
1

Hypergraph Partitioning With Embeddings
Justin Sybrandt , Member, IEEE, Ruslan Shaydulin , Member, IEEE, Ilya Safro , Member, IEEE

Abstract—The problem of placing circuits on a chip or distributing sparse matrix operations can be modeled as the hypergraph
partitioning problem. A hypergraph is a generalization of the traditional graph wherein each “hyperedge” may connect any number of
nodes. Hypergraph partitioning, therefore, is the NP-Hard problem of dividing nodes into k similarly sized disjoint sets while minimizing
the number of hyperedges that span multiple partitions. Due to this problem’s complexity, many partitioners leverage the multilevel
heuristic of iteratively “coarsening” their input to a smaller approximation until an inefficient algorithm becomes feasible. The initial
solution is then propagated back to the original hypergraph, which produces a reasonably accurate result provided the coarse
representation preserves structural properties of the original. The multilevel hypergraph partitioners are considered today as
state-of-the-art solvers that achieve an excellent quality/running time trade-off on practical large-scale instances of different types. In
order to improve the quality of multilevel hypergraph partitioners, we propose leveraging graph embeddings to better capture structural
properties during the coarsening process. Our approach prioritizes dense subspaces found at the embedding, and contracts nodes
according to both traditional and embedding-based similarity measures.
Reproducibility: All source code, plots and experimental data are available at https://sybrandt.com/2019/partition.

F

1 INTRODUCTION

IN order to model problems that contain interconnected
groups of items, such as the various data dependencies

between processes found in large scientific applications,
many leverage the formalism of hypergraphs. A hypergraph
is similar to a traditional graph, with the added general-
ization that the “hyperedges” may connect any number of
nodes. Hypergraphs have been used in VLSI design [1],
machine learning [2], [3], [4], parallel algorithms [5], com-
binatorial scientific computing [6], and social network anal-
ysis [7], [8].

The hypergraph partitioning problem is that of dividing
the nodes of a hypergraph among k similarly-sized disjoint
sets. A good partitioning is one that minimizes the number
of hyperedges spanning multiple partitions. In the context
of combinatorial scientific computing and load balancing,
this is the problem of dividing logical threads (nodes)
across the various available machines (partitions) in order
to reduce the amount of communication necessary between
machines (cut hyperedges). Unfortunately, it both is NP-
Hard to solve [9] or accurately approximate [10] a solution
to this problem.

To mange the complexity of hypergraph partitioning,
practitioners turn to heuristical algorithms [11], such as
the multilevel paradigm [12], [13], [14], [15], [16], [17].
The multilevel approach consists of a V-Cycle containing
three phases, depicted in Figure 1. The V-cycle starts by
iteratively coarsening the input hypergraph. Each iteration
of the coarsening creates new coarse nodes by contracting
groups of nodes in the the current set. These contractions are
determined through a matching process that is informed by
some similarity measure so that the resulting approximation
retains the structural features of the original problem. This
allows the coarse level partition to be interpolated to the
next-finer level without applying too many refinement steps

• Authors are with the School of Computing, Clemson University, Clemson
SC 29634 USA. Emails: {jsybran, rshaydu, isafro}@clemson.edu.

Manuscript received 9 Sept. 2019.

that may substantially slow down the entire multilevel
framework. Coarsening continues until the approximate
hypergraph is small enough to partition directly, forming
the initial solution. Multilevel partitioners then expand this
approximate solution by iteratively uncoarsening to the origi-
nal input. At each stage of the uncoarsening process, solvers
interpolate the coarse solution and perform a local search
or other methods to refine it. The resulting solution, once
gradually refined to the highest level, becomes the final
partitioning.

Because the initial solution to a multilevel algorithm
propagates through the entire uncoarsening process, it is
important to create a coarsened representation that shares
structural properties with the original hypergraph. In or-
der to improve coarsening, other solvers have exploited
clustering and community detection techniques [18], alge-
braic distance [13], and others. However, recent advances in
graph embedding [19] indicate that the latent spaces found
by unsupervised machine learning algorithms can better
identify structural similarities between nodes.

1.1 Our Contribution
In this work we propose exploiting latent node repre-
sentations gained through embeddings to better coarsen
large hypergraphs for partitioning. First, we apply star-
expansion [20] to gain a bipartite representation of the input
hypergraph. Then we learn latent structural features of this
graph using a graph embedding method. Note that our algo-
rithm is agnostic to the particular embedding. These dense
real-valued embeddings inform our coarsening algorithm
to prioritize more similar nodes at each level of coarsening.
Then, we identify coarsening partners by comparing latent
features in conjunction with traditional edge-wise features.
After each iteration, we assign newly coarsened nodes an
embedding equal to the centroid of their primal embed-
dings.

We implement our coarsening algorithm in both the
n-level solver KaHyPar [11], as well as the (log n)-level

ar
X

iv
:1

90
9.

04
01

6v
3

 [
cs

.D
S]

 1
6

Se
p

20
19

https://orcid.org/0000-0001-5073-0122
https://orcid.org/0000-0002-8657-2848
https://orcid.org/0000-0001-6284-7408
https://sybrandt.com/2019/partition

2

solver Zoltan [16]. In the case of KaHyPar, we evaluate our
coarsening under its original uncoarsening strategy, as well
as its recent flow-based refinement [21]. We also compare
our solution quality when using six different graph embed-
dings: Node2Vec [22], Metapath2Vec++ [23], Boolean and
Algebraic Heterogeneous Bipartite Graph Embeddings [19],
as well as two combination embeddings, also proposed
in [19].

We evaluate our implementations against five state-of-
the-art partitioners: hMetis [24], Zoltan [16], PaToH [25],
KaHyPar (with community-based coarsening [18]), and
KaHyPar Flow (with both community-based coarsening and
flow-based refinement [21]). For each method we addition-
ally compare both the cut and k−1 optimization objectives1.
Our evaluation spans a range of the number of partitions
from 2 to 128, and 96 graphs from the SuiteSparse Matrix
Collection [26]. For each combination of proposed imple-
mentation, baseline method, optimization metric, partition
count, and hypergraph we perform twenty trials each with
a different random seed and relabeling of the input graph.
This analysis consists of over half-a-million individual ex-
periments.

We report summary statistics for the improvement of
each proposed implementation when compared to each
baseline method. Specifically, we consider the improvement
relative to the minimum, maximum, and average observed
objective value as well as the standard deviation of trials.
We additionally supply more detailed plots in the online ap-
pendix for the improvements of all graphs across all method
comparisons in order to highlight graph-wise difference.
These plots display the averages and standard deviations
of each graph per comparison, and include statistical sig-
nificant values. Additionally, all experimental data for each
individual trial, including parameter settings, is available as
a publicly downloadable MongoDB database dump2.

Using our proposed coarsening, we observe a significant
improvement between each implementation and its directly
comparable baseline (e.g., our modified Zoltan against the
baseline Zoltan). We observe, however, that the improve-
ment gradually vanishes as the number of parts is increas-
ing, indicating a promising future research direction. In
some specific cases, such as hypergraphs representing social
networks, our coarsening can find partitioning solutions
that are over 400% better than the existing solutions. Our
coarsening also improves the standard deviation of results.
Typical multilevel solvers visit nodes in a random order
for each level of coarsening. Our approach replaces this
with a prioritized visit order derived from embeddings.
This change decreases the standard deviation for almost all
scenarios by over 100% and often as high as 500%. All ex-
perimental code, data, visualization scripts, and results are
publicly available at https://sybrandt.com/2019/partition.

