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Abstract
Solving optimization models (including parameters fitting) for support vector machines on large-
scale training data is often an expensive computational task. This paper proposes a multilevel
algorithmic framework that scales efficiently to very large data sets. Instead of solving the
whole training set in one optimization process, the support vectors are obtained and gradually
refined at multiple levels of coarseness of the data. Our multilevel framework substantially
improves the computational time without loosing the quality of classifiers. The algorithms
are demonstrated for both regular and weighted support vector machines for balanced and
imbalanced classification problems. Quality improvement on several imbalanced data sets has
been observed.
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1 Introduction

Training nonlinear support vector machines (SVM) is often a time consuming task when the
data is big. This problem becomes extremely sensitive when the model selection techniques are
applied as both quality, and scalability of SVM depend on the employed optimization solvers.
In this paper, we focus on SVMs and weighted SVMs (WSVM) for balanced, and imbalanced
data, respectively, that are formulated as the convex quadratic programming (QP). Usually,
the complexity required to solve such SVMs is between O(n2) and O(n3). We propose a novel
method for efficient solution of (W)SVM. In the heart of this method lies a multilevel algorith-
mic framework (MF) inspired by the multiscale optimization strategies [1]. The main objective
of MF is to construct a hierarchy of problems (coarsening), each approximating the original
problem but with fewer degrees of freedom. This is achieved by introducing a chain of suc-
cessive projections of the problem domain into lower-dimensional or smaller-size domains and
solving the problem in them using local processing (uncoarsening). The MF combines solutions
achieved by the local processing at different levels of coarseness into one global solution. Such
frameworks have several key advantages such as a linear complexity, relatively easy paralleliza-
tion, and adaptivity to hybrid methods with other algorithms. These frameworks are extremely
successful in various practical machine learning and data mining tasks such as clustering and
dimensionality reduction.
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Problem Definition. Let a set of labeled data points be represented by a set J = {(xi, yi)}li=1,
where (xi, yi) ∈ R

n+1, and l and n are the numbers of data points and features, respectively.
Each xi is a data point with n features, and a class label yi ∈ {−1, 1}. An optimal classifier is
determined by the parameters w and b through solving the convex problem:

min
1

2
‖w‖2 + C

l∑

i=1

ξi s.t. ∀i = 1, . . . , l yi(w
Tφ(xi) + b) ≥ 1− ξi and ξi ≥ 0 (1)

where φ maps training instances xi into a higher dimensional space, φ : Rn → R
m (m ≥ n). The

term slack variables ξi (i ∈ {1, . . . , l}) in the objective function is used to penalize misclassified
points. This approach is also known as soft margin SVM. The magnitude of penalization
is controlled by the parameter C. The WSVM (an extension of the SVM for imbalanced
classes) assigns different weights to each data sample based on its importance, i.e., the objective

of (1) is substituted with 1
2 ‖w‖2 + C+

∑|C+|
{i|yi=+1} ξi + C−

∑|C−|
{j|yj=−1} ξj , where subsets of J

related to the “majority” and “minority” classes are denoted by C−, and C+, respectively, i.e.,
J = C+∪C−. The importance factors C−, and C+ are associated with majority and minority
classes C− and C+, respectively. In our solvers we employ the Gaussian kernel, and an adapted
nested uniform design model selection algorithm [3] for tuning C, C+, and C−.

2 Multilevel Support Vector Machines

The proposed MF (see Figure 1) includes three phases: gradual training set coarsening, coars-
est support vectors’ learning, and gradual support vectors’ refinement (uncoarsening). Separate
coarsening hierarchies are created for C+, and C− independently. Each next-coarser level con-
tains a subset of points of the corresponding fine level. These subsets are selected using the
approximated k-nearest neighbor graphs (AkNN). In contrast to the coarsening used in mul-
tilevel dimensionality reduction method [6], we found that selecting an independent set only
does not lead to the best computational results. Instead, making the coarsening less aggressive
makes the framework much more robust to the changes in the parameters. After the coarsest
level is solved exactly, we gradually refine the support vectors and the corresponding classifiers.
The Coarsening Phase. The coarsening algorithms are the same for both C+, and C−, so
we provide only one of them. Given a class of data points C, the coarsening begins with a
construction of AkNN G = (V,E), where V = C, and E are the edges of AkNN. The goal is to
select a set of points V̂ for the next-coarser problem, where |V̂ | ≥ Q|V | (typically Q = 0.5). The
second requirement for V̂ is that it has to be a dominating set of V . The coarsening for class C
is presented in Algorithm 1. It consists of several iterations of independent set of V selections
that are complementary to already chosen sets. We begin with choosing a random independent
set (l. 2) using greedy algorithm. It is eliminated from the graph, and the next independent set
is added to V̂ (l. 5-9). For imbalanced cases, when WSVM is used, we avoid of creating very
small coarse problems for C+. Instead, already very small class is continuously replicated across
the rest of the hierarchy if C− still requires coarsening. We note that this method of coarsening
will reduce the degree of skewness in the data and make the data approximately balanced at
the coarsest level. The multilevel framework recursively calls the coarsening process until it
creates a hierarchy of r coarse representations {Ji}ri=0 of J . At each level of this hierarchy, the
corresponding AkNNs’ {Gi = (Vi, Ei)}ri=0 are saved for future use at the uncoarsening phase.
The corresponding data and labels at level i is denoted by (Xi, Yi) ∈ R

k×(n+1), where |Xi| = k.
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Algorithm 1 The Coarsening

