
Multilevel Graph Partitioning for Three-Dimensional Discrete
Fracture Network Flow Simulations

Hayato Ushijima-Mwesigwa1, Jeffrey D. Hyman ∗2, Aric Hagberg3, Ilya Safro1, Satish
Karra2, Carl W. Gable2, and Gowri Srinivasan4

1School of Computing, Clemson University, Clemson, South Carolina, USA
2Computational Earth Science (EES-16), Earth and Environmental Sciences Division, Los Alamos National Laboratory,

Los Alamos New Mexico, USA
3Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos New

Mexico, USA
4Verification and Analysis (XCP-8), X Computational Physics, Los Alamos National Laboratory, Los Alamos New

Mexico, USA

Abstract
We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture net-

work (DFN) simulations that takes advantage of the intrinsic multi-level nature of a DFN. DFN models
are used to simulate flow and transport through low-permeability fracture media in the subsurface by ex-
plicitly representing fractures as discrete entities. The governing equations for flow and transport are nu-
merically integrated on computational meshes generated on the interconnected fracture networks. Modern
high-fidelity DFN simulations require high-performance computing on multiple processors where perfor-
mance and scalability depends partially on obtaining a high-quality partition of the mesh to balance work
work-loads and minimize communication across all processors.

The discrete structure of a DFN naturally lends itself to various graph representations, which can be
thought of as coarse-scale representations of the computational mesh. Using this concept, we develop
a variant of the multilevel graph partitioning algorithm to partition the mesh of a DFN. We compare the
performance of this DFN-based mesh-partitioning with standard multi-level graph partitioning using graph-
based metrics (cut, imbalance, partitioning time), computational-based metrics (FLOPS, iterations, solver
time), and total run time. The DFN-based partition and the mesh-based partition are comparable in terms of
the graph-based metrics, but the time required to obtain the partition is several orders of magnitude faster
using the DFN-based partition. The computation-based metrics show comparable performance between
both methods so, in combination, the DFN-based partition is several orders of magnitude faster than the
mesh-based partition.

1 Introduction
Discrete Fracture Network (DFN) models are a computational tool for modeling flow and transport through
low-permeability subsurface fractured rock. DFN models differ from conventional continuum models by
explicitly representing fractures and the networks they form. This allows DFNs to represent a wider range
of transport phenomena and makes them a preferred choice when linking network attributes to flow proper-
ties [24, 35]. DFNs are utilized for characterizing fluid flow and solute transport through low permeability

∗corresponding author: jhyman@lanl.gov

1

ar
X

iv
:1

90
2.

08
02

9v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
8

Fe
b

20
19

fractured media which is critical for a variety of subsurface applications including the environmental restora-
tion of contaminated fractured media [57, 59, 75], aquifer storage and management [44], hydrocarbon extrac-
tion [36, 41, 53], longterm storage of spent civilian nuclear fuel [20, 24, 40],and CO2 sequestration [39].

The choice to explicitly represent fractures results in a significantly higher computational cost than
stochastic continuum [59] or dual porosity/permeability [47] models where upscaled effective properties are
used to account for fracture properties. Once a network is constructed, the individual fractures are meshed
for computation and the governing equations for flow and transport are numerically integrated on the com-
putational mesh. The number of mesh cells required for a DFN depends on the number of fractures, the
density of the network, and the range of length scales being resolved. Even modest sized DFNs containing
O(102) fractures can have a mesh that contains several million nodes. Because of limited computational
resources, the first DFN models either represented networks as a set of connected pipes [10, 16] or were two-
dimensional representations [14]. Despite the large scale of DFN computations, high performance computing
(HPC) enables flow and transport simulations in large three-dimensional DFNs [4, 5, 17, 38, 55, 61, 62].

These high-fidelity DFN simulations require HPC on multiple processors and the performance and scala-
bility of these simulations necessitate a high-quality partitioning such that the computations are well-balanced
across all processes with minimal communication between processors. Common partitioning methods [9] are
based on either a global method, e.g., spectral partitioning and max-flow, or iterative local improvement
heuristic algorithms, e.g., Kernighan-Lin [43] or Fiduccia-Matthesyses [19]. However, multilevel graph par-
titioning, which introduces a framework to make global decisions in conjunction with local improvements, is
one of the most successful heuristics in practice for partitioning large graphs [12, 42, 66, 69, 70, 77].

The basic idea behind multilevel graph partitioning is that a graph is successively coarsened, creating
a hierarchy of smaller graphs until an initial (coarsest) partition can be computed efficiently. The initial
partition is projected back to the next finer level, where local improvements are made. Once at a local
optima, the improved partition is projected to the next finer level where further local improvement are made.
The process continues until a partition is projected and refined back to the original graph. Multilevel graph
partitioning methods are popular because they exhibit excellent trade-off between fast computational time
and high-quality solutions compared to other techniques. However, some applications (for example those
involving dynamic graphs) require graphs to be repartitioned, and thus require much faster techniques. Thus,
depending on the application, even multilevel graph partitioning can take a significant amount of time.

To increase the speed of high-resolution DFN simulations, we propose an approach to graph partitioning
the DFN mesh that combines the topological structure of the DFN with multilevel graph partitioning. The
discrete structure of a DFN naturally lends itself to various graph representations, for example, vertices in
graph can correspond to fractures in the DFN and edges in the graph to fracture intersections. These graph-
representations of a DFN can also be thought of as coarse-scale representations of the computational mesh,
which is the conceptual model that we use here to develop a variant of the multilevel graph partitioning
algorithm for mesh partitioning. By using this partitioning on the DFN, we seek to accelerate the HPC
computations. The proposed methodology assigns the first coarse level in the multilevel graph partitioning to
be a weighted graph based on the topology of the DFN that accounts for the number of mesh nodes on each
fracture.

We compare the relative cost of the proposed method with partitioning the full mesh and find that the
total run time is reduced by several orders of magnitude using the proposed method. Partitioning the graph-
representation of the DFN and projecting the solution onto the mesh is computationally cheaper than par-
titioning the DFN mesh itself since there are orders of magnitude fewer nodes and edges to consider in a
graph based on the DFN topology. The method is also sensitive to the mesh resolution on each fracture,
i.e., it accounts for the number of mesh nodes on each fracture. The performance of the method compared
to partitioning the mesh is measured in terms of graph-based metrics (cut, imbalance, partitioning time),
computational-based metrics (FLOPS, iterations, solver time), and total run time. In terms of graph-based
metrics, the results obtained using the DFN-based partition are comparable to those obtained using the mesh-

2

based partition, yet the DFN-based partition is several orders of magnitude faster. The results presented here
indicate that using the proposed method overall reduces the required time for a single DFN realization simula-
tion and thus allows one to perform more realizations for uncertainty quantification, for a fixed computational
budget.

2 Discrete Fracture Networks
In low-permeability fractured media like shale and crystalline rock, fluid flow and the associated transport
of solutes is mainly confirmed to the fractures embedded in the medium [57]. In these physical systems, the
structure of the fluid velocity field therein is primarily controlled by the geometry of individual fractures,
e.g., size and aperture, and the structure of the network as opposed to matrix properties, e.g., matrix porosity
or pore-size distributions [13, 15, 35, 32]. There are a number of methods used to model flow and the
associated transport of chemical species including stochastic continuum [58, 59, 73], dual-porosity / dual-
permeability [23, 78, 47], and discrete fracture network model (DFN) [10, 48, 49, 50, 60].

