subQUBOs are solved using the 
QPU, followed by tabu improvements 
on the CPU. The size of a subQUBO 
is limited by the number of variables 
that can be embedded in the hardware. 
The qbsolv loop converges to a low- 
energy solution.

Universal (gate-based) 
quantum computers
Near-term UQC devices are widely 
expected to have no more than a few 
hundred nonerror-corrected qubits.14 
These NISQ computers cannot run 
many of the most famous QC algorithms 
with asymptotic speedups, such as 
Shor’s, for problems of practical size.14 
This is due to both the small number of 
qubits and the limited number of gates 
that can be executed before the errors 
accumulate and the output becomes 
no longer useful due to decoherence. 
To address this challenge, a number 
of quantum-classical algorithms were 
introduced, of which the most famous 

are QAOA and VQE. QAOA can use 
either a variational or analytical strat-
egy for finding parameters.

Variational algorithms combine a 
small QPU and CPU with the goal of 
finding the ground state of a Hamilto-
nian problem, which can be purely clas-
sical (QAOA) or quantum (VQE). The 

ansatz is prepared by applying a series 
of parameterized gates. An ansatz or 
trial state is prepared on the QPU, and 
its energy is measured. This process is 
outlined in Figure 2.

The advantage of variational algo-
rithms is that the ansatz can be chosen 

so that the number of gates required is 
small enough to run on NISQ devices 
feasibly. This can introduce various 
tradeoffs in terms of the quality of the 
trial state, complexity of the classi-
cal optimization, and the amount of 
accumulated error. For example, in 
our earlier work,19 we used a recently 

introduced hardware-efficient ansatz6 
[see Fig ure 3(b)]. T h is a nsat z uses 
natural entangling interactions avail-
able on the device and therefore intro-
duces fewer errors; however, it is much 
more difficult for a classical optimizer 
to find optimal parameters.9

• Start With the Initial Guess
 for Parameters θ0
• At Each Step, Use a
 Classical Optimizer to
 Select a New Set of
 Parameters θ Based on
 the Measured Energy
 of the System

• Perform the Quantum
 Evolution Specified by
 Parameters θ to Prepare
 State ψ (θ)〉
• Measure This State (or the
 Energy of the System in
 This State)

CPU

CPU QPU

Parameters θ

Measurement Result
〈ψ (θ) Hψ (θ) 〉

(a) (b)

FIGURE 2. The general outline of variational hybrid algorithms. (a) The variational cycle 
starts with some initial guess θ0. Then, a trial state |ψ(θ)〉 is prepared on (b) the QPU at 
each step, measured, and (b) the measurement result is read by the CPU. A classical opti-
mization routine uses this measurement to select the next set of parameters θ and the 
cycle proceeds. This cycle continues until a solution with satisfactory quality is discovered 
or the classical optimizer converges.

VARIATIONAL ALGORITHMS ADDRESS 
ONLY THE FIRST PART OF THE PROBLEM, 

THE QUALITY OF THE QUBITS.



22	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

QUANTUM REALISM

A general hybrid approach
Since emerging NISQ devices have a 
very limited quality and number of 
qubits, they cannot directly tackle many 
problems of practical size. Variational 
algorithms address only the first part of 
the problem, the quality of the qubits. 
By using shallow-depth ansatzes, we 
can reduce the number of gates and 
bypass the issue of quickly accumulat-
ing errors. However, that still leaves the 
issue of problem size.

A natural way to address this chal-
lenge is to decompose the problem 
(statically or dynamically), solve the 
computationally difficult subproblems 
on the QPU (either UQC or QA), and com-
bine them on the CPU to obtain a global 
solut ion. T he recent ly i nt roduced 
quantum local search (QLS)18,19 is one 
method that utilizes this approach. 
The QLS is inspired by the success of 
numerous local-search heuristics 
that have been applied to a variety of 

computationally difficult problems 
(such as the satisfiability and traveling 
salesman problems) that otherwise are 
problematic for global solvers to tackle 
in a reasonable amount of time. In QLS, 
the entire (global) problem is stored on 
the CPU. The QLS starts from a ran-
dom initial solution, and a neighbor-
hood of the current solution is searched 
to improve the objective function at each 
step. Since the neighborhood can be 
restricted to be small, this search can 
be performed on the QPU. If a better 
solution is found, the current one is 
updated, and the QLS proceeds. This 
step is repeated until the objective func-
tion can no longer be improved. Similar 
approaches have been applied to map-
ping optimization problems to quantum 
annealers.3,7,17