1: Input: G = (V,E) for class C
2: V̂ ← select maximal independent set in G
3: Û ← V \ V̂
4: while |V̂ | < Q · |V | do
5: while Û 	= ∅ do
6: randomly pick i ∈ Û ; Û ← Û \ {i}
7: Û ← Û \ {neighbors of i in Û}
8: V̂ ← V̂ ∪ {i}
9: end while

10: Û ← V \ V̂
11: end while
12: return V̂

Figure 1: The MF for (W)SVM.

The Coarsest Problem. At the coarsest level r, when |Jr| << J , we can apply an exact
algorithm for training the coarsest classifier. Processing the coarsest level includes an applica-
tion of the UD [3] model selection to get high-quality classifiers on the difficult data sets.
The Refinement Phase. Given the solution of coarse level i+ 1 (the set of support vectors
Si+1, and parameters Ci+1, and γi+1), the primary goal of the refinement is to update and
optimize this solution for the current fine level i. Unlike many other multilevel algorithms, in
which the inherited coarse solution contains projected variables only, we initially inherit not
only the coarse support vectors but also parameters for model selection. This is because the
model selection is an extremely time-consuming component of (W)SVM, and can be prohibitive
at fine levels. However, at the coarse levels, when the problem is much smaller than the original,
we can apply much heavier methods for model selection without any loss in the total complexity.

Algorithm 2 The Refinement at level i

1: Input: Ji, Si+1, Ci+1, γi+1

2: if i is the coarsest level then
3: Calculate the best (Ci, γi) using UD
4: Si ← Apply SVM on Xi

5: end if
6: Calculate nearest neighbors Ni for support

vectors Si+1 from the existing AkNN Gi

7: data
(i)
train ← S(i+1) ∪Ni

8: if |data(i)train| < Qdt then
9: CO ← Ci+1; γ

O ← γi+1

10: Run UD using the center (CO, γO)
11: else

12: Ci ← Ci+1; γi ← γi+1

13: end if
14: if |data(i)train| ≥ Qdt then

15: Cluster data
(i)
train into K clusters

16: ∀k ∈ K find P nearest opposite-class
clusters

17: Si ← Apply SVM on pairs of nearest
clusters only

18: else
19: Si ← Apply SVM directly on data

(i)
train

20: end if
21: Return Si, Ci, γi

The refinement is presented in Algorithm 2. The coarsest level is solved exactly and rein-
forced by the model selection (l. 2-5). If i is one of the intermediate levels, we build the set of

training data data
(i)
train by inheriting the coarse support vectors Si+1 and adding to them some

of their approximated nearest neighbors at level i (l. 6-7) (in our experiments, usually not more
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Table 1: Benchmark datasets and computational time (in sec.) of multilevel, and regular SVM.

Dataset rimb nf |J | |C+| |C−|
Multilevel

Yes No
ModelSelection ModelSelection
Yes No Yes No

Letter26 0.96 16 20000 734 19266 45 112 333 27
Ringnorm 0.50 20 7400 3664 3736 4 21 42 12
Twonorm 0.50 20 7400 3703 3697 4 21 45 12

Buzz 0.80 77 140707 27775 112932 2329 2400 70452 20386
Clean (Musk) 0.85 166 6598 1017 5581 30 92 167 55
Advertisement 0.86 1558 3279 459 2820 196 104 412 41

ISOLET 0.96 617 6238 240 5998 69 373 1367 297
cod-rna 0.67 8 59535 19845 39690 172 293 1611 208
Nursery 0.67 8 12960 4320 8640 63 37 519 42

EEG Eye State 0.55 14 14980 6723 8257 51 32 447 33
Hypothyroid 0.94 21 3919 240 3679 3 3 5 1

than 5). If the size of data
(i)
train is still small enough (relatively to the existing computational

resources, and the initial size of the data) for applying model selection, and solving SVM on

the whole data
(i)
train, then we use coarse parameters Ci+1, and γi+1 as initializers for the current

level, and retrain (l. 9-10,19). Otherwise, the coarse Ci+1, and γi+1 are inherited in Ci, and γi
(l. 12). Then, being large for direct application of the SVM, data

(i)
train is clustered into several

clusters, and pairs of nearest opposite clusters are retrained, and contribute their solutions to
Si (l. 15-17). We note that cluster-based retraining can be done in parallel, as different pairs of
clusters are independent. Moreover, the total complexity of the algorithm does not suffer from
reinforcing the cluster-based retraining with model selection.