In the DFN methodology, individual fractures are represented as planar N− 1 dimensional objects em-
bedded within an N dimensional space, lines in two dimensions and planes in three dimensions. The size
of the domains of interest and the cost of sufficiently sampling relevant quantities in the subsurface, both
hydraulic and structural, result in limited availability of data [6, 57, 78] and requires that DFN models are
constructed stochastically. Each fracture within the network is assigned a shape, location, and orientation
within the domain by sampling distributions whose parameters are determined by a site characterization [40].
The fractures form a network embedded within the porous medium that are meshed for computation and the
governing equations for flow and transport are numerically integrated to simulate physical phenomenon of
interest.

The stochastic generation of a DFN is a major obstacle in the creation of a high-quality computational
mesh representation of each network. In practice, the planes representing each fracture are randomly included
into the domain and can create arbitrarily small features, i.e., length scales, that render the automated meshing
of the fracture plans infeasible. Figure 1 shows a DFN composed of 424 fractures in a 15 meter cube, which
are represented as circular polygons, to demonstrate the range of length scales that exists in a DFN. Colors
on the fractures correspond to the distance on the fracture to the nearest line of intersection and highlight the
range of length scales that exists on a fracture plane and throughout the network. Mesh edges must be smaller
that the smallest length scale in the network if the physics are to be properly resolved. This requirement is
computationally infeasible for arbitrarily small length scales within large domains. There have been a number
of methodologies to address this issue by modifying the mesh to remove small features [56, 55] or coupling
flow between non-conforming meshes using discretization schemes [4, 17, 61, 62].

2.1 Meshing Strategy FRAM

The Feature Rejection Algorithm for Meshing (FRAM) introduced by Hyman et al. [33] is one method de-
signed to address the aforementioned mesh generation issues. The cornerstone of FRAM is a user-defined
minimum length scale (h) that determines what geometric features are represented in the network. FRAM
constrains the generation of the network so that the smallest feature is greater than h through the entire net-
work. This constraint provides a firm lower bound on the required resolution of the mesh and ensures that
pathological cases, e.g., arbitrarily small intersections and distances between intersections, that degrade mesh
quality do not exist. Then all the features in the network can be resolved by generating triangular cell edges
with a minimum length slightly less than ≈ h/2. Once these constraints are met, a conforming Delaunay
triangulation algorithm [54] is implemented to mesh each fracture in a manner such that all lines of inter-
section form a set of connected edges in the Delaunay triangulation. The dual of the Delaunay triangulation

3

Figure 1: A Discrete Fracture Network (DFN) composed of 424 fractures in a 15 meter cube. Colors
correspond to the distance on the fracture plane to the nearest fracture intersection. The regions colored
white are close to fracture intersections and darker colors indicate larger distances. The variability in colors
on a single plane highlights the range of length scales that exist on a single fracture and throughout the
network. To properly simulate relevant physical phenomenon the mesh representation of the network must
be fine enough to resolve all of these length scales.

is a Voronoi tessellation, which in a certain sense is optimal for two-point flux finite volume solvers [18],
that are commonly used in subsurface flow and transport simulators such as FEHM [79], TOUGH2 [63], and
PFLOTRAN [46].

One key aspect of FRAM is the provided detailed control of the mesh resolution on each fracture because
pathological cases that degrade mesh quality do not exist. Depending upon the physical process to be simu-
lated, the mesh can either have variable or uniform resolution. Points of singularity in the pressure solution
occur at the ends of intersection lines and high gradients in the pressure solution and flow fields occur close
to the intersections. To properly resolve these gradients the mesh needs to be finer in these regions. If fracture
properties are homogeneous within a fracture, i.e., uniform fracture apertures, or only a pressure solution is
required, or transport will be simulated using particle tracking then the mesh can be coarsened away from
the intersections without significant loss of accuracy. However, if non-uniform apertures are considered, as
in [15, 50], then the mesh needs to be sufficiently fine that length scales in the aperture field, e.g., correlation
lengths, are resolved. Furthermore, if transport is simulated using an Eulerian approach, i.e., a numerical
discretization of the advective-dispersion equation, where numerical diffusion/dispersion is controlled by the
mesh resolution then a uniform mesh is more appropriate because numerical errors will be uniform across
the domain.

Due to these considerations, we propose an extension of the FRAM to allow for variable mesh resolution

4

based on distance from the lines of intersection in a fracture. From a topological point of view, every DFN
can be represented as a tuple consisting of a set of fractures and a set of intersections. Formally, let F = { fi}
for i = 1, . . . ,N denote a fracture network composed of N fractures (fi). Every fi ∈ F is assigned a shape,
location, and orientation within the domain by sampling distributions whose parameters are determined by a
site characterization. Every fi ∈ R2 but the network F ∈ R3. Let I = {(fi, f j)} be a set of pairs associated
with intersections between fractures; if fi ∩ f j 6= /0 then (fi, f j) ∈ I. The number of intersections M = |I|
depends on the particular shape, orientation, and geometry of the set of fractures in the network. We denote
the line of intersection between fi and f j as `(fi, f j). Using these sets, the topology of a DFN can be defined
as the tuple (F , I).

Next, we compute the minimum distance from every point on a fracture x ∈ fi to the lines of intersection
on that fracture,

d(x) = min
y∈`(fi, f j)

‖x−y‖ ∀ j s.t. (fi, f j) ∈ I . (1)

The maximum edge length in the mesh at a given distance from an intersection, denoted ‖e(x)‖ max, is deter-
mined by a two parameter piecewise linear function

‖e(x)‖ max =

{
ad(x)+h/2 d(x)≤ rh,
(ar+1/2)h d(x)> rh. (2)

If an edge in the mesh is greater than ‖e(x)‖ max, then a new point is added to the mesh at the midpoint of
that edge to split it in two. In practice, the edge spitting is done using Rivara refinement [64, 65].

A few remarks about the method: (i) the mesh is refined to ≈ h/2 along the lines of intersection, (ii) the
slope parameter a controls the rate that the mesh is coarsened away from the intersection and ensures gradual
refinement, (iii) the distance parameter r determines furthest distance from the intersections that the mesh
resolution is variable, (iv) to make the mesh uniform, one can either set a = 0 or r = 0.

Once the DFN is meshed, we can define the following functions

M f : F → Z+, (3)

returns the number of mesh nodes on a fracture fi ∈ F and

MI : I→ Z+, (4)

returns the number of mesh nodes on the line of intersection `(fi, f j)∈ I. These functions allow us to consider
the effects of different meshing strategies, uniform sized triangles compared to variable resolution, which we
will use later in this study.

Figure 2 (a) provides a close up view of uniform mesh resolution on the network shown in Fig. 1 and
Fig. 2 (b) shows a close view of variable mesh resolution in the same region. In Fig. 2 (b) the mesh is
coarsened away from fracture intersections to reduce the overall size of the mesh using the method described
above. The mesh shown in Fig. 2 (a) is composed of 870,685 nodes and 1,712,924 triangles while the mesh
in (b) is made up of 360,912 nodes and 725,787 triangles.