The QLS has the advantage in that, by 
storing the entire (potentially, very large) 
problem on the CPU and only solving the 
computationally intensive subproblems 

on the QPU, we are able to tackle large 
problems using limited hardware. The 
subproblems offloaded to the QPU are 
not trivial; as larger quantum hardware 
becomes available, algorithms like QA 
and QAOA have the potential to demon-
strate a quantum advantage on these 
subproblems. We were able to cluster 
graphs of up to 400 nodes using only a 
small 16 qubit QPU.19 

We observe that the QLS reaches the 
global optimum (confirmed by Gurobi) 
for these problems, i.e., finds the opti-
mal clustering of nodes. Other heuris-
tics with runtimes much faster than the 
QLS exist. We do not compare the run-
ning time of the methods since it falls 
outside the scope of this work. However, 
this method has an obvious downside: it 
is prone to being stuck in a local optima. 
If, at a given iteration, all neighborhoods 
we consider were too small to find an 
improvement, the algorithm would not 
be able to climb out of a local optima.

• Repeat Until Convergence Occurs

• Start With a Random Community Assignment
 (The Color Denotes the Community Assignment:
 Blue Is First Community, Red Is Second Community)
• At Each Step:

— Select a Subset of Vertices to Be Collectively Moved
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   Quantum Annealing on a D-Wave)
— Send the Subproblem to the QPU
— Update the Community Assignments
   Based on the Subproblem
   Solution Received From the QPU
— Proceed to the Next Step

CPU QPUHeterogenous, With Different
Quantum Backends:

• Universal (Gate-Based) Quantum
 Computing
 (e.g., IBM): QAOA Subproblem
 Solver

• Quantum Annealing
 (D-Wave)
 Subproblem Solver

Subproblem
Formulation

Subproblem
Solution

CPU

n Layers

Entangler Parameterizer

0〉
0〉
0〉
0〉
0〉
0〉

H

H

H
H

H
H
H

H

B
ar

rie
r

Ry
Ry
Ry
Ry
Ry
Ry

Rz
Rz
Rz
Rz
Rz
Rz

Z
Z
Z
Z
Z
Z

(a) (b)

FIGURE 3. An outline of the quantum local search applied to the problem of two-way network community detection (graph clustering 
with two clusters). Note that algorithms in (b) (the QPU box) can be hybrid themselves, like QAOA described in Figure 2. The (b) set of 
gates prepares the hardware-efficient ansatz used in QAOA [6].
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This issue is not unique to the QLS. 
Generally, iterative local improvement 
methods are not sufficient to obtain 
high-quality solutions for large prob-
lems unless they are combined with 
other global search algorithms. This 
limitation has led to the creation of 
multilevel (or multiscale) optimization 
in which scale interactions of the given 
problem play an important role. The 
idea behind this is to create a hierarchy 
of smaller problems, which are easier to 
solve, and then work backward toward 
the solution of the original problem by 
using a solution inherited at the coarser 
level of the hierarchy to initialize the 
next-finer level. The hierarchy forms 
a basis to make global decisions for a 
given problem. More precisely, with 
respect to the graph-partitioning prob-
lem, a graph is gradually coarsened 
until a partition can be computed effi-
ciently, which is then projected back 
onto the original graph while being 
refined at all levels of the hierarchy. 

I n t he conte x t of hy br id qu a n-
tum-classical algorithms, the main 
driving routine that creates a hierarchy 
and assembles the final solution at all 
levels is performed on the CPU, and a 
costly refinement that solves subprob-
lems is performed on the QPU. There 
is a variety of fast classical multilevel 
heuristics for combinatorial optimiza-
tion problems. Outperforming them is 
one of the most challenging tasks that 
face quantum optimization methods 
in general.

