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In an effort to better understand complex biological systems, the game “Connect Four” is generalized to be a

stochastic contest between two teams. Members of each team typically possess “sensors” that provide some

information on the nearby deployment of the pieces. Sensing something interesting increases the probability that

a given team member will move. Simulations show the relative strengths of various sensor weightings and

thereby cast some light on the use of sensors in more general complex autonomous systems. © 2003 Wiley

Periodicals, Inc.
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his study is motivated by the desire to illuminate com-

plex biological activities such as those of the immune

system and the metabolic system. Our immune system
is pitted against an ever-changing assault by myriads of
rapidly evolving pathogens. Our metabolic system is a mul-
tipurpose chemical factory that continually adjusts its out-
put in response to shifting conditions of external and inter-
nal environments. Both systems are distributed in two
senses (Terms being defined are shown in italic). Distrib-
uted systems are composed of many myriads of agents (a
trillion cells in the immune system, untold enzyme mole-
cules in the metabolic system), so that “responsibility” for
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system actions is widely distributed through a large popu-
lation. Moreover, the agents of the system are distributed in
space. The numerous and spatially dispersed agents act in
an autonomous fashion, in that there is no commanding
“boss.”

Researchers are beginning to examine the overall or-
ganizational principles of the immune and metabolic sys-
tems. Such examinations have obvious scientific and
medical motivations, but they also serve the more general
purpose of revealing design principles of large-scale au-
tonomous systems that have undergone eons of evolution
and therefore presumably have become efficient in some
sense or senses. These principles may well be relevant
to other distributed autonomous systems, for example
those of certain program architectures in artificial intel-
ligence [1].
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The successively numbered circles represent successive plays in a
game of Connect Four. White wins on the 11th move by constructing
four pieces in a (diagonal) row.

GO0

CONSTRUCTING A GAME TO GIVE INSIGHTS ON
COMPLEX SYSTEMS

One standard research strategy is to construct “toy models”
of complex phenomena. The terminology has significance;
“toys” are fun to play with, and one can learn a lot from
playing with good toys. Here we illustrate the idea that a
certain kind of toy, a game, can be the focus of investiga-
tions that are interesting in themselves and also can per-
haps lead to deeper understanding of the behavior of com-
plex systems.

The game that we have chosen is “Connect Four,” a
generalization of tic-tac-toe. White and black checkers are
dropped into a vertical frame. The checkers land on the
bottom-most empty space in the column wherein they are
dropped. Once a checker is dropped in place it is dormant;
it never moves. The game ends when a player succeeds in
constructing a line of checkers—vertical, horizontal, or di-
agonal—that is four checkers long (Figure 1). Also check a
search engine for references; under “connect four’ game
Google lists more than 14,000 but, for example, all the first
10 references are relevant.

Ordinary games such as Connect Four and checkers pit
two intelligent players against one another. To serve as
biological models, such games must be generalized so that
they represent confrontations between two multiagent en-
tities, such as the struggle between the immune system and
pathogens. The opposing entities should be distributed au-
tonomous systems. Thus the individual agents should not
be subject to the orders of an overarching intelligence, but
rather should try to make a sensible move by gauging the
state of play in their locality. Each multiagent entity (which
we will call a team), should be much more like a partially
motivated rabble than a perfectly disciplined army of fight-
ing sages. Information is fragmentary and agents have lim-
ited cognitive abilities; teams are myopic mobs of medioc-
rities. Though not without primitive wisdom, an ill-
informed mediocrity will not act predictably in the face of

complex challenges, so that “decisions” on what move to
make should be regarded as stochastic.

These thoughts lead to the following version of Team
Connect Four (TC4). The playing field consists of N columns.
There are N team members on each team, one of each color
per column. The white team has the first move. With the aid
of various sensors of local conditions, the white team mem-
ber wi at the top of the ith unfilled column computes its
activity a,,. By normalizing the various a,, values, a prob-
ability P,,; for a white team member to move is calculated as
follows, where index j runs over all unfilled columns:

Pwi = awi/|: 2 awj:| . (1)
i

The white team moves according to these probabilities.
Then the black and white teams continue to move alter-
nately according to such rules. To avoid edge affects, in all
simulations we wrapped the game board around a cylinder,
so that the leftmost column was regarded as adjacent to the
rightmost column.