3 Graph Partitioning
In HPC computations one wants to minimize the communication between processors and insure that the work
performed on each processor is balanced. This problem of minimizing communication and load balancing is
identical to the problem of partitioning the graph corresponding to the sparsity pattern of matrix A [45], which,
in our problem, is equivalent to partitioning the mesh of the DFN. Thus, for a computer with k processors,
we seek a partition of the graph based on the DFN mesh into k parts of equal size where the edges between
those parts is minimized.

5

(a) (b)

Figure 2: (a) Close view of uniform mesh resolution for the DFN shown in Fig. 1. (b) Close view of variable
mesh resolution. In (b) the mesh is coarsened away from fracture intersections to reduce the overall size of
the mesh. The mesh shown in (a) is composed of 870,685 nodes and 1,712,924 triangles while the mesh in
(b) is made up of 360,912 nodes and 725,787 triangles.

3.1 k-way Graph Partitioning
Formally, given a graph G = (V,E) composed of vertices u ∈ V and edges ei, j = e(ui,u j) ∈ E, with non-
negative vertex weights wi : V → R+ and edge weights, wi, j : E → R+ let P = (P1, . . . ,Pk), be a partition of
the vertex set V into k parts such that,

∪i Pi =V, (5)

and
Pi∩Pj = /0 for i 6= j . (6)

For a given partition we can measure the volume of each piece of the partition

|Pj| := ∑
ui∈Pj

wi. (7)

The volume of each piece of the partition is used to provide a measure of imbalance. For an imbalance
parameter ε > 0, we can determine if P satisfies the balance constraint

max
i
|Pi| ≤ (1+ ε)

⌈
|W |
k

⌉
, (8)

where |W |= ∑vi∈V wi. Moreover, we can also measure the cut of a partition

C(P) = ∑wi, j s.t. ei j ∈ E,ui ∈ Pk,u j ∈ Pl and k 6= l. (9)

The k-way graph-partitioning problem (GP) is to find a k-partition, P,that satisfies the balance constraint (8)
and minimizes the cut (9). In general, these two desires conflict with one another. Indeed, this graph partition
problem is an NP-hard problem [22, 31].

6

3.2 Multilevel Graph Partitioning
Multilevel graph partitioning is one of the most successful heuristics for partitioning large graphs [8, 11, 21,
25, 27, 42, 51]. The idea behind multilevel graph partitioning originates from the multiscale optimization
and multigrid strategies [7]. A graph is gradually coarsened to one where a k-way partition can be computed
efficiently and effectively and then this partition is projected back onto the original graph. To be more specific,
let us consider a weighted graph G0 = (V0,E0) that has weights on both vertices and edges. Algorithm 1
summarizes the multilevel framework for graph partitioning.

Input: : G0 = (V0,E0) with vertex weights wi and edge weights wi, j.
Output: : P(G)

1. Coarsening phase : The graph G0 is transformed into a sequence of smaller graphs G1, G2, . . . , Gm
such that |V0|> |V1|> |V2|> .. . |Vm|.

2. Initial (coarsest graph) partitioning phase: a high-quality algorithm is employed to obtain a k-way
partition Pm of the graph Gm = (Vm,Em).

3. Uncoarsening phase: The partition Pm of Gm is projected back to G0 via the intermediate partitions
Pm−1,Pm−2 . . . ,P1,P0 which are refined at each level l ∈ [0, ..,m−1].

Algorithm 1: Multilevel Graph Partitioning

The approach consists of three main phases: (i) coarsening, (ii) initial partitioning and (iii) uncoars-
ening. In the coarsening phase the original graph (G0) is gradually approximated by creating a hierar-
chy of coarsened graphs, G1, G2, . . . , Gm, where there is a decreasing number of vertices in each graph
|V0| > |V1| > |V2| > .. . |Vm|. This can be achieved by collapsing edges and creating coarse level vertices,
which are the nodes in the next level of the hierarchy that represent sets of vertices in next-coarser levels.
The coarsening phase is stopped when the graph is small enough to be partitioned using an expensive but
accurate algorithm. This phase is referred to as the initial partitioning phase. After the initial partitioning is
performed, the uncoarsening phase begins, which is made up of two parts. In the first part of this stage, the
partition at the coarser level Pi is projected onto the graph one level finer in the hierarchy Gi−1, Pi → Pi−1.
Next, this projected partition is refined using a variant of the aforementioned improvement algorithms to cre-
ate a better partition at this level in the hierarchy. This is done until P0 is obtained. There are other (sometimes
more sophisticated) multilevel frameworks for partitioning [52, 69] and other cut-based problems on graphs
such as the minimum linear arrangement [67], wavefront [29], bandwidth [68], and vertex separators [26].

4 DFN-based Graph Partitioning
In this section we describe one of the most common graph-representations of a DFN and develop methods to
use that graph-representation in the partitioning of the mesh.

We adopt a graph representation of a DFN defined as a tuple(F , I), cf. Section 2.1, where vertices in the
graph correspond to fractures in a F and edges correspond to elements in the set of intersections I. Hyman et
al. [37] recently showed that this particular graph-representation of a DFN is a projection of a more general
bi-partite graph. A simple undirected graph F = (VF ,EF) is constructed in the following way. For every
fi ∈ F , there is a unique vertex ui ∈VF ,

φ : fi→ ui . (10)

The vertex weight wi for vertex ui ∈ VF is the number of mesh nodes on the fracture fi, obtained using M f
(3),

wi = M f (fi) , (11)

7

Edges are defined in the following way. If two fractures, fi and f j intersect, (fi, f j) ∈ I, then there is an edge
in E connecting the corresponding vertices,

φ : (fi, f j) ∈ I→ ei j = (ui,u j) , (12)

where (u,v) ∈ EF denotes an edge between vertices u and v. The edge weight wi, j for vertex e(ui,u j) ∈ EF is
the number of mesh nodes on the edge (fi, f j) ∈ I, obtained using MI (4),

wi, j = MI [(fi, f j)] , (13)

This particular mapping has been used by a variety of researchers [1, 2, 28, 30, 34, 35, 72, 74, 76].
Figure 3 shows a DFN composed of four fractures to demonstrate the connection between the graph-

representation and the mesh. Figure 3(a) shows the DFN where each fracture has a unique color. Figure 3(b)
shows the DFN with the mesh overlaid on the DFN, where the mesh colors correspond to the fracture on
which they reside. Figure 3(c) shows the adopted graph-representation of the DFN where vertex colors
coincide with the fracture colors and vertex size corresponds to the vertex weight. Figure 3(d) is a plot of
the adjacency matrix of graph equivalent of the mesh where colors in the matrix correspond to the fractures
on which the nodes reside. We perform a multi-index sort of the mesh nodes – first by fracture number, then
x coordinate, y coordinate, and finally z coordinate. This sort reduces the bandwidth of the main diagonal
of the adjacency matrix. The block structure of the mesh is a direct result of the fracture network topology,
which is captured in the graph plot in Fig. 3(c). The mesh nodes on each fracture make up the main diagonal
of the adjacency matrix in the plot shown in Fig. 3(d). The off diagonal nodes (black) correspond to mesh
nodes along the fracture intersections. Each of these blocks corresponds to the a single vertex in graph shown
in Fig. 3(c) and the number of non-zero entires in each block corresponds to the weight of the vertex. Mesh
connections are mostly on a single fracture and there are fewer connections across fracture intersections, as
indicated by the few off-diagonal terms in the adjacency matrix.