APPLICATIONS
After introducing the concepts and 
ideas related to the application of NISQ 
devices on large-scale problems, we 
focus on two applications: 1) the network 
community detection for which we 
apply the quantum local search18,19 with 
both IBM Q and D-Wave architectures 

and 2) imidazole glycerolphosphate syn-
thase (IGPS) protein sub-structure dis-
covery using D-Wave and qbsolv.

Network community detection 
on IBM Q and D-Wave
The network community detection 
aims to group vertices based on their 
similarity, which is often expressed 
in the number of shared immediate 
and distant neighbors between ver-
tices. Such groupings frequently lead 
to dense and sparse link connectivity 
within and between the groups, respec-
tively. Both the densification and spar-
sification of inner and outer connec-
tions serve as objectives for a big class of 
community detection approaches. One 
of the most commonly used methods is 
modularity maximization.

In modularity maximization, the 
goal is to split the set of vertices of an 
underlying graph into two subsets 
(communities) such that the difference 
(modularity) between the actual num-
ber of edges within a community and 
the expected number of edges, if the 
edges are distributed uniformly at ran-
dom over the same number of vertices, 
is maximized. In other words, modular-
ity maximization looks for a statistically 
surprising distribution of edges. We 
focus on finding an optimized assign-
ment for two communities.19 However, 
there are several approaches to extend 
the problem to cases with more than 
two communities.11

Solving community detection on 
NISQ computers is challenging because 
networks from practical applications 
are too large to be fully mapped onto the 
near-term hardware, which justifies an 
application of the QLS to address this 
issue. Figure 3 is an outline. The QLS 
starts with some initial solution, which 
is a community assignment in the con-
text of community detection. We start 

with a random community assignment, 
but in general it is possible to start with 
some other initial guess that is a result of 
a heuristic with acceptable time/quality 
tradeoff. 19

At each step of the QLS, a neighbor-
hood of the current solution is explored. 
In two-way community detection, the 
solution space is all possible commu-
nity assignments. Therefore, a current 
solution’s neighborhood is community 
assignments similar to it, one that only 
differs by a small number of vertices. 
The neighborhood search is then per-
formed at each step as follows. A sub-
set of vertices to be moved between 
communities is selected based on some 
optimization criteria (we choose the 
highest gain change in the objective19). 
The assignments of all other vertices 
remain invariant, and a new optimi-
zation subproblem is formulated by 
encoding these invariant vertices as a 
boundary condition.

By restricting the neighborhood 
size (i.e., the number of vertices in the 
subset), we can reduce the number of 
variables in an optimization subprob-
lem until it is small enough to fit on an 
NISQ device. This requires a tradeoff 
since increasing the size of the neigh-
borhood improves the convergence of 
the algorithm.19 However, as new more 
capable quantum hardware becomes 
available, the QLS has the potential to 
outperform the classical state of the art.

An additional benefit of the QLS is 
that it is fundamentally hardware agnos-
tic. As long as the subproblem can be 
mapped to a quantum algorithm exe-
cutable on a given hardware, the QLS 
can use it. With community detection, 
the subproblem is in Ising form, which 
maps directly to both QA and QAOA. We 
demonstrate that the QLS is able to find 
optimal solutions using 16 variable sub-
problems with both the IBM 16 qubit 
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UQC device and the D-Wave 2000Q QA 
device.19 Note that the subproblems of 
up to 64 fully connected variables can be 
solved on the D-Wave 2000Q using the 
same embedding. The IBM 20 Q Tokyo, 
the largest UQC device available, allows 
for up to 20 variable subproblems.

Multiple community 
detection using D-Wave
We show an example of the applicability 
of the all at once (k-concurrent) commu-
nity detection method for the D-Wave 
QA.11 In an earlier work, we demon-
strated t hat multiple communit y 
detection using the D-Wave QA leads 
to highly accurate community splits, 
which, in most cases, match the best-
known optimal solutions, particularly 
when graphs are small.