This article is an initial case study of various versions of
TC4, as examples of collective stochastic team games. We
hope to convince the reader that such games are of interest
in themselves, forming types of “artificial life” that are fun to
design and to simulate; that they suggest mathematical
challenges; and that they can shed light on the behavior of
“real” distributed autonomous systems, such as those found
in biology.

PURELY RANDOM STRATEGIES

The “control” game of TC4, the simplest version against
which others should be compared, has the property that
both sides move randomly. But in the present context
“move randomly” can sensibly be defined in the following
two ways. In TC4-D1 (D1 means “definitely 1”), the two
sides alternate in making a single move; the choice of col-
umn is made according to the probabilities of (1). In TC4-
El, (1) is interpreted as the probability that white moves in
column i. One move per turn is expected (E1) but in any
given turn there may be no move, or there may be more
than one.

The first simulations that we shall report used a 5 X 6
board, 5 rows and 6 columns, when both teams used the
same random strategy. It is anticipated that going first is
advantageous. Indeed, in TC4-E1, simulation of 10* games
gave 0.61 as the fraction F, of wins by team one (the team
that moves first). One would expect the advantage of going
first would decrease with board size. Indeed, we found that
F, = 0.57 for board sizes of 10 X 10 (10* simulations),
whereas F;, = 0.51 for 100 X 100 boards (500 simulations).

Ties are possible (the board is filled and neither side has
four in a row), but we found them very unlikely. For exam-
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ple, only 10 of 10,000 games ended in ties in the 5 X 6
simulation of TC4-E1. The number of ties will thus not be
reported henceforth.

Upon examining our simulation results, those already
obtained and those to be presented, it is natural to ask
whether one can trust observed trends and numerical esti-
mates of various probabilities. In order to estimate their
accuracy consider our simulations as random processes
that generate “indicator variables”: 1 when the first team
wins, and 0 when the first team loses. Let p be the fixed
probability that the first team wins. Then in N games the
variance & is given by p(1 — p)/N [2, p. 325]. The team 1 win
fraction, F,, is the observed value of p. We can thus take
F,(1 — F))/N as a simple estimate of the variance. Taking
F, = 1/2 gives the maximum value of this estimate, and
indeed often F, is close to 1/2. Thus we use the formula 6 =
1/2V'N as a rough but sufficiently accurate estimate of the
standard deviation 8. When N = 10%, then § = 0.005; N = 10®
implies 6 = 0.02. These estimated standard deviations are
typically small compared to the estimated means, so that
indeed one can generally trust the trends that the simula-
tions display. In particular, there is statistical significance to
our simulation results (above) that F, is a decreasing func-
tion of board size for TC4-E1.

The reader is invited to test his/her intuition by guessing
the superior strategy, TC4-D1 or TC4-El.... Our simula-
tions showed a clear advantage to strategy E1. (In reporting
our results we will use the notation [q, b] to describe a game
where the first team follows procedure a and the second
follows procedure b.) In 10,000 repetitions of [TC4-D1, TC4-
El] we found F; = 0.39, whereas in 10,000 repetitions of
[TC4-E1, TC4-D1] the result was F, = 0.72.

To try to understand why E1 is superior to D1, consider
the following conclusions from the binomial distribution.
With N = 10 and equal probabilities p = 0.1 for a move in
each of the 10 columns (strategy E1), one obtains Z = 0.35,
U=039, T=0.19, 6 = 0.06, and F = 0.01 for the proba-
bilities, respectively, of zero, one (Unity), two, three, and
four moves. With probability T = 0.19, strategy E1 permits
two moves in a row, but this is much less than the corre-
sponding probability Z = 0.35 for this occurrence of two
successive moves with strategy D1. Only with probability
6 + F = 0.07 is there an advantage to strategy El. For
intelligent players of ordinary Connect Four, three or four
moves in a row is enough to yield a win under almost all
circumstances, but of course this is not the case in TC4
when teams choose their moves randomly. Nonetheless, the
simulations show that the rather rare possibility of execut-
ing three or four moves in a row gives decisive advantage to
strategy E1.

Strategy D1 is closer to that of the standard game of TC4
(each side makes one move at a time). However, this strat-
egy requires coordination between team members, so that
only one member will move during each turn. The intricate

subject of team coordination must be left to the future;
accordingly, from now on we will only consider E1 as our
control random strategy.

ADVANTAGES OF A SINGLE ENVIRONMENTAL SENSOR
Metabolic enzymes have regulator sites, often several of
them, to which key metabolites bind. Such binding typically
changes the shape of the enzyme and thereby alters its
catalytic activity. The immune system employs numerous
cellular receptors that bind various molecules; such binding
events give information on the state of the immune system’s
progress toward its numerous overlapping and conflicting
“goals” and thereby lead to alteration and improvement of
immune performance [6]. This illustrates the key role of
sensors in modulating system performance. The issues here
include “how significantly can sensing local partial informa-
tion contribute to improved performance” and “how can
the system best coordinate information from a variety of
different sensors.” Such considerations led us to make some
explorations of the role of sensors in TC4.

Let us first examine the role of a primitive simple sensor
s. This allows a potential mover in a given column to deter-
mine whether or not there is a piece of the same color at the
top of the dormant column below. If there is, then the
default activity of that mover (of index i) in the absence of
information, a.,, is multiplied by a weighting factor fs to
give activity a,;:

ay; = axpfs (*=w or b). (2)

Figure 2 shows simulations wherein each member of
team one possesses a simple sensor, which weights a pos-
sible activity more heavily, according to (2), when a dor-
mant piece of the same color is sensed. Team two follows
the random strategy El. As f, ranges from 1 to 100, the
fraction of wins by team one continually increases, albeit in
a saturating fashion. Evidentally, some information is better
than none.

We now let teams contend where each has a different
sensor. In addition to the simple sensor s, we also consider
a simple-left sensor sL. A potential mover with sensor sL can
detect whether or not there is a dormant piece of the same
color at the top of the column immediately to the left of the
potential mover. It is to be expected that sensor sL provides
less relevant information than sensor s.

Let us now examine the influence of the weights f; and
[ on the results of TC4-E1 (each team has one expected
move). Suppose that team one possesses sensor s and team
two possesses sensor sL. (We denote this game by [s, sL]). It
is seen from Figure 3, graph 1, that in this situation, for the
range of parameters tested and for fixed f;;, team one has an
advantage that becomes more and more appreciable the
larger is f;. The result makes sense: as was illustrated in
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Fraction F, of wins in 10,000 10 X 10 games of team one, who possess a “simple sensor s.” Such a sensor weights a possible move more heavily by
a factor of £, (horizontal axis), according to (2), when a dormant piece of the same color is sensed. Team two follows the random strategy E1.

Figure 2 for a completely ignorant opponent (who moves
randomly), also here with a comparatively ignorant oppo-
nent the more weight that is given to a useful sensor, the
better. The usefulness of sensor s is also shown in graph 3,
where both teams possess this sensor; strong weighting of
sensor s for team one greatly amplifies the fraction of wins
by team one. Direct evidence for the superiority of sensor s
compared to sensor sL is obtained by comparing graph 1
and graph 2. When team one possesses a heavily weighted
sensor s, its advantage is markedly larger compared with the
case when team one possesses a heavily weighted sensor sL.
Additional evidence is provided by a simulation where team
one has weights f;; = 20 and f; = 2 for sensors sL and s,
while team two has the reversed weighting f; = 20 and f;; =
2. In spite of going first, team one only wins about half the
games (not shown).