4.1 Multilevel DFN-based Graph Partitioning
We now propose a variant of the multilevel graph partitioning algorithm that takes advantage of the topology
of a DFN. The basic idea behind the method is to perform the partitioning on a graph based on the topology
of the DFN and then projecting the resulting partition onto the DFN mesh.

Hyman et al. [37] showed that the graph representation F defined by equations (10) and (12) is isomorphic
to a DFN F . An implication of that is that for every partition of the graph based on the DFN P(F), there is a
corresponding unique partition of the DFN P(F). This follows directly from the properties of the mapping φ

being a bijection. Applying φ−1 to P(F) defines a unique P(F). Therefore, we can partition a DFN using this
graph representation. However, we seek to partition the mesh of the DFN, not just the DFN. Let G = (VG,EG)
be the graph defined by the conforming Delaunay triangulation of the DFN. Note that with the exception of
nodes along the lines of intersection in the DFN, every vertex v ∈VG corresponds to a node in the mesh that
resides on a single fracture fi ∈ F . Let f (v) = fi be a function that returns the fracture on which the node
corresponding to the vertex v resides. For nodes on intersections between multiple fractures fi and f j, let
f (v) = min(fi, f j).

We define a mapping Π : G→ F to the graph F

Π : vi ∈VF = {v ∈VG s.t. f (v) = fi} (14)

and
Π : ei, j ∈ EF = {(fi, f j) if ∃ v ∈VG s.t. f (v) = (fi, f j)} (15)

Define vertex weights on wv ∈ VF by (3), the number of nodes in the mesh that reside on each fracture, and
the edge weights in EF by (4), the number of nodes along the lines of intersections between fractures. Note

8

(a) (b)

(c) (d)

0 500 1000 1500 2000
Node Number

0

500

1000

1500

2000

N
od

e
N

um
be

r

Figure 3: (a) A DFN composed of four fractures. (b) The computational mesh on the DFN. Mesh colors
coincide with the fracture on which the mesh node resides. (c) A graph representation of the DFN where
vertex colors correspond with the fracture colors in (a). (d) The adjacency matrix for the mesh shown in (c).
Colors in the matrix correspond to the fractures on which the nodes reside; black entries correspond to mesh
nodes along fracture intersections.

9

that F is the graph defined according to equations (10) and (12), the graph based on the topology of the DFN
where each vertex corresponds to a fracture and edges indicate that fractures intersect. We retain information
about the number of vertices that each coarse node in VF represents by using (11) and (13). The graph F is
a coarse version of the mesh-based graph but |VF |≪ |VG| by several orders of magnitude. We can apply the
standard multilevel GP method to F and obtain P for a k-way partition. Conceptually, the proposed method
defines the first level in the coarsening phase Π : G0→ G1 ≡ F and then a partition P(F) is obtained using
algorithm 1. Once the partition P(F) is obtained, we project the the partition onto G using Π−1. In other
words, if a fracture fi ∈ Pj, then all nodes in the mesh on fi, f (v) = fi, are placed into Pj of G.

Theorem 4.1. The projection of a partition PF of the graph F = (VF ,EF) defined by equations (10) and (12)
onto graph based on the mesh of the DFN G = (VG,EG)

Π
−1 : P(F)→ P(G) (16)

Proof. By definition every v ∈ VF is in a unique part of the partition P. Also, note that equation (14) is
surjective. Therefore all v ∈VG in the pre-image of v ∈VF are in a unique part of the partition P.

Algorithm 2 summarizes the method

Input: : F = (VF ,EF) . Graph based on DFN
Output: : P(G) . Partition of the mesh of the DFN

F0 = F . Initialize Multilevel method with finest level being the DFN based graph
Perform Algorithm 1 to F

1. Coarsening phase : The graph F0 is transformed into a sequence of smaller graphs F1, F2, . . . , Fm
such that |V0|> |V1|> |V2|> .. . |Vm|

2. Initial partitioning phase: A local refinement algorithm is employed to obtain a k-way partition Pm
of the graph Gm = (Vm,Em)

3. Uncoarsening phase: The partition Pm of Fm is projected back to F0 via the intermediate partitions
Pm−1,Pm−2 . . . ,P1,P0 with subsequent refinements

Π−1 : P0(F0)→ P0(G) . Project the partition of F0 onto the mesh of the DFN G
Algorithm 2: Multilevel Graph Partitioning For DFN

The proposed procedure drastically simplifies the coarsening phase because it reduces the number of steps
that need to be taken to reach a graph Fm where a k-way partition can be obtained, because the difference in
size between G and F is large. Moreover, it reduces the the complexity of the uncoarsening phase, because P
only needs to be obtained on F , not G. In practice, the mesh G is never constructed explicitly, only F needs
to be passed to the multilevel GP and the solution passed to the mesh.

As an example, the DFN shown in Fig. 1 is made up of 424 fractures, so the graph-representation has 424
nodes, while the mesh has 870685 nodes for the uniform mesh and 360912 nodes for the variable resolution.
Figure 4 (left) shows the graph based on that fracture network F colored according to a four-way partition.
The DFN is shown on the right side of the image, where colors correspond to the partitions in F , i.e., the
mesh is colored by P(G). Note that the projection Π−1 to obtain the partition P(G) is agnostic to the meshing
strategy and resolution. But, as we shall see in the next section, the meshing strategy does affect the quality
of the cut in the projected partition P(G).

10

4

3

2

1

Figure 4: (Top) Graph-representation of the topology of the DFN. (Bottom) DFN colored based on a four-
part DFN-based partition. The partition of the mesh (Bottom) is obtained by projecting the partition on the
DFN-based graph (Top) onto the mesh.

11

4.2 Numerical Examples
We compare the proposed approach, where the partition of the mesh is based on the partition of the graph
representation of the DFN, with the standard approach, where the mesh is partitioned directly. We consider
a set of 30 independent identically distributed DFN realizations with both variable and uniform mesh reso-
lution. For each network we consider two partitions: 1) The partition obtained on the mesh itself; we refer
to these partitions as P′(G) and 2) the partition induced from the partition on the graph representation of the
DFN P′(F). In our experimental results we use the graph partitioning package KaHIP [71] which among
other methods implements the Global path algorithm for matching, and flow-based methods for partition re-
finement. The quality of the partitions are judged by the cut (number of edges that link between partitions)
and the imbalance (the difference in sizes of the partitions). We also compare the impact of the partitions
on computational performance by solving porous media flow equations, which are Laplace’s equation under
steady state, and solve for the distribution of pressure within the network. Here, we compare the number of
FLOPS, the run time, and number of iterations to obtain the solution using a bi-conjugate gradient scheme
with a block Jacobi preconditioner using the PETSC [3] toolkit. The meshes are partitioned into 2, 4, 8, and
16 partitions.