To show how useful this technique is, 
we selected an example corresponding 

t o t he c om mu n it y d e t e c t ion on 
dynamically correlated amino acid 
residues of the IGPS protein. This arche-
typal system has been extensively 
studied in the field of biophysics.15 
The modularity matrix is calculated 
from the α-carbons pair-based correla-
tion matrix obtained from a molecular 
dynamics simulation.15 The 454 amino 
acid residues of the IGPS protein form 
a graph with edge weights described by 
the correlation matrix.

The QUBO formulation for t he 
global problem of up to k communities 
was created with k × n variables (where 
k is the maximum number of commu-
nities and n is the number of vertices) 
and served as input to qbsolv. A sub-
problem size of 64 variables was used 
when running qbsolv. The split into 
two communities resulted in natu-
rally revealing the two molecules that 

compose IGPS (Figure 4). Solving for k = 4 
communities resulted in identifying 
four domains (two per molecule) that 
may be related to the protein function-
ality15 (Figure 4).

The results obtained with this exam-
ple are not surprising and serve to draw 
some useful conclusions. They demon-
strate that quantum-classical algorithms 
using QAs applied to graph problems 
are moving out of the toy model explor-
atory phase. Allowing more communi-
ties in the split automatically leads to 
the need for more qubits, hence justify-
ing the need for hybrid quantum-classi-
cal algorithms.

In this article, we discussed the hybrid 
quantum-classical approaches to 
quantum computing. Due to the lim-

itations of NISQ QPU devices, using 
them as accelerators or coprocessors 
for solving domain-specific problems 
in combination with a CPU is one of 
the most promising approaches. Classi-
cal computers are used to prepare and 
postprocess data from quantum com-
putations but also in critical steps to 
find parameters for variational algo-
rithms or produce subproblems using 
decomposition methods.

We demonstrated a few practical 
applications designed to work for such 
setups on IBM and D-Wave quantum 
computers. These applications are for-
mulated as combinatorial optimization 
problems, but hybrid computing is not 
limited only to them. It is important to 
note that the hybrid quantum-classical 
approach will likely continue to be rel-
evant even as quantum machines scale 
in the foreseeable future. First, there 
is no clear path to tens of thousands, 
not to mention millions, of qubits. Sec-
ond, it is clear that classical computers 
will remain better at certain things (for 

FIGURE 4. The IGPS protein representation showing the split into two communities: 
(a) two different molecules and (b) four communities as two domains per molecule.

(a) (b)
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example, it is much more efficient to 
store large amounts of classical data on 
the classical computer), something that 
hybrid algorithms address by trying to 
leverage the best of both. Finally, there 
are always bigger and more complicated 
scientific problems to solve.

The hybrid decomposition-based 
approaches we advocate are not a silver 
bullet. They allow us to leverage small 
quantum computers to solve practical 
problems, but they are still limited by 
the capabilities of NISQ devices. If small 
quantum computers demonstrate quan-
tum speedup, the decomposition-based 
methods will benefit from it and also 
show speedup on large optimization 
problems with a modest overhead. If, 
on the other hand, there is no quantum 
speedup on NISQ devices, the decom-
position methods will not be able to cre-
ate it. The same considerations apply to 
other hybrid algorithms. If the quantum 
part of a quantum-classical algorithm 
cannot show any speedup on an NISQ 
device, then hybridization alone would 
not be able to provide it. 

We believe that these major issues 
can be solved and that quantum com-
puting has a promising future. We are 
currently seeing results comparable to 
or better than state-of-the-art special-
ized classical methods in terms of qual-
ity of the solution, although the runtime 
performance is lacking. Over the next 
10 years, we expect improvements in 
qubits (quality, count, and connec-
tivity), error correction, and quantum 
algorithms that will make improve-
ments in runtime possible. Improve-
ments in gate error rates will allow 
for the more precise manipulation of 
qubits and enable m o r e  a d v a n c e d 
computat ion. T hese improvements 
will provide the missing ingredients 
for decomposition and hybrid quan-
tum-classical methods, which rely 

on robust quantum computers that are 
capable of exhibiting a quantum advan-
tage. As hardware evolves beyond the 
NISQ era, we believe decomposition 
methods will evolve with the abilities of  
quantum devices.
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