In Figure 4 it is seen that for fixed f; in team one, the
advantage of team one decreases and hence the advantage
of team two increases, as f;; increases. Thus it is helpful for
a team member to increase the weight even of inferior
information if that is the only information that is available.

Let us now consider a sensor that can provide two pieces
of information, not just one as heretofore. Accordingly, sup-
pose that a team member can detect the topmost dormant
piece in two locations, the column of the member and the
column to the left of the member’s column. We use a

subscript 1 when a member detects its own color and a 0
otherwise, with the first subscript corresponding to the col-
umn of the member. The corresponding weighting factors
are taken to be fy, = 1, fi; = 100, fi, = fo; = S, where sis a
parameter. Figure 5 provides simulation results for a contest
between a randomly playing team one (strategy E1) and a
second team with two-bit sensors, as above. It is seen that
the fraction of wins by team 2 (F,) is an decreasing function
of s, i.e. stronger weighting of the comparatively insignifi-
cant sensory data 01 or 10 (compared to 11) leads to poorer
results.

COORDINATING TWO SENSORS

An important conclusion was obtained by running a num-
ber of simulations with various pairs of weights f; and f;,
when each team possesses both the inferior sensor sL and
the superior sensor s (Figure 6). A representative result is the
following. Suppose that for team one the weights are fixed at
fu = 7, f, = 3. This amounts to cutting the depicted surface
by a plane perpendicular to the x-axis at x = 3. For team
two, consider the weights f;, = y, f; = 10 — y, for y = 1,
2,...,10. The fraction of wins by team two has a maximum
when yis about 7. Given the errors inherent in the stochas-
tic simulations, the maximum could also occur for y = 6 or
8, but the presence of a maximum seems unmistakable for
all fixed values of f;; between 3 and 10 (inclusive). Thus this
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Fraction of wins for team 2, who possess sensors that can provide two bits of information. Team one: random play E1. An increase in the parameter s
corresponds to heavier weighting of relatively insignificant information. 10 X 10 board; 5000 games per point. See text.
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set of simulations demonstrates the intuitively reasonable
property that when a team member or other agent pos-
sesses more than one sensor, there is expected to be an
optimal relative weighting of the (partial) information ob-
tained from the sensors.

Fraction F, of wins by team two when both teams possess both sensors s and sL. For team 1 the weighting factors are £, =
two, the weighting factorsare f;, = y, f, = 10 — y:x, ¥y = 1,2,...,10. 10 X 10 board; 5000 games per point.

The “representative result” mentioned in the previous
paragraph is intuitively understandable. Figure 6 shows an
optimum y in the weighting f;, = 10 — y for maximizing the
win fraction F, for the (second) team member with the
superior sensor s. Too small a weight f, means that the

X fy = 10 — x for team
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information from sensor s is underutilized. Too large a
weight f, means that the information from sensor sL is
underutilized. (Think of the extreme situation of a relatively
enormous weight for sensor s.) Consider now y fixed and x
varying. There is expected to be an optimum x, which max-
imizes the win probability of the team with sensors sL. But
this is the first team; thus Figure 6 shows as expected a
minimum for the win probability F, of the second team.

AN ASYMMETRIC GAME

To the best of our knowledge all standard games are sym-
metrical, i.e., they have the property that the “pieces” and
rules for both sides are the same. (There is the somewhat
trivial exception of handicaps, when a superior player ac-
cepts an initial disadvantage in the number of his pieces.) A
symmetrical game is appropriate as a model, say, of the
competition between differently mutated organisms in a
given species. But the “game” between pathogens and im-
mune systems is not symmetrical, for the rules by which
viruses and bacteria act are very different from the rules that
govern lymphocytes and macrophages.

It is a challenge to try to construct interesting asymmet-
ric games. In fact, we have already seen an example of such
a game, when we pitted the two random strategies (D1 and
El) against one another. Here the procedures for the two
sides differ, but the “aim of the game,” construct “four in a
row,” is the same for both sides. One way to modify classical
Connect Four so that the game’s aim differs between the
two sides is to regard the object of the game as constructing