Generation and meshing of the 30 fracture networks is performed using the DFNWORKS computational
suite [38]. A conforming Delaunay triangulation on each network is performed using the feature-rejection
algorithm for meshing (FRAM) [33]. The parallelized subsurface flow and reactive transport code PFLO-
TRAN [46] which uses PETSC is applied to obtain the solution to Laplace’s equation. The 30 test DFN
have fracture lengths that are drawn from a power-law distribution (a commonly observed property in the
natural world [6]). Each DFN is constructed in a cubic domain with sides of length 15 m and are composed
of circular fractures with uniformly random orientations and uniformly random centers. Fracture radii r [m]
are sampled from a truncated power law distribution with exponent α = 2.6 and upper and lower cutoffs
(ru = 5m; r0 = 1m), with probability density function of

pr(r) =
α

r0

(r/r0)
−1−α

1− (ru/r0)−α
. (17)

The choice of exponent and cut offs are selected such that no single fracture directly connects inflow and
outflow boundaries. Variability in hydraulic properties is included into the network by correlating fracture
apertures to their radii. We use a positively correlated power-law relationship b = γrβ where γ = 5.0×10−5

and β = 0.5 are dimensionless parameters.
On average the networks contain around 470 fractures. In the graph representation, there are around 470

nodes and 645 edges. When using a uniform mesh, there are, on average, one million nodes in the mesh
(997,221) and nearly two million triangles (1,964,988). The graph based on the uniform mesh is made up of
just under one million vertices and close to 3 million edges (2,962,302), on average. Thus, when partitioning
the graph based on the uniform mesh there are 2000 times more vertices than when partitioning the graph
based solely on the DFN topology. In the case of the variable mesh, there are around half a million nodes
(415,206) and three quarter million triangles (836,452), on average. Therefore the graph based on the variable
mesh is made up of just under half a million vertices and over one million edges (1,251,751), on average.
Thus, when partitioning graph based on the variable mesh there are about 1000 times more vertices than when
partitioning the graph based solely on the DFN topology.

4.2.1 Partition Quality

We begin by reporting the quality of the partitions and computation time. Table 1 reports the cut, imbalance,
and times for the uniform and variable mesh resolution. Reported values are the average of the thirty realiza-
tions. Columns correspond to each partition and row are sorted by the number of partitions k. For the uniform

12

mesh case, the lowest cuts are all obtained for P′(G) for all values of k. The cut values obtained for P′(F) are
about twice as large as those obtained using P′(G) but partitioning P′(G) take four orders of magnitude longer
than partitioning P′(F). The observed difference in cut values for P′(F) between uniform mesh and variable
mesh is due to the different vertex weights in the DFN-based graph, due to different meshes, which results in
slightly different partitions. In all cases, the imbalance values are about the same. Similar observations are
made in the variable mesh case, but there are a few subtle differences. The difference in the partition quality
in terms of the cut between P′(G) and P′(F) is substantially larger than in the uniform mesh resolution set.
In the case of k = 16, the cut for P′(F) is three times larger than for P′(G). This increase in the cut values is
a result of the fact that cuts in P′(F) can only occur along intersections in the fracture network mesh, where
the mesh is most refined and the highest number of nodes exists. In contrast, P′(G) is not constrained in this
manner and can therefore partition the mesh in region of the fracture where the mesh is coarse and fewer
edges exists.

All imbalance values are approximately the same.

Table 1: Partition Metrics

Uniform Mesh Variable Mesh
Metric k P′(G) P′(F) P′(G) P′(F)

Cut 2 404.73 671.67 237.20 676.37
4 941.87 1657.30 569.03 1632.00
8 1871.33 3412.50 1118.30 3403.23
16 3587.00 7503.43 2119.90 7637.17

Imbalance 2 0.03 0.02 0.02 0.02
4 0.04 0.04 0.04 0.04
8 0.05 0.04 0.05 0.04
16 0.05 0.05 0.05 0.05

Time [sec] 2 313.84 0.13 86.68 0.13
4 375.59 0.18 93.41 0.18
8 515.05 0.25 114.40 0.25
16 415.08 0.35 109.10 0.35

4.2.2 Computational Performance

Table 2 reports the number of GFlops, iterations required for the Krylov solver to converge, and run time
using the partitions on the 30 networks. For all values of k, the selected metrics for the partitions P′(G) and
P′(F) are roughly the same. An interesting observation is that even though the cuts of P′(F) are three times
larger than those of P′(G) in the case of the uniform mesh, the run times are only slightly larger. Due to
the fewer degrees of freedom in the variable mesh than the uniform mesh, the number of FLOPS, iterations,
and solve time are lower than those reported for the uniform mesh. In general, the FLOPS and number of
iterations are comparable between P′(G) and P′(F). However, the run times for P′(F) are slower than for
P′(G). This slight slow down is likely related to aforementioned issues with the constrained cut location of
P′(F).

13

Table 2: Computation Metrics

Uniform Mesh Variable Mesh
Metric k P′(G) P′(F) P′(G) P′(F)

GFlops 2 45.8 44.5 12.7 12.5
4 22.6 22.4 6.29 6.37
8 11.3 11.6 3.24 3.21
16 5.94 5.75 1.62 1.64

Iterations 2 1223.10 1180.20 804.03 788.13
4 1188.97 1175.33 784.97 796.27
8 1180.53 1211.60 806.60 799.90
16 1236.47 1195.17 800.87 812.83

Time [sec] 2 62.35 55.31 14.38 16.29
4 34.94 34.98 8.45 10.10
8 21.48 22.34 5.77 6.43
16 15.64 14.73 4.08 4.45

4.2.3 Total Computational Time

Table 3 reports the total time taken for both the uniform and variable mesh partitions. In all cases, the slowest
run times are reported for the P′(G), primarily due to the time required for the partition. Note this also
drastically affects the scaling of the total run time with number of processors. The fastest times are reported
for P′(F). Figure 5 also reports these values. The left subplot reports the times required using the mesh for
partitioning as shown in blue and DFN-based graph are shown in green; hatched bars are for the uniform
mesh and solid bars are the variable mesh. The right subplot is Log-Log plot of the total times corresponding
to the one on left. Notice that using the DFN-based partitioning demonstrates good strong scaling, the red
dotted line is ideal scaling, with increasing number of CPUs while the mesh based partitioning shows poor
scaling with total run time increasing with the number of CPUs.

Table 3: Total Time [sec]

Uniform Mesh Variable Mesh
k P′(G) P′(F) P′(G)/P′(F) P′(G) P′(F) P′(G)/P′(F)

2 376.19 55.44 3.74 101.06 16.42 6.15
4 410.53 35.16 6.64 101.86 10.28 9.90
8 536.53 22.59 11.48 120.17 6.68 17.98
16 430.72 15.07 19.97 113.11 4.80 23.56

4.2.4 Numerical Examples: Remarks

The examples lead to a few points that are worth discussing.

1. The time required to obtain the partitions using the graph based on the DFN topology is negligible
compared to the time required to obtain the partition of the mesh (DFN Delaunay triangulation) due to

14

Figure 5: Total time required for partitioning and flow solution. (Left) The times required using the mesh
for partitioning are shown in blue and DFN-based graph are in green, hatched bars are for the uniform mesh
and solid bars are the variable mesh. (Right) Log-Log plot of the total times corresponding to the one shown
on left.

the drastic difference in the size of the corresponding graphs.

2. In terms of cut, the quality of the partition projected down from the DFN onto the mesh depends upon
the adopted meshing strategy – uniform resolution or variable resolution. In the case of uniform mesh
resolution, the projected cuts are along the intersection lines that are the same resolution as the mesh
within the fractures. However, in the case of a variable resolution mesh the projection of the DFN
partition onto the mesh requires that the cuts be made along the intersections where mesh resolution is
finest. Due to this, the difference between the cut on P′(G) and P′(F) is larger than the uniform mesh
cases.

3. The quality of the partition influences the requires number of FLOPS, iterations of the Krylov solver,
and simulation time. There is little difference in the computational performance between the partitions
obtained on the mesh and DFN.

4. The total computational time was either dominated by the partitioning, in the case of mesh based
partitioning, or the solver, in the case of the DFN based partitioning. The difference between the
relative contribution of partitioning in the two methods are in stark contrast. In the case of the partition
based on the mesh, the partitioning was ten to one hundred times slower than the linear solve. In
the case of the partition based on the DFN, the partitioning phase was between ten to one hundred
times faster. Note that the solver times were generally similar to mesh based partitioning, with the
DFN based partition cases being slightly slower than the mesh based partition cases for the variable
resolution scenario. These observations result in nearly two orders of magnitude speed up for overall
computation when using the DFN based partition.

5. In standard multilevel graph partitioning, there is commonly a step in the uncoarsening phase where
local refinements are made to the projected solution from one level higher in the hierarchy. We also
applied this concept on the partition of the mesh obtained using the partition of the DFN as an initial

15

condition. While this slightly improved the cut of the final partition, more so in the variable mesh
resolution than for the uniform mesh resolution, it did not significantly affect the total run time (details
not included). These insignificant changes indicate that the partition obtained by using projection of
the DFN is of sufficient quality to not influence the solver run times.

5 Summary and Conclusions
DFN modeling is a powerful tool to improve our understanding of how the multi-scale structure of fractured
media influences flow and transport therein. However, the explicit representation of these fracture networks,
which contain length scales that range several orders of magnitude, is computationally demanding. As the
number of fractures in a DFN increases, so does the size of the mesh and the associated physical systems
to model physical phenomena within the DFN. This increase in computational requirements is compounded
by the inherent uncertainty in the subsurface that requires numerous realizations of a DFN to bound system
behavior. The combination of these facets requires that DFN models utilize efficient HPC methodologies to
accelerate system solving time. Load balancing and minimizing communication between processors are key
factors in such methodologies. Thus a cornerstone in the use of HPC for DFN simulations is a high-quality
partition of the mesh.

We presented a topologically-based method for mesh partitioning in DFN simulations that utilizes the
intrinsic multilevel nature of the DFN. The method combines multilevel graph partitioning with a coarse-
scale graph representation of the DFN to drastically improve the speed of obtaining a high-quality partition
of the DFN mesh. We partitioned the graph based on the DFN, rather than the mesh itself, and partition of
the mesh is obtained by projecting the DFN partition onto the mesh. The large difference in size between the
graph-based on the mesh and the graph-based on the DFN topology with the DFN based partition lead to a
mesh based partition that required a fraction of the time.

We demonstrated the utility of the method by applying it to 30 three-dimensional discrete fracture net-
works composed of approximately five hundred fractures apiece. We also consider two different DFN mesh-
ing strategies. In the first, the mesh has uniform resolution and in the second the resolution of the mesh
depends on the distance of the vertex on the fracture from the nearest intersection, with the mesh being finer
close to the intersection. We compare the proposed method to standard mesh-based partitioning in terms
of graph-based metrics (cut, imbalance, time to obtain the partition), computational-based metrics (FLOPS,
iterations, solver time), and total run time. In terms of the graph-based metrics, the results obtained using the
DFN-based partition are comparable to those obtained using the mesh-based partition, with the exception of
the time required for the partition, which is several orders of magnitude faster in the case of the DFN-based
partition. In terms of the computation-based metrics, e.g., solver time and FLOPS, the results are similar as
well, depending slightly on the adopted meshing scheme. When combined, the DFN-based partition is there-
fore several orders of magnitude faster than the mesh-based partition. The results presented here indicate that
using the proposed method would reduce the overall time for a single DFN realization simulation and thus
allowing for an increase in the number of realizations that can be performed at a fixed computational cost.

The intrinsic multilevel structure of a DFN provides an elegant methodology for efficient and high-quality
partitioning of the mesh for computational physics solutions. Multilevel graph partitioning coarsens the
mesh until a graph that can be readily partitioned is found. Due to the strong block structure of the mesh
and few off diagonal terms, the adopted graph representation is a good proxy for the coarsened version of
the computational mesh. Moreover, the proposed methodology for hijacking multilevel graph partitioning
could be applied to any system that exhibits such a structure and is thus amenable to a coarse-scale graph
representation.

16

Acknowledgments
This work was funded by the Department of Energy at Los Alamos National Laboratory through the Laboratory-
Directed Research and Development Program LANL-LDRD grant #20170103DR. J.D.H. acknowledges sup-
port from the LANL LDRD program office Grant Number # 20180621ECR. This work was supported in part
by the National Science Foundation under the Grant No. 1522751.

References
[1] Garrett Aldrich, Jeffrey D Hyman, Satish Karra, Carl W Gable, Nataliia Makedonska, Hari

Viswanathan, Jonathan Woodring, and Bernd Hamann. Analysis and visualization of discrete frac-
ture networks using a flow topology graph. IEEE transactions on visualization and computer graphics,
23(8):1896–1909, 2017.

[2] Christian André Andresen, Alex Hansen, Romain Le Goc, Philippe Davy, and Sigmund Mongstad
Hope. Topology of fracture networks. Frontiers in Physics, 1:Art–7, 2013.

[3] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris Buschelman, LD Dalcin,
Victor Eijkhout, W Gropp, Dinesh Kaushik, et al. PETSC users manual revision 3.8. Technical report,
Argonne National Lab.(ANL), Argonne, IL (United States), 2017.

[4] Stefano Berrone, Sandra Pieraccini, and Stefano Scialo. A pde-constrained optimization formulation
for discrete fracture network flows. SIAM J. Sci. Comput., 35(2):B487–B510, 2013.

[5] Stefano Berrone, Sandra Pieraccini, Stefano Scialò, and Fabio Vicini. A parallel solver for large scale
dfn flow simulations. SIAM J. Sci. Comput., 37(3):C285–C306, 2015.

[6] Eric Bonnet, Olivier Bour, Noelle E Odling, Philippe Davy, Ian Main, Patience Cowie, and Brian
Berkowitz. Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3):347–383,
2001.

[7] Achi Brandt and Dorit Ron. Multigrid solvers and multilevel optimization strategies. In Multilevel
optimization in VLSICAD, pages 1–69. Springer, 2003.

[8] Thang Nguyen Bui and Curt Jones. A heuristic for reducing fill-in in sparse matrix factorization. Tech-
nical report, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (United States),
1993.

[9] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances
in graph partitioning. In Algorithm Engineering, pages 117–158. Springer, 2016.

[10] M. C. Cacas, E. Ledoux, G. De Marsily, A. Barbreau, P. Calmels, B. Gaillard, and R. Margritta. Model-
ing fracture flow with a stochastic discrete fracture network: Calibration and validation: 2. The transport
model. Water Resour. Res., 26(3):491–500, 1990.

[11] C-K Cheng and Y-CA Wei. An improved two-way partitioning algorithm with stable performance (vlsi).
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(12):1502–1511,
1991.

[12] Cédric Chevalier and Ilya Safro. Comparison of coarsening schemes for multilevel graph partitioning.
In International Conference on Learning and Intelligent Optimization, pages 191–205. Springer, 2009.

17

[13] Philippe Davy, Romain Le Goc, and Caroline Darcel. A model of fracture nucleation, growth and arrest,
and consequences for fracture density and scaling. J. Geophys. Res.-Sol. Ea., 118(4):1393–1407, 2013.

[14] J-R de Dreuzy, C Darcel, P Davy, and O Bour. Influence of spatial correlation of fracture centers on the
permeability of two-dimensional fracture networks following a power law length distribution. Water
Resour. Res., 40(1), 2004.

[15] J.-R. de Dreuzy, Y. Méheust, and G. Pichot. Influence of fracture scale heterogeneity on the flow
properties of three-dimensional discrete fracture networks. J. Geophys. Res.-Sol. Ea., 117(B11), 2012.

[16] WS Dershowitz and C Fidelibus. Derivation of equivalent pipe network analogues for three-dimensional
discrete fracture networks by the boundary element method. Water Rescour. Res., 35(9):2685–2691,
1999.

[17] J Erhel, J-R de Dreuzy, and B Poirriez. Flow simulation in three-dimensional discrete fracture networks.
SIAM J. Sci. Comput., 31(4):2688–2705, 2009.

[18] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods. Handbook of numeri-
cal analysis, 7:713–1018, 2000.

[19] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic for improving network partitions.
In Papers on Twenty-five years of electronic design automation, pages 241–247. ACM, 1988.

[20] Andrew Frampton and V Cvetkovic. Inference of field-scale fracture transmissivities in crystalline rock
using flow log measurements. Water Resour. Res., 46(11), 2010.

[21] Jörn Garbers, Hans Jurgen Promel, and Angelika Steger. Finding clusters in vlsi circuits. In 1990 IEEE
International Conference on Computer-Aided Design, pages 520–523. IEEE, 1990.

[22] Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified np-complete problems. In
Proceedings of the sixth annual ACM symposium on Theory of computing, pages 47–63. ACM, 1974.

[23] HH Gerke and M Th Van Genuchten. A dual-porosity model for simulating the preferential movement
of water and solutes in structured porous media. Water Rescour. Res., 29(2):305–319, 1993.

[24] Teklu Hadgu, Satish Karra, Elena Kalinina, Nataliia Makedonska, Jeffrey D. Hyman, Katherine Klise,
Hari S. Viswanathan, and Yifeng Wang. A comparative study of discrete fracture network and equivalent
continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste
repository in crystalline host rock. Journal of Hydrology, 553:59 – 70, 2017.

[25] Lars Hagen and Andrew B Kahng. A new approach to effective circuit clustering. In Proceedings of the
1992 IEEE/ACM international conference on Computer-aided design, pages 422–427. IEEE Computer
Society Press, 1992.

[26] William W Hager, James T Hungerford, and Ilya Safro. A multilevel bilinear programming algorithm
for the vertex separator problem. Computational Optimization and Applications, 69(1):189–223, 2018.

[27] Bruce Hendrickson and Robert Leland. A multi-level algorithm for partitioning graphs. 1995.

[28] Sigmund Mongstad Hope, Philippe Davy, Julien Maillot, Romain Le Goc, and Alex Hansen. Topologi-
cal impact of constrained fracture growth. Frontiers in Physics, 3:75, 2015.

[29] YF Hu and Jennifer A Scott. A multilevel algorithm for wavefront reduction. SIAM Journal on Scientific
Computing, 23(4):1352–1375, 2001.

18

[30] O Huseby, JF Thovert, and PM Adler. Geometry and topology of fracture systems. J. Phys A-Math
Gen, 30(5):1415, 1997.

[31] Laurent Hyafil and Ronald L Rivest. Graph partitioning and constructing optimal decision trees are
polynomial complete problems. IRIA. Laboratoire de Recherche en Informatique et Automatique, 1973.

[32] J. D. Hyman, M. Dentz, A. Hagberg, and P. Kang. Linking structural and transport properties in three-
dimensional fracture networks. J. Geophys. Res. Sol. Ea., 2019.

[33] J. D. Hyman, C. W. Gable, S. L. Painter, and N. Makedonska. Conforming Delaunay triangulation of
stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for
meshing strategy. SIAM J. Sci. Comput., 36(4):A1871–A1894, 2014.

[34] J. D. Hyman, A. Hagberg, G. Srinivasan, J. Mohd-Yusof, and H. Viswanathan. Predictions of first pas-
sage times in sparse discrete fracture networks using graph-based reductions. Phys. Rev. E, 96:013304,
Jul 2017.

[35] J. D. Hyman and J. Jiménez-Martı́nez. Dispersion and mixing in three-dimensional discrete fracture net-
works: Nonlinear interplay between structural and hydraulic heterogeneity. Water Resources Research,
54(5):3243–3258, 2018.

[36] JD Hyman, J Jiménez-Martı́nez, HS Viswanathan, JW Carey, ML Porter, E Rougier, S Karra, Q Kang,
L Frash, L Chen, et al. Understanding hydraulic fracturing: a multi-scale problem. Phil. Trans. R. Soc.
A, 374(2078):20150426, 2016.

[37] Jeffrey D Hyman, Aric Hagberg, Dave Osthus, Shriram Srinivasan, Hari Viswanathan, and Gowri Srini-
vasan. Identifying backbones in three-dimensional discrete fracture networks: A bipartite graph-based
approach. Multiscale Modeling & Simulation, 16(4):1948–1968, 2018.

[38] Jeffrey D Hyman, Satish Karra, Nataliia Makedonska, Carl W Gable, Scott L Painter, and Hari S
Viswanathan. dfnWorks: A discrete fracture network framework for modeling subsurface flow and
transport. Comput. Geosci., 84:10–19, 2015.

[39] C. Jenkins, A. Chadwick, and S. D Hovorka. The state of the art in monitoring and verification—ten
years on. Int. J. Greenh. Gas. Con., 40:312–349, 2015.

[40] Steven Joyce, Lee Hartley, David Applegate, Jaap Hoek, and Peter Jackson. Multi-scale groundwater
flow modeling during temperate climate conditions for the safety assessment of the proposed high-level
nuclear waste repository site at Forsmark, Sweden. Hydrogeol. J., 22(6):1233–1249, 2014.

[41] S Karra, N Makedonska, HS Viswanathan, SL Painter, and JD Hyman. Effect of advective flow in
fractures and matrix diffusion on natural gas production. Water Resour. Res., 51(10):8646–8657, 2015.

[42] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

[43] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System
Technical Journal, 49(2):291–307, Feb 1970.

[44] Bernard H Kueper and David B McWhorter. The behavior of dense, nonaqueous phase liquids in
fractured clay and rock. Ground Water, 29(5):716–728, 1991.

[45] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to parallel computing:
design and analysis of algorithms, volume 400. Benjamin/Cummings Redwood City, 1994.

19

[46] P.C. Lichtner, G.E. Hammond, C. Lu, S. Karra, G. Bisht, B. Andre, R.T. Mills, and J. Kumar. PFLO-
TRAN user manual: A massively parallel reactive flow and transport model for describing surface and
subsurface processes. Technical report, (Report No.: LA-UR-15-20403) Los Alamos National Labora-
tory, 2015.

[47] Peter Lichtner and Satish Karra. Modeling multiscale-multiphase-multicomponent reactive flows in
porous media: Application to co2 sequestration and enhanced geothermal energy using PFLOTRAN. In
Al-Khoury, R., Bundschuh, J. (eds.) Computational Models for CO2 Geo-sequestration & Compressed
Air Energy Storage (http://www.crcnetbase.com/doi/pdfplus/10), pages 81–136. CRC Press, 2014.

[48] JCS Long, JS Remer, CR Wilson, and PA Witherspoon. Porous media equivalents for networks of
discontinuous fractures. Water Resour. Res, 18(3):645–658, 1982.

[49] Julien Maillot, Philippe Davy, Romain Le Goc, Caroline Darcel, and Jean-Raynald De Dreuzy. Connec-
tivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture
network models. Water Resour. Res., 52(11):8526–8545, 2016.

[50] N. Makedonska, J. D. D Hyman, S. Karra, S. L Painter, C. W. W Gable, and H. S Viswanathan. Evalu-
ating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks.
Adv. Water Resour., 94:486–497, 2016.

[51] Nashat Mansour, Ravi Ponnusamy, A Choudhary, and Geoffrey C Fox. Graph contraction for physical
optimization methods: a quality-cost tradeoff for mapping data on parallel computers. In Proceedings
of the 7th international conference on Supercomputing, pages 1–10. ACM, 1993.

[52] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. A new diffusion-based multilevel
algorithm for computing graph partitions. Journal of Parallel and Distributed Computing, 69(9):750–
761, 2009.

[53] RS Middleton, JW Carey, RP Currier, JD Hyman, Q Kang, S Karra, J Jiménez-Martı́nez, ML Porter,
and HS Viswanathan. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for
supercritical CO2. Appl. Energ., 147:500–509, 2015.

[54] Michael Murphy, David M Mount, and Carl W Gable. A point-placement strategy for conform-
ing Delaunay tetrahedralization. International Journal of Computational Geometry & Applications,
11(06):669–682, 2001.

[55] H. Mustapha and K. Mustapha. A new approach to simulating flow in discrete fracture networks with
an optimized mesh. SIAM J. Sci. Comput., 29:1439, 2007.

[56] Hussein Mustapha, Roussos Dimitrakopoulos, Thomas Graf, and Abbas Firoozabadi. An efficient
method for discretizing 3d fractured media for subsurface flow and transport simulations. International
Journal for Numerical Methods in Fluids, 67(5):651–670, 2011.

[57] National Research Council. Rock fractures and fluid flow: contemporary understanding and applica-
tions. National Academy Press, 1996.

[58] Shlomo P Neuman and Joseph S Depner. Use of variable-scale pressure test data to estimate the log
hydraulic conductivity covariance and dispersivity of fractured granites near oracle, arizona. J. Hydrol.,
102(1-4):475–501, 1988.

[59] S.P. Neuman. Trends, prospects and challenges in quantifying flow and transport through fractured
rocks. Hydrogeol. J., 13(1):124–147, 2005.

20

http://www.crcnetbase.com/doi/pdfplus/10

[60] A. Wille Nordqvist, Y. W. Tsang, C. F. Tsang, Björn Dverstorp, and Johan Andersson. A variable
aperture fracture network model for flow and transport in fractured rocks. Water Resources Research,
28(6):1703–1713, 1992.

[61] G Pichot, J Erhel, and J-R de Dreuzy. A mixed hybrid mortar method for solving flow in discrete
fracture networks. Appl. Anal., 89(10):1629–1643, 2010.

[62] G Pichot, J Erhel, and J-R de Dreuzy. A generalized mixed hybrid mortar method for solving flow in
stochastic discrete fracture networks. SIAM J. Sci. Comput., 34(1):B86–B105, 2012.

[63] Karsten Pruess, Curtis M Oldenburg, and GJ Moridis. Tough2 user’s guide version 2. 1999.

[64] M Cecilia Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques.
International journal for numerical methods in Engineering, 20(4):745–756, 1984.

[65] Maria-Cecilia Rivara. Mesh refinement processes based on the generalized bisection of simplices. SIAM
Journal on Numerical Analysis, 21(3):604–613, 1984.

[66] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph organization.
Multiscale Modeling & Simulation, 9(1):407–423, 2011.

[67] Ilya Safro, Dorit Ron, and Achi Brandt. Graph minimum linear arrangement by multilevel weighted
edge contractions. Journal of Algorithms, 60(1):24–41, 2006.

[68] Ilya Safro, Dorit Ron, and Achi Brandt. Multilevel algorithms for linear ordering problems. Journal of
Experimental Algorithmics (JEA), 13:4, 2009.

[69] Ilya Safro, Peter Sanders, and Christian Schulz. Advanced coarsening schemes for graph partitioning.
Journal of Experimental Algorithmics (JEA), 19:2–2, 2015.

[70] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algorithms. In European
Symposium on Algorithms, pages 469–480. Springer, 2011.

[71] Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph partitioning. In
International Symposium on Experimental Algorithms, pages 164–175. Springer, 2013.

[72] Gowri Srinivasan, Jeffrey D Hyman, David A Osthus, Bryan A Moore, Daniel O’Malley, Satish Karra,
Esteban Rougier, Aric A Hagberg, Abigail Hunter, and Hari S Viswanathan. Quantifying topological un-
certainty in fractured systems using graph theory and machine learning. Scientific reports, 8(1):11665,
2018.

[73] YW Tsang, CF Tsang, FV Hale, and B Dverstorp. Tracer transport in a stochastic continuum model of
fractured media. Water Resour. Res, 32(10):3077–3092, 1996.

[74] Manuel Valera, Zhengyang Guo, Priscilla Kelly, Sean Matz, Vito Adrian Cantu, Allon G. Percus, Jef-
frey D. Hyman, Gowri Srinivasan, and Hari S. Viswanathan. Machine learning for graph-based repre-
sentations of three-dimensional discrete fracture networks. Computational Geosciences, Jan 2018.

[75] JE VanderKwaak and EA Sudicky. Dissolution of non-aqueous-phase liquids and aqueous-phase con-
taminant transport in discretely-fractured porous media. J. Contam. Hydrol., 23(1-2):45–68, 1996.

[76] H. S. Viswanathan, Hyman J.D., S. Karra, D. O’Malley, S. Srinivasan, A. Hagberg, and G. Srinivasan.
Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resour.
Res., 2018.

21

[77] Chris Walshaw and Mark Cross. Mesh partitioning: a multilevel balancing and refinement algorithm.
SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

[78] Robert W Zimmerman, Gang Chen, Teklu Hadgu, and Gudmundur S Bodvarsson. A numerical dual-
porosity model with semianalytical treatment of fracture/matrix flow. Water Resour. Res, 29(7):2127–
2137, 1993.

[79] G Zyvoloski. FEHM: A control volume finite element code for simulating subsurface multi-phase
multi-fluid heat and mass transfer. Los Alamos Unclassified Report LA-UR-07-3359, 2007.

22

	1 Introduction
	2 Discrete Fracture Networks
	2.1 Meshing Strategy FRAM

	3 Graph Partitioning
	3.1 k-way Graph Partitioning
	3.2 Multilevel Graph Partitioning

	4 DFN-based Graph Partitioning
	4.1 Multilevel DFN-based Graph Partitioning
	4.2 Numerical Examples
	4.2.1 Partition Quality
	4.2.2 Computational Performance
	4.2.3 Total Computational Time
	4.2.4 Numerical Examples: Remarks

	5 Summary and Conclusions