3 Computational Results

Discussion and full results of our work can be found in [5]. The multilevel (W)SVM are evalu-
ated on binary classification benchmarks from UCI repository. Single SVM and WSVM models
are solved using LIBSVM-3.18 [2], and the AkNN graphs are costructed using FLANN library
[4]. Multilevel frameworks are implemented in MATLAB 2012a, and evaluated on Linux. The
results for multilevel (W)SVM (objectives and running times) should only be considered qual-
itatively and can certainly be further improved by a more advanced implementation. The
implementation is available at http://www.cs.clemson.edu/~isafro/software.html. Eval-
uation of the proposed algorithm is done using accuracy (ACC), sensitivity (SN), specificity
(SP), and the geometric mean of SN and SP (G-mean). The details of the datasets are de-
scribed in left part of Table 1. We normalize all data prior to classification in order to get zero
mean and unitary standard deviation. We perform a 9- and 5-point run design for the first and
second stages of the nested UD.

The performance measures of the multilevel (W)SVM (Table 2, left part of the table) are
compared with the regular (one-level) (W)SVM (Table 2, right part of the table). Since sev-
eral components in the coarsening, and uncoarsening schemes are randomized algorithms, the
average numbers over 100 random runs are reported for each data set. We do not report the
standard deviations because in all experiments they are negligibly small. Bold fonts emphasize
the best G-mean results. Table 2 demonstrates that the quality of multilevel SVM algorithms
is very similar to the quality of the single-level SVM. However, we observed that multilevel
WSVM improves the single-level WSVM for some datasets.
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The main achievement of the proposed multilevel scheme is its computational time (see
Table 1) that substantially improves that of the single-level (W)SVM when the model selection
techniques must be applied on difficult data sets. We note that for most of the datasets in the
benchmark, using model selection was extremely important for obtaining high-quality results.
Moreover, the observed improvement is not complete, because (similar to many multilevel and
multigrid algorithms) the refinement phase can be easily parallelized at levels where the training
by clusters is employed. In addition, the proposed methodology is very successful for large
imbalanced classification problems since it can reduce the degree of skewness in the data and
make the data approximately balanced at the coarse levels.

Table 2: Performance measures for multilevel and regular SVMs and WSVMs. Each cell con-
tains an average over 100 executions. Column ’Depth’ shows the number of levels.

Multilevel Not Multilevel
Dataset ACC SN SP G-mean Depth ACC SN SP G-mean

S
V
M

Letter26 0.98 0.99 0.95 0.97 8 1.00 1.00 0.97 0.98
Ringnorm 0.98 0.98 0.99 0.98 6 0.98 0.99 0.98 0.98
Buzz 0.94 0.96 0.85 0.90 14 0.97 0.99 0.81 0.89
Clean (Musk) 1.00 1.00 0.99 0.99 5 1.00 1.00 0.98 0.99
Advertisement 0.94 0.97 0.79 0.87 7 0.92 0.99 0.45 0.67
ISOLET 0.99 1.00 0.83 0.92 11 0.99 1.00 0.85 0.92
cod-rna 0.95 0.93 0.97 0.95 9 0.96 0.96 0.95 0.96
Twonorm 0.97 0.98 0.97 0.97 6 0.98 0.98 0.99 0.98
Nursery 1.00 0.99 0.98 0.99 10 1.00 1.00 1.00 1.00
EEG Eye State 0.83 0.82 0.88 0.85 6 0.88 0.90 0.86 0.88
Hypothyroid 0.98 0.98 0.74 0.85 4 0.99 1.00 0.71 0.83

W
S
V
M

Letter26 0.99 0.99 0.96 0.99 8 1.00 1.00 0.97 0.99
Ringnorm 0.98 0.97 0.99 0.98 6 0.98 0.99 0.98 0.98
Buzz 0.94 0.96 0.87 0.91 14 0.96 0.99 0.81 0.89
Clean (Musk) 1.00 1.00 0.99 0.99 5 1.00 1.00 0.98 0.99
Advertisement 0.94 0.968 0.80 0.88 7 0.92 0.99 0.45 0.67
ISOLET 0.99 1.00 0.85 0.92 11 0.99 1.00 0.85 0.92
cod-rna 0.94 0.97 0.95 0.96 9 0.96 0.96 0.96 0.96
Twonorm 0.97 0.98 0.97 0.97 6 0.98 0.98 0.99 0.98
Nursery 1.00 0.99 0.98 0.99 10 1.00 1.00 1.00 1.00
EEG Eye State 0.87 0.89 0.86 0.88 6 0.88 0.90 0.86 0.88
Hypothyroid 0.98 0.98 0.75 0.86 4 0.99 1.00 0.75 0.86
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