2 BACKGROUND

A hypergraph H is an ordered pair H = (V,E), where V
is the set of nodes and E is the set of hyperedges. Each
hyperedge e ∈ E is a non-empty subset of V . In hypergraph

1. Note that hMetis does not optimize for k− 1. For this objective we
only compare against the remaining four.

2. https://sybrandt.com/2019/partition

Fig. 1: A standard V-cycle, consisting of coarsening, and
initial partition, and uncoarsening. Node size corresponds
to the weight of hypothetical coarse nodes. The dashed line
demonstrates the initial partition and iterative local searches
at each uncoarsening level. In this example, the multilevel
hierarchy consists of three levels.

k-partitioning the goal is to split the set of nodes V into k
disjoint subsets or parts (V1, . . . , Vk) such that V1 ∪ . . . ∪
Vk = V while minimizing an objective function over cut
hyperedges subject to an imbalance constraint factor ε. A
hyperedge belongs to the cut Ecut if it contains nodes from
at least two parts: e ∈ Ecut iff ∃u, v ∈ e : u ∈ Vi, v ∈
Vj , i 6= j. Both nodes and hyperedges can have weights,
namely, wv ∈ R≥0, and we ∈ R≥0, for each v ∈ V , and
e ∈ E, respectively. In this paper we consider two objective
functions: “cut” and “k−1”. The cut is the sum of weights of
cut hyperedges:

∑
e∈Ecut

we. Connectivity of an edge λ(e)
is defined as the number of parts an edge spans. The k − 1
metric is then defined as

∑
e∈Ecut

(λ(e) − 1)we. Note that
for k = 2 these two metrics are equivalent. The imbalance
factor ε ensures that for each part Vi the following holds∑
u∈Vi

wu ≤ (1 + ε)d 1
k

∑
u∈V wue.

Many partitioning algorithms assign weights to both
nodes and hyperedges. Initially, weights are all set equally
to 1. Once coarsened, the weight of a newly coarsened node
is set equal to the sum of the weights of the contracted fine
nodes. Coarse hyperedges are similarly weighted whenever
two hyperedges are merged.

2.1 Multilevel Hypergraph Partitioning
Multilevel algorithms solve problems by constructing a
hierarchy of sub-problems that approximate the original.
These “coarsened” sub-problems contain fewer degrees of
freedom and are therefore easier to solve. The multilevel
approach captures the global structure of the problem by
combining local information at different levels of coarseness.
Originally introduced to speed up existing algorithms [27]
and inspired by multigrid and multiscale optimization
strategies [28], the multilevel method was quickly recog-
nized to be a good way to improve the quality of parti-
tioning [29] and is currently considered to be one of the
state-of-the-art methods [30] for this problem. In the context
of hypergraphs, one constructs a multilevel hierarchy by
merging nodes — multiple nodes at the finer level be-
come a single node in the coarser level. Once reduced to

https://sybrandt.com/2019/partition
https://sybrandt.com/2019/partition

3

a sufficiently small problem, a multilevel partitioner can
solve the coarse parititoning problem using an algorithm
that would be infeasible on large-scale instances. This initial
solution is iteratively uncoarsened by first interpolating it
onto a finer level and then refining it. The refinement is
typically performed using local search or other methods.
The coarsening-uncoarsening pipeline is commonly referred
to as V-cycle (see Fig. 1). Traditionally, at each level of the
coarsening process all or almost all nodes have at least
one merging partner, resulting in log n levels. This is the
approach used by Mondriaan [31], hMetis2 [1], Zoltan [16],
and PaToH [25]. However, KaHyPar [11] implements an n-
level approach where at each level only one pair of nodes
is contracted. Over the years the multilevel method has
become the gold standard in hypergraph partitioning to
achieve an excellent time/quality trade-off in many practical
cases and is used by most state-of-the-art solvers, including
all of the ones discussed in this paper. For an extensive
review of (hyper)graph partitioning methods, the reader is
referred to [30], [32].

When constructing coarser hypergraphs, state-of-the-art
partitioners contract nodes according to some heuristic such
that during the uncoarsening the solution can be inter-
polated from coarser levels without the loss of quality.
These methods typically make coarsening decisions based
on some similarly measure that can be computed on node-
pairs. Most multilevel hypergraph partitioners, including
Mondriaan [31], hMetis2 [1] and Zoltan [16], measure inner
product or its variations, such as absorption (PaToH [25])
and heavy edge (hMetis2 [1], Parkway [33], PaToH [25] and
KaHyPar [18]).

The inner product of two nodes is defined as the Eu-
clidean inner product of the weighted hyperedge incidence
vectors [16]. This similarity measure and its variations are
simple and computationally inexpensive, but are limited
due to only using local information. Recently, a number
of advanced coarsening schemes were introduced to ad-
dress this limitation. Shaydulin et al. introduce a relaxation-
based similarity metric algebraic distance [13], extending a
similar approach from graphs [34]. In [35] this approach
is extended and incorporated within an aggregative coars-
ening scheme, inspired by algebraic multigrid and stable
matching approaches. An unfinished but promising attempt
to generalize hypergraph coarsening using algebraic multi-
grid (AMG) on graphs [36] was published in Sandia Labs
Summer Reports [37]. In AMG coarsening [38], [39], [40],
instead of being contracted, the nodes are split into fractions
which form coarse aggregates. Heuer and Schlag introduce
a community-aware coarsening that uses global clustering
information to restrict matching between communities [18].

During uncoarsening, nodes are uncontracted and the
coarser-level partition is interpolated to the finer-level node
set. Then the solution is iteratively refined using a lo-
cal node-moving heuristic. A majority of hypergraph par-
titioners use a variation of Fiduccia-Mattheyses [41] or
Kernighan-Lin [42] to perform these local searches [1], [16],
[21], [25], [31], [33]. Using a local search heuristic at the
uncoarsening stage allows these partitioners to locally im-
prove the global solution interpolated from coarser levels.
Recently, Heuer et al. introduced a flow-based refinement
scheme for k-way hypergraph partitioning [21], extending

similar approaches from graph partitioning [43].

2.2 Hypergraph Embeddings

The Skip-Gram text embedding model presented by
Mikolov et al. learns embeddings by discovering the rela-
tionship between each word and its typical context [44], [45].
This model underpins many graph embedding models [22],
[23], [46]. In order to efficiently handle large volumes of text
the Skip-Gram model samples “windows.” Each window is
centered around a target word, and includes local context
both leading and trailing the target. The Skip-Gram model
learns to predict each window’s contents given the target
word. The underlying assumption behind this approach is
that “similar words share similar company,” and has shown
to result in semantically rich latent features [47], [48].

Deepwalk, a pioneer graph embedding technique pre-
sented by Perozzi et al., reduces the graph structure to an
analogous textual problem in order to also leverage the
Skip-Gram approach [46]. Here, the underlying assumption
is “similar nodes share similar company,” however graphs
present additional challenges not found in text. Firstly,
representing a node’s “company” is nontrivial. To simply
take all first-order neighbors of a target node may not
be sufficient, or may contain more neighbors than fit in
memory. To reconcile this, Perozzi et al. proposes random-
walk sampling. Pseudo-sentences form when traversing a
graph, wherein each node is analogous to a word and each
random walk is analogous to a sentence. These random
walks serve as input to the hierarchical Skip-Gram model,
similar to that proposed by Mikolov et al.

Extending this approach, Grover and Leskovec modify
random-walk sampling to add a “return probability” pa-
rameter [22]. They observe that typical depth-first random
walks capture structural similarities, while breadth-first ap-
proaches (such as the LINE embedding method [49]) capture
homophilic relationships. In order to improve overall em-
bedding quality, Node2Vec random walks strike a balance
between the two traversal strategies by probabilistically
doubling-back on old neighborhoods, or forging onward to
unseen areas.

The above-mentioned graph embedding techniques as-
sume nothing is known about the considered graph’s struc-
ture. However, recent methods address particular graph
techniques that are applicable to hypergraphs. Metap-
ath2Vec++, proposed by Dong et al., assumes each node
is of a particular type, and that certain “metapaths,” path
descriptions containing only type information, are known
to be meaningful [23]. In the case of hypergraphs, we can
perform a star-expansion to convert each hyperedge to a
new layer of nodes, which converts our input hypergraph
into a traditional bipartite graph [20]. This representation
has two node types, original nodes, and those derived from
hyperedges. Due to its bipartite structure the only metapath
is that of alternating types. However, due to the model
architecture of Metapath2Vec++, we can learn some type-
specific latent features for each.

FOBE + HOBE Details: Further recent work addresses
the bipartite case specifically. Sybrandt and Safro present
multiple methods for embedding bipartite graphs [19].
These include First- and High-Order Bipartite Embeddings,

4

as well as a combination approach to learn joint embeddings
on bipartite graphs. These approaches are applicable to
hypergraphs as represented through star-expansion. These
methods model the two distinct types of nodes present in
a bipartite network separately in order to better capture
same-typed features. In the context of hypergraphs this is
analogous to modeling nodes and hyperedges separately.
For the purpose of this work however, we only consider the
embedding of nodes present in the original hypergraph.

The first-order approach, FOBE, presented by Sybrandt
and Safro samples observed node similarities and then
learns embeddings to encode those similarities via dot
product. Nodes are deemed “similar” in this context if they
share an edge, or a neighbor. Formally, if B = (V,E) is an
undirected bipartite graph with nodes V and edges E, an
edge from nodes x, y ∈ V is indicated as xy, yx ∈ E, and
Γ(x) = {y|xy ∈ E} indicates the neighborhood of x, then
the similarity measured by FOBE is:

SF (x, y) =

{
1 xy ∈ E or Γ(x) ∩ Γ(y) 6= ∅
0 otherwise

(1)

Note that for two nodes to be measured as similar
by the above equation, they must either be of different
bipartite types and share an edges, or of the same type and
share a neighbor of the opposite type. FOBE then encodes
the above similarities into node embeddings. However, the
objective used to learn these embeddings is constructed to
only explicitly compare nodes of the same type. If A and
B are disjoint subsets of V indicating the two types present
in the bipartite graph, and ε(x) is a function that related
node x to its embedding in Rk, then the various encoded
similarities are represented as the following:

σ(x) =
1

1 + e−x
. (2)

S̃A(x, y) = S̃B(x, y) = σ (ε(x)ᵀε(y)) (3)

S̃V (x, y) = E
z∈Γ(y)

[
S̃A(x, z)

]
E

z∈Γ(x)

[
S̃B(y, z)

]
(4)

Here, S̃A and S̃B indicate the similarity shared between
the nodes of the same type. Then, S̃V decomposes the
similarity of cross-typed nodes into sets of same-typed
comparisons. These predicted similarity measures derived
from embeddings are fit to the observed samples above
simultaneously.

The high-order embedding method (HOBE) presented
by Sybrandt and Safro extends FOBE by sampling
neighbors-of-neighbors, and prioritizes these similarities
through the local heuristic signal provided by algebraic
distance on graphs [13], [34], [40], [50]. This approach begins
with a fast iterative relaxation technique that places all
bipartite nodes on the [0, 1] interval such that locally similar
nodes are more likely to have similar values. Multiple trials
with random initializations boost this signal by reducing
the effect of incidental proximity observed between distant
nodes in a single trial. Formally, this algebraic similarity
measure is determined by first calculating algebraic coor-
dinates for each node a(x). These coordinates are randomly
initialled a(0), and are refined over t = 1, . . . ,K iterations
via the following:

a(t+1)
r (vi) = λa(t)

r (vi) + (1− λ)

∑
vj∈Γ(vi)

a
(t)
r (vj)|Γ(vj)|−1∑

vj∈Γ(vi)
|Γ(vj)|−1

(5)
Here, r indicates the trail (r ∈ {1, . . . , R}), t indicates the

iteration, and λ is the damping factor (suggested λ = 0.5
in [13]). These coordinates per-trial are then combined into
a more robust similarity measure through the following:

s(x, y) =

√
R−

√∑R
r=1

(
a

(K)
r (x)− a

(K)
r (y)

)2

√
R

(6)

Building from this heuristic signal, the HOBE similarity
measures the presence of highly-similar shared neighbors
through the following:

S
′

A(x, y) = S
′

B(x, y) = max
z∈Γ(x)∩Γ(y)

min (s(x, z), s(y, z)) (7)

S
′

V (x, y) = max

(
max
z∈Γ(y)

S
′

A(x, z), max
z∈Γ(x)

S
′

B(y, z)

)
(8)

In a manner similar to FOBE, these three similarity
measures are encoded into the dot product of embeddings ε
through a combined objective function.

In this work we explore the solution quality of our
coarsening algorithm using a number of different embed-
ding methods. We select Node2Vec and Metapath2Vec++ as
well as both FOBE and HOBE to explore. In addition, we
train two combination embeddings, one that merges all four
methods, and another that combines only FOBE and HOBE.
We do not attempt to demonstrate that any individual
embedding is superior for hypergraph partitioning, on the
contrary we demonstrate in Section 5 that all embeddings
improve the partitioning quality, showing that such embed-
dings are an excellent tool for advanced coarsening schemes
potentially not only for the partitioning problem. Node2Vec
allows us to evaluate a generic embedding technique not
designed with hypergraphs in mind, Metapath2Vec++ eval-
uates a method shown to transfer well to hypergraphs [19],
while the Heterogeneous Bipartite approaches are designed
to facilitate hypergraph learning.

3 METHOD

In order to improve the quality of multilevel hypergraph
partitioning solvers, such as Zoltan [16] and KaHyPar [11],
we take advantage of graph embedding techniques. These
methods learn dense, real-valued representations in a fixed-
sized vector space for each node. In the case of traditional
graphs, Grover et al. demonstrate that these embeddings
can capture both structural and homophilic latent rela-
tionships [22]. Additional work from Sybrandt and Safro
demonstrates that these methods extend to hypergraphs [19]
through star expansion [20].

Graph embedding methods typically encode observed
similarities through some similarity measure. In the case
of Algebraic and Boolean Heterogeneous Bipartite Embed-
dings, these similarities are explicitly modeled using the dot
product [19]. The same similarity measure is also found in
more traditional methods such as LINE [49]. Semantically,
dot product implies that two nodes are similar if they share
common prominent features. Unlike cosine similarity, the

5

dot product is not normalized, and therefore does not sig-
nificantly penalize nodes for being dissimilar, provided their
dissimilar values are near zero. We observe that dot product
also applies to other graph embedding techniques, such
as the Skip-Gram-based methods used in Node2Vec [22],
Deepwalk [46], and by extension, MetaPath2Vec++ [23].
While the specifics of each method are beyond the scope
of this work, we note that dot product is a robust measure
of similarity across embeddings.

We exploit graph embeddings to better match nodes
during coarsening. The typical matching process, in both n-
level and (log n)-level coarsening, identifies pairs of similar
nodes, called coarsening partners, u, v to merge in the next-
coarsest representation. The resulting coarsened node x
becomes a member of all hyperedges incident to both u
and v. As a result, the overall partitioning solution can
be drastically altered by the quality of these node-pairs, as
demonstrated below in Section 5.

One common node similarity measure for finding coars-
ening partners is an inner product of edge features. In
KaHyPar [11], this measure is a ratio between edge weight
and size, as reproduced in (9). Here, we corresponds to the
weight of a coarsened hyperedge, which indicates the num-
ber of original hyperedges containing the same coarsened
node set.

SE(u, v) =
∑

e∈E|u,v∈e

we
|{n ∈ e}| − 1

(9)

This measure prioritizes nodes sharing many “tight”
hyperedges, those with fewer members, as these tend to be
more meaningful in real-world applications. For instance,
members of a selective club or shoppers buying a niche
ingredient are likely more self-similar than those buying
bread or belonging to a massive organization. However,
this model equally prioritizes all hyperedges of similar
size, even if they contain a random assortment of nodes.
To improve this coarsening measure, we introduce a term
derived from a pretrained graph embedding.

Hypergraph embeddings, typically derived from the
bipartite representation, project nodes into a fixed-
dimensionality vector space [19]. While the dimensionality
of this space is a hyperparameter to an embedding model,
typical values range from 100 to 1,000 and are robust to
small changes. As a result, many methods capture similar-
ities mathematically through the inner product of embed-
dings [19], [22], [23]. Formally, we represent the pretrained
embedding as a function ε(v) : V → Rd mapping each
node to a d-dimensional vector. We represent the embedding
similarity between two nodes as

Sε(u, v) = ε(u)ᵀε(v). (10)
These embeddings can capture both structural and ho-

mophilic latent properties [22]. Structural properties in-
clude hubs, bridges, and leafs, while homophilic proper-
ties include clusters and common neighbors. Different em-
bedding techniques prioritize different latent features, and
we explore six different embedding schemes to underpin
our coarsening. These methods are outlined in detail in
Section 2.2. However, we observe that all six considered
embedding improve overall coarsening results (see Figure 4
as well as the online appendix).

We combine both hyperedge-wise and embedding-wise
similarities into a single measure for each node pair. As a
result, two nodes will be selected as coarsening partners if
they share both many hyperedges as well as many latent
features. This formulation provides a mechanism to lessen
the impact of hyperedges without self-similar content, be-
cause the similarity conveyed by a tight hyperedge will be
lessened by the dissimilarity conveyed in the embedding. In
addition, we add in a regularization term to maintain bal-
ance between node weights. The weight of a coarsened node
wv is simply the number of original nodes that have been
merged together in the coarsened representation. Without
this penalty, dense subregions of the hypergraph could be
coarsened entirely before anything else (in the n-level case),
resulting in an imbalanced solution. Our resulting score is
formally put

S(u, v) =
SESε
wuwv

. (11)

Note that to receive a high score given our proposed
method, two nodes must share hyperedges, have similar
latent features, and be of reasonably small weights. By
including the edge-wise inner product, our method cannot
coarsen disparate regions of the network that happen to
share similar latent features, which can arise from some em-
bedding techniques. For instance, disconnected subgraphs
may be embedded in overlapping subspaces, and a simpler
embedding-only similarity measure would then conjoin the
disconnected components.

We additionally apply the latent information present in
embeddings to order nodes when identifying coarsening
partners. Our goal is to match the pairs with the highest
similarity first, so that the resulting coarsened nodes more
likely to share the same higher-order structural feature, such
as a cluster or role. We sort nodes by their nearest neighbor
in the embedding space, and penalize this similarity again
by weights. We restrict the nearest-neighbor search to those
nodes actually sharing hyperedges, as to match the scores
calculated above. Formally, the sorting criteria we propose
is as follows

S′(v) = max
u∈Γ(v),u6=v

ε(u)ᵀε(v)

wuwv
, (12)

where Γ(u) represents the neighborhood of node u, namely,
Γ(u) = {v : ∃ e ∈ E | u, v ∈ e}.

We present our overall matching algorithm in Proce-
dure 1. All nodes begin unmatched, as indicated by Mv ,
a Boolean characteristic vector of (un)matched nodes. We
then visit each node in sorted order, according to the above
criteria. Provided a visited node is unmatched, we iterate its
neighborhood and consider any unmatched neighbor that
would not result in a coarse node above the weight toler-
ance. Out of these considered nodes, we select whichever
has the highest score according to Eq. 11.

After coarsening, newly contracted nodes are assigned
an embedding equal to the centroid of its primal nodes.
In this context, a primal node is a fully uncoarsened node
specified at the finest level of the problem. For instance,
if at a given level of coarsening we match u and v, the
resulting coarse node x would have the following prop-
erties. Here x represents the newly coarsened node, E′

6

represents the modified edge set, and Pv represents the set
of primal nodes corresponding to node v. At the finest level,
Pv = {v} ∀v ∈ V .

Eu = {e ∈ E : u ∈ e} (13)
Ev = {e ∈ E : v ∈ e} (14)
E′ = {e− {u, v}+ {x} : e ∈ Eu ∪ Ev} (15)

+ (E − Eu − Ev) (16)
wx = wu + wv (17)
Px = Pu ∪ Pv (18)

ε(x) =
1

|Px|
∑
v∈Px

ε(v) (19)

(20)

Procedure 1 Match nodes for coarsening.

Input: Hypergraph H = (V,E) and corresponding weights
wv ∀v ∈ V and we ∀e ∈ E. Node weight tolerance T .

Output: Set of matches (u, v) to be further coarsened.
1: Mv ← 0 ∀v ∈ V
2: Sort v ∈ V with respect to S′(v) (Equation 12) in

decreasing order.
3: for v ∈ V in sorted order do
4: if Mv = 0 then
5: p← ∅, Sp ← −∞
6: for u ∈ Γ(v) do
7: if u 6= v and wu + wv < T and Mu = 0 then

8: SE ←
∑

e∈E|u,v∈e

we
|{n ∈ e}| − 1

9: Sε ← ε(u)ᵀε(v)

10: Suv ←
SESε
wuwv

11: if Suv > Sp then
12: p← n, Sp ← Suv
13: if p 6= ∅ then
14: Match v with p for coarsening
15: Mv,Mp ← 1

4 EXPERIMENTAL DESIGN

In order to evaluate the partitioning quality of our proposed
coarsening method, we implement our matching algorithm
in both KaHyPar [11] and Zoltan [16]. Our KaHyPar imple-
mentation adds a new coarsening class to replace the exist-
ing community-based structure, and maintains other KaHy-
Par features such as its direct k-way initial solution. We
evaluate this implementation with both traditional vertex-
swapping refinement as well as more recent flow-based
refinement [21]. In the case of Zoltan we introduce a new
function to evaluate nodes during matching. Our imple-
mentation also requires minor modifications elsewhere in
the software package in order to address re-indexing during
recursive bisection. These changes do not effect the actual
coarsening algorithm, as each call to recursive bisection
begins with a subset of nodes and hyperedges from the
original hypergraph.

In order to quantify the improvement in quality gained
by embedding-based coarsening, we compute a number of
partitions under a variety of scenarios. This begins with a
set of embeddings. Due to resource constraints, we only
embed each graph once for each considered technique and
reuse this embedding in different runs. This compromise
is necessary because graph embedding can more expensive
than the considered multi-level hypergraph partitioners by
orders of magnitude, determined often by the efficiency
of the embedding software. Furthermore we note that the
problem of embedding coarsened hypergraphs is nontrivial.
We observe a significant decrease in overall solution quality
when attempting to recompute embeddings at intermediate
coarse levels, as the considered methods were not indented
to capture to small weighted structures. Ultimately we find
that this challenge lies outside the scope of this work.

The set of embedding techniques we explore con-
sists of Node2Vec [22], Metapath2Vec++ [23], FOBE, and
HOBE [19], as well as two combination embeddings (also
presented in [19]). The first combination merges only FOBE
and HOBE, while the second combination merges all four
previously stated embeddings. All considered embeddings
are in R100. While higher-dimensional embeddings have
the ability to capture more complex latent structure, this
complexity can also lead to poorer convergence while train-
ing. We performed an initial experiment comparing 100- to
500-dimensional embeddings of our hypergraph set, and
observed no significant difference in solution quality. In
addition, we do not claim to extensively test our coars-
ening against all state of the art embeddings, only that
our proposed technique is robust to different embedding
algorithms.

Each of the six input embeddings combines with each
of the three proposed implementations, KaHyPar, KaHyPar
Flow, and Zoltan, to create a set of eighteen proposed par-
titioners with embedding-based coarsening. We add to this
five baseline methods: hMetis [24], Zoltan [16], PaToH [25],
KaHyPar (with community-based coarsening [18]), and
KaHyPar Flow (with both community-based coarsening and
flow-based refinement [21]). This results in 23 considered
partitioners. For each of the partitioners, we run separate tri-
als optimizing for cut and k−1 respectively. The differences
between these objectives is defined in detail in Section 2.

For all combination of partitioner and objective we ad-
ditionally compare across a range of k-values. Many solvers
identify a larger number of partitions through recursive-
bisection (all considered except KaHyPar), which iteratively
partitions the input hypergraph into two parts until reach-
ing the desired number of partitions. For this reason we
compare different numbers of partitions corresponding to
the powers of two from 2 to 128. For each of these scenarios,
we apply an overall imbalance tolerance of 3%. Then, for
each combination of partitioner, objective, and k-value, we
compare across a benchmark of hypergraphs.

Our benchmark consists of 86 sparse matrices selected
from the SuiteSparse Matrix Collection [26]. These matrices
span a range of domains including social networks, power
grids, and linear systems. We interpret each matrix M as
the incidence matrix of a hypergraph. In doing so, we
consider each row to represent a node, each column to be
a hyperedge, and a nonzero value in Mij to indicate node j

7

participates in hyperedge i.
We additionally include ten synthetic hypergraphs that

were designed to test the robustness of the coarsening pro-
cess, extending a similar approach from graphs [38]. These
graphs are a mixture of graphs that are weakly connected
between each other, with less than 1% of edges connecting
different graphs in the mixture. In multilevel setting, this
can cause the coarsening process to incorrectly contract
edges between different graphs in the mixture, resulting in
uneven coarsening, overloaded refinement and worse qual-
ity of the final solution. This structure can be found in many
real-world graphs, including multi-mode networks [51] and
logistics multi-stage system networks [52]. We introduce
additional complexity by adding additional < 1% random
edges (denoted in the online appendix as “W/ Noise”). Full
graphs, as well as scripts used to generate them are available
in the online appendix.

Our overall benchmark suite of 96 graphs is explored
in detail in the online appendix, wherein we present node
and hyperedge distributions for all graphs. All names pro-
vided, except for our newly generated synthetic graphs,
correspond to those found in the Sparse Matrix Collection.

For each combination of partitioner, objective, k-value,
and graph, we compute twenty trials, with a total of over
half-a-million trials. For each trial we generate a new ran-
dom seed and randomly relabel the node and hyperedge
indices.

In order to quantify the difference in quality between
the two compared methods, we rely on summary statistics
such as the macro-average of improvement. We define the
“improvement” as a ratio between the partitioning quality
of some baseline method against some comparison method.
Note that if the comparison method achieves a cut or k − 1
value that is lower than the baseline, the improvement will
be greater than 1. We compute four different improvement
statistics between two methods: average, minimum, maxi-
mum, and standard deviation. In this way we compare the
expected, worst-case, and best-case observed partitioning
quality, as well as the variance of results. In the following
equations, I(·)(X,Y,G, k,M) indicates the improvement be-
tween a baseline X and comparison Y algorithm for the k-
partition problem on hypergraph G with respect to metric
M . Let T (i)

X,G,k,M represent the ith trial of algorithm X . For
our experiments we run τ = 20 of these trails.

Iavg(X,Y,G, k,M) =
Ei=1,...,τ T

(i)
X,G,k,M

Ei=1,...,τ T
(i)
Y,G,k,M

(21)

Imin(X,Y,G, k,M) =
mini=1,...,τ T

(i)
X,G,k,M

mini=1,...,τ T
(i)
Y,G,k,M

(22)

Imax(X,Y,G, k,M) =
maxi=1,...,τ T

(i)
X,G,k,M

maxi=1,...,τ T
(i)
Y,G,k,M

(23)

σ(X,G, k,M) =
√
E[(T

(i)
X,G,k,M)2]− E[T

(i)
X,G,k,M]2 (24)

Iσ(X,Y,G, k,M) =
σ(X,G, k,M)

σ(Y,G, k,M)
(25)

We can then reduce the overall comparison of two
methods with respect to a particular optimization metric
into the macro-average of improvement across all graphs

in the benchmark. Here, G′ represents the set of considered
benchmark.

I
(M)
(·) (X,Y, k,M) =

1

|G′|

(∑
G∈G′

I(·)(X,Y,G, k,M)

)
(26)

5 RESULTS

Following the experimental procedure described in Sec-
tion 4, we evaluate the partitioning quality of our proposed
coarsening algorithm. Due to the volume of experimental
trials performed for our evaluation, we can only present
summary statistics for representative experiments in the
body of this work. Full results are available online.

We present the macro-average improvement (I(M)
avg)

gained by the embedding-based coarsening for each imple-
mentation across all partitions counts in Table 1 (a and b)
for the k − 1 and cut metrics. These tables compare each
implementation against its corresponding baseline with-
out embedding-based coarsening. For instance, KaHyPar
without flow-based refinement [18] is compared to the
same KaHyPar without flow-based refinement but with the
embedding-based coarsening.

Figure 2 depicts improvement of representative methods
to KaHyPar with flow-based refinement, the top perform-
ing baseline [21]. Note that in these plots we use “EC”
to refer to embedding-based coarsening. Additionally, in
these tables and figures we select the FOBE embedding for
both the KaHyPar and Zoltan implementations to represent
overall embedding quality, as all considered embeddings
perform similarly. Furthermore, Figure 3 depicts the relative
improvement gained by embedding-based coarsening per-
graph for the 2-partition problem. Our analysis focuses
on insights that can be observed from these representative
results. Overall we observe that embedding-based coarsen-
ing increases average quality across almost all considered
comparisons. This improvement is typically greater for low
partition counts.

In the case of KaHyPar, an improvement is the result
of replacing the existing community-based coarsening [18].
The community-based coarsening, which is further dis-
cussed in Section 6, restricts coarsening partners to only
nodes that share a community in the finest level of the input
hypergraph. Our embedding-based coarsening is similar in
the sense that node communities are likely to share similar
embeddings. However, by introducing node embeddings
we relax this constraint. As a result our approach gains in
solution quality by occasionally merging across communi-
ties, which is particularly important when merging hubs or
bridges that may border multiple communities.

When comparing the partitioning quality across all
KaHyPar trials, we observe that KaHyPar with embedding-
based coarsening but without flow-based refinement can
find better partitioning solutions than KaHyPar with flow-
based refinement. Specifically we observe an average im-
provement of 10% for the k − 1 metric for k = 2 and
k = 4, demonstrated in Figure 2. Furthermore, some graphs
partitioned with embedding-based coarsening in Zoltan
outperform even the latest KaHyPar version. Applications
attempting to partition particularly large hypergraphs may
benefit from this result as embedding-based coarsening and

8

Parts(k): 2 4 8 16 32 64 128
KaHyPar 8% 13% 10% 6% 4% 3% 1%
KaHyPar(flow) 9% 11% 4% 2% 3% 2% 0%
Zoltan 48% 28% 15% 14% 9% 5% 3%

(a) Marginal avg. k − 1 improvement.

Parts(k): 2 4 8 16 32 64 128
KaHyPar 8% 16% 9% 1% 3% 1% 0%
KaHyPar(flow) 10% 11% 3% 1% 1% 1% -1%
Zoltan 51% 45% 51% 41% 31% 14% 8%

(b) Marginal avg. cut improvement.

TABLE 1: The above tables summarize the average increase in quality that can be gained per-metric and per-method when
utilizing embedding-based coarsening. Each method is compared against its corresponding baseline, such as comparing
KaHyPar (flow) with and without embedding-based coarsening. All quality numbers come from an average of all trials
using the FOBE embedding and I(M)

avg metric.

(log n)-level partitioners expose more parallelism than the
n-level KaHyPar design.

For small k this flexibility appears to be the most valu-
able, as these latent embedding spaces may only detect
a handful of relevant ground-truth clusters. For higher k,
the number of partitions appears to exceed the number of
natural divisions in our embedding space. Our KaHyPar
implementation particularly struggles here, which we ob-
serve is likely to result from the direct k-way initial solution
this method identifies [53]. In contrast, Zoltan, which uses
recursive-bisection to recursively 2-partition the input hy-
pergraph, is more resilient for larger k. Recursive bisection
has the effect of splitting the input embedding into two
subspaces. When combined with embedding-based coarsen-
ing, these subspaces divide the key axes of variance within
the embedding spaced. Then, the next iteration need only
consider locally relevant differences within each respective
subspace, which retains more locally-relevant information.
This effect is what keeps Zoltan’s partitioning quality com-
petitive with KaHyPar flow for larger k, as seen in Figure 2.

Examining the standard deviation results shown in Fig-
ure 2, we observe that embedding-based coarsening de-
creases the standard deviation of possible results for a given
hypergraph. These figures corresponding to the standard
deviation of both the k−1 and cut metrics demonstrate that
the macro-average improvement of standard deviation is
often substantial, and occasionally over an order of magni-
tude. This result comes from replacing the typically random
node-visit order with a sorted ordering dependent on each
node’s nearest-neighbor. If addition, the figures correspond-
ing to the minimum and maximum k − 1 and cut observed
pet-trial all demonstrate that embedding-based coarsening
consistently improves the expected worst-case (I(M)

max) and
average best-case (I(M)

min) quality. Many applications run
multiple partitioning trials and select the top-performing
result [54], however by reducing the variance of results to
an improved range, our coarsening approach could improve
overall application efficiency.

Looking into the graph-wise results, shown in Figure 3,
we observe that there is a class of hypergraphs that are
best aided by embedding-based coarsening. We observe that
embedding-based coarsening can identify partitions with
200-400% improvement in graphs with rich latent struc-
ture, such as the communication networks corresponding
to the Enron or European Union email networks (as found
in [26]). Additionally, some synthetic graphs, those con-
structed through a star-shaped merge of multiple real-world
networks and are designed to complicate the coarsening

process, are similarly improved. These improvements on
this class of graphs is also highly statistically significant
(p < 0.01). These highly-improved graphs have rich la-
tent global structure that may not be accurately captured
through hyperedge-wise features. For example, the depart-
mental structure within Enron is lost when individually
considering emails between particular employees. While
not every graph can be exploited to that magnitude, we
do observe that a significant portion of our benchmark
is significantly improved, and a further portion is merely
unchanged. We do however observe a subset of graphs
that are partitioned worse with embedding-based cluster-
ing. Nemsemm2, a sparse matrix corresponding to a lin-
ear program, is partitioned almost three-times worse using
embedding-based coarsening. The incidence matrix of this
hypergraph is nearly block-diagonal, which results in signif-
icant hyperedge-wise features that are not translated into an
embedding, as disjoint graph regions are often embedded in
overlapping spaces. In contrast, Nemswrld is another linear-
program sparse matrix published by the same group, but is
less block-diagonal and receives an statistically significant
average improvement of about 33%. Each of these above re-
sults refer to a 2-partition performed by KaHyPar (Figure 4.

6 RELATED WORK

Our proposed embedding-based coarsening is similar to
the community-based coarsening proposed by Heuer et al.
and used in our KaHyPar baseline [18]. Their approach
begins with a “community detection phase” wherein tra-
ditional community detection algorithms cluster the nodes
contained in the bipartite star-expansion of the original
graph. From there, the coarsening process is restricted to
only contract nodes within a community. This approach
is intended to maintain global community structure from
the original hypergraph in the final coarsest representation.
While both methods leverage the bipartite representation
to find initial node features, embedding-based coarsening
improves upon community-based coarsening by relaxing
the requirement that nodes can only be coarsened within
a community. Nodes within a modularity maximizing com-
munity are internally dense and externally sparse [55]. As
a result nodes sharing a community are more likely to co-
occur in any local sampling strategy employed by a graph
embedding algorithm. Therefore, it is likely that the natural
clusters within our considered graph embeddings are simi-
lar to the communities found by KaHyPar. However, these
embeddings inform additional global relationships between
clusters that are lost when each community is coarsened

9

Fig. 2: Above depicts I(M)
avg (26) using KaHyPar Flow as the baseline (M) for representative considered metrics.

Fig. 3: Above depicts the improvement of the k− 1 metric in KaHyPar when neural coarsening is applied to the 2-partition
problem. Each bar represents a comparison of 20 baseline and 20 embedding-based trails for a single graph. The color of
each bar represents the statistical significance between the sets of trial results. The small black lines represent the standard
deviation of the embedding-based method, and the absence of a bar indicates a standard deviation near zero. Note that the
graphs with the most improvement primarily social networks. Bar heights correspond to the Iavg statistic.

10

independently. For instance, nodes on the boundary of
two communities will likely receive embeddings spatially
located between two clusters. This distinction is able to
remain in the coarsest representation of the hypergraph, and
may be lost in community-based coarsening when nodes are
initially split due to community assignments.

Memetic partitioning, also proposed for KaHyPar, uses
the principles of genetic algorithms to discover improved
partitioning solutions [12]. This approach creates high qual-
ity partitions by iterating through different “generations”
of solutions, starting with an initial generation produced
by KaHyPar run multiple times with different seeds. From
the initial set, multiple combination operators “breed” new
solutions by combining some number of “parents” to form
new solutions. Each iteration is designed to improve the
population’s average k − 1 metric. Combination operators
are specifically posed such that offspring solutions perform
at least as good as its corresponding parents. While this
approach is demonstrated to improve overall hypergraph
partitioning quality, it does so by adding a meta process
to the set of initial hypergraph solutions. We anticipate
that adding embedding-based coarsening as a method for
generating a high quality initial solution population may be
a complimentary way to improve the overall process.

The proposed embedding-based coarsening extends the
relaxation-based coarsening developed by Shaydulin et
al. [13] in Zoltan. This work introduces algebraic distance
for hypergraphs, which in turn extends a similar measure
designed for traditional graphs [34]. Algebraic distance is
a similarity measure that takes into account distant neigh-
borhoods of vertices, enabling the coarsening process to
exploit the global structure of highly irregular hypegraphs.
Algebraic distance is computed by an iterative process that
is shown to stabilize quickly [13], requiring only tens of
iterations to obtain rich latent features. As such, this method
is additionally found within the Algebraic Heterogeneous
Bipartite Embeddings we consider (AHBE) [19]. However,
as uncovered in that work, neural graph embeddings can
learn additional latent features not often captured by alge-
braic distance alone.

Aggregative coarsening [35] uses ideas from algebraic
multigrid, extending an unfinished attempt published in
Sandia Summer Reports [37]. At each step of the coarsening
process a set of seed vertices is selected. Each seed then
becomes a center of an aggregate, with non-seeds assigned
to seeds using different aggregation rules. An aggregate at
finer level forms a vertex at coarser level. Two aggregation
rules, based on inner product matching and stable match-
ing were explored. Our embedding-based coarsening can
be used within the aggregative coarsening to inform the
aggregation rules.

7 CONCLUSION

In this work we propose embedding-based coarsening, an
approach that uses latent features present in a pretrained
hypergraph embedding to better solve the hypergraph par-
titioning problem. We do so by prioritizing nodes that
share many latent features during the coarsening pro-
cess, and then leveraging a combination of traditional and
embedding-derived features when determining coarsening

partners. We evaluate this approach over multiple trials per
combination of 96 graphs, 7 partition counts, 6 pretrained
embedding methods, 5 baseline partitioners, 3 implemen-
tations, and 2 objective functions. We observe a significant
increase in quality for small values of k (from 2 until about
16) gained from embedding-based coarsening. For higher
values of k we observe overall quality that returns to the
state-of-the-art baseline. All experiments, plots and code
are available in our online appendix at sybrandt.com/2019/
partitioning.

An important future research direction is related to the
embedding-based coarsening for large k as the improve-
ment we observe is less significant. One potential expla-
nation is that our fixed sized embeddings only contain a
relatively small number of latent clusters. This would imply
that beyond certain small k, most coarsening comparisons
will occur within a single cluster, wherein all nodes are
similar. However, we demonstrate that using the proposed
embedding-based coarsening one can improve the solution
quality of existing hypergraph paritioners by about 10%
for small k, and up to 400% on particular graphs with
rich latent structure. For example, this method increases the
quality of Zoltan above that of KaHyPar with flow-based
refinement in some cases, which is particularly important as
then log n-level paradigm implemented in Zoltan exposes
substantially more parallelism than the n-level counterpart.
We also note that our algorithm is embedding-agnostic and
is ready to incorporate other types of embeddings that can
potentially work better for specific types of instances.

8 ACKNOWLEDGEMENTS

We would like to thank Sebastian Schlag from the Karl-
sruhe Institute of Technology for helping us to understand
KaHyPar. This work was supported by NSF awards MRI
#1725573, DMS #1522751, and NRT #1633608.

sybrandt.com/2019/partitioning
sybrandt.com/2019/partitioning

11

Fi
g.

4:
M

ac
ro

-a
ve

ra
ge

im
pr

ov
em

en
t

of
th

e
k
−

1
m

et
ri

c
ac

ro
ss

al
l

co
ns

id
er

ed
gr

ap
hs

an
d

m
et

ho
ds

.W
e

pe
rf

or
m

ed
20

pa
rt

it
io

ns
pe

r-
gr

ap
h

pe
r-

m
et

ho
d

us
in

g
di

ff
er

en
t

se
ed

s.
A

dd
it

io
na

lr
es

ul
tm

at
ri

ce
s

av
ai

la
bl

e
on

lin
e.

12

REFERENCES

[1] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in vlsi domain,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1,
pp. 69–79, 1999.

[2] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in Advances in neural
information processing systems, 2007, pp. 1601–1608.

[3] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram, “The total
variation on hypergraphs-learning on hypergraphs revisited,” in
Advances in Neural Information Processing Systems, 2013, pp. 2427–
2435.

[4] C. Zhang, S. Hu, Z. G. Tang, and T. Chan, “Re-revisiting learning
on hypergraphs: confidence interval and subgradient method,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 4026–4034.

[5] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,”
IEEE Transactions on parallel and distributed systems, vol. 10, no. 7,
pp. 673–693, 1999.

[6] U. Naumann and O. Schenk, Combinatorial scientific computing.
CRC Press, 2012.

[7] M. A. Shepherd, C. R. Watters, and Y. Cai, “Transient hyper-
graphs for citation networks,” Information Processing & Manage-
ment, vol. 26, no. 3, pp. 395–412, 1990.

[8] Z.-K. Zhang and C. Liu, “A hypergraph model of social tagging
networks,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2010, no. 10, p. P10005, 2010.

[9] T. Lengauer, Combinatorial algorithms for integrated circuit layout.
Springer Science & Business Media, 2012.

[10] T. N. Bui and C. Jones, “Finding good approximate vertex and
edge partitions is np-hard,” Information Processing Letters, vol. 42,
no. 3, pp. 153–159, 1992.

[11] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and
C. Schulz, “k-way hypergraph partitioning via n-level recursive
bisection,” in 18th Workshop on Algorithm Engineering and Experi-
ments, (ALENEX 2016), 2016, pp. 53–67.

[12] R. Andre, S. Schlag, and C. Schulz, “Memetic multilevel hyper-
graph partitioning,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’18, 2018, pp. 347–354.

[13] R. Shaydulin, J. Chen, and I. Safro, “Relaxation-based coarsening
for multilevel hypergraph partitioning,” Multiscale Modeling &
Simulation, vol. 17, no. 1, pp. 482–506, 2019.

[14] G. Karypis and V. Kumar, “Multilevel k-way hypergraph parti-
tioning,” VLSI design, vol. 11, no. 3, pp. 285–300, 2000.

[15] E. G. Boman, U. V. Catalyurek, C. Chevalier, K. D. Devine, I. Safro,
and M. M. Wolf, “Advances in parallel partitioning, load balancing
and matrix ordering for scientific computing,” in Journal of Physics:
Conference Series, vol. 180, no. 1. Institute of Physics Publishing,
2009, pp. 12 008–12 013.

[16] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and
U. V. Catalyurek, “Parallel hypergraph partitioning for scientific
computing,” in Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International. IEEE, 2006, pp. 10–pp.

[17] C. Chevalier and I. Safro, “Comparison of coarsening schemes for
multilevel graph partitioning,” Learning and Intelligent Optimiza-
tion, pp. 191–205, 2009.

[18] T. Heuer and S. Schlag, “Improving coarsening schemes for hy-
pergraph partitioning by exploiting community structure,” in 16th
International Symposium on Experimental Algorithms, (SEA 2017),
2017, pp. 21:1–21:19.

[19] J. Sybrandt and I. Safro, “First-and High-Order Bipartite Embed-
dings,” submitted, arXiv preprint arXiv:1905.10953, 2019.

[20] S. Agarwal, K. Branson, and S. Belongie, “Higher order learning
with graphs,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 17–24.

[21] T. Heuer, P. Sanders, and S. Schlag, “Network Flow-Based Refine-
ment for Multilevel Hypergraph Partitioning,” in 17th International
Symposium on Experimental Algorithms (SEA 2018), 2018, pp. 1:1–
1:19.

[22] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016, pp.
855–864.

[23] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proceed-

ings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 135–144.

[24] G. Karypis, “hmetis 1.5: A hypergraph partitioning package,”
http://www. cs. umn. edu/˜ metis, 1998.

[25] Ü. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hyper-
graphs),” Encyclopedia of Parallel Computing, pp. 1479–1487, 2011.

[26] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, p. 1, 2011.

[27] S. T. Barnard and H. D. Simon, “Fast multilevel implementation
of recursive spectral bisection for partitioning unstructured prob-
lems,” Concurrency and computation: Practice and Experience, vol. 6,
no. 2, pp. 101–117, 1994.

[28] A. Brandt and D. Ron, “Chapter 1 : Multigrid solvers and multi-
level optimization strategies,” in Multilevel Optimization and VLSI-
CAD, J. Cong and J. R. Shinnerl, Eds. Kluwer, 2003.

[29] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, 1998.

[30] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz,
“Recent advances in graph partitioning,” in Algorithm Engineering:
Selected Results and Surveys. LNCS 9220, Springer-Verlag. Springer,
2016, pp. 117–158.

[31] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data dis-
tribution method for parallel sparse matrix-vector multiplication,”
SIAM review, vol. 47, no. 1, pp. 67–95, 2005.

[32] C.-E. Bichot and P. Siarry, Graph partitioning. Wiley Online Library,
2011.

[33] A. Trifunović and W. J. Knottenbelt, “Parallel multilevel algo-
rithms for hypergraph partitioning,” Journal of Parallel and Dis-
tributed Computing, vol. 68, no. 5, pp. 563–581, 2008.

[34] J. Chen and I. Safro, “Algebraic distance on graphs,” SIAM Journal
on Scientific Computing, vol. 33, no. 6, pp. 3468–3490, 2011.

[35] R. Shaydulin and I. Safro, “Aggregative coarsening for multilevel
hypergraph partitioning,” 17th International Symposium on Experi-
mental Algorithms (SEA 2018), 2018.

[36] I. Safro, D. Ron, and A. Brandt, “Multilevel algorithms for linear
ordering problems,” Journal of Experimental Algorithmics (JEA),
vol. 13, p. 4, 2009.

[37] A. Buluc and E. G. Boman, “Towards scalable parallel hypergraph
partitioning,” in CSRI Summer Proceedings 2008. Sandia National
Labs, 2008, pp. 109–119.

[38] I. Safro, P. Sanders, and C. Schulz, “Advanced coarsening schemes
for graph partitioning,” ACM Journal of Experimental Algorithmics
(JEA), vol. 19, pp. 2–2, 2015.

[39] I. Safro, D. Ron, and A. Brandt, “Graph minimum linear arrange-
ment by multilevel weighted edge contractions,” J. Algorithms,
vol. 60, no. 1, pp. 24–41, 2006.

[40] D. Ron, I. Safro, and A. Brandt, “Relaxation-based coarsening and
multiscale graph organization,” Multiscale Modeling & Simulation,
vol. 9, no. 1, pp. 407–423, 2011.

[41] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Papers on Twenty-five years of
electronic design automation. ACM, 1988, pp. 241–247.

[42] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
1970.

[43] P. Sanders and C. Schulz, “Engineering multilevel graph partition-
ing algorithms,” in European Symposium on Algorithms. Springer,
2011, pp. 469–480.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[45] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[46] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[47] Y. Tsvetkov, M. Faruqui, W. Ling, G. Lample, and C. Dyer, “Eval-
uation of word vector representations by subspace alignment,” in
Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015, pp. 2049–2054.

[48] A. Gladkova, A. Drozd, and S. Matsuoka, “Analogy-based detec-
tion of morphological and semantic relations with word embed-

13

dings: what works and what doesn’t.” in Proceedings of the NAACL
Student Research Workshop, 2016, pp. 8–15.

[49] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015, pp. 1067–
1077.

[50] E. John and I. Safro, “Single-and multi-level network sparsification
by algebraic distance,” Journal of Complex Networks, vol. 5, no. 3,
pp. 352–388, 2016.

[51] L. Tang, H. Liu, J. Zhang, and Z. Nazeri, “Community evolution
in dynamic multi-mode networks,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2008, pp. 677–685.

[52] L. Stock, Strategic Logistics Management, ser. Cram101 Textbook
Outlines. Lightning Source Inc, 2006. [Online]. Available:
http://books.google.com/books?id=1LyCAQAACAAJ

[53] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, “Engineering a
direct k-way hypergraph partitioning algorithm,” in 19th Workshop
on Algorithm Engineering and Experiments, (ALENEX 2017), 2017,
pp. 28–42.

[54] A. Trifunovic, “Parallel algorithms for hypergraph partitioning,”
Ph.D. dissertation, University of London, 2006.

[55] M. Newman, Networks: an introduction. Oxford university press,
2010.

http://books.google.com/books?id=1LyCAQAACAAJ

	1 Introduction
	1.1 Our Contribution

	2 Background
	2.1 Multilevel Hypergraph Partitioning
	2.2 Hypergraph Embeddings

	3 Method
	4 Experimental Design
	5 Results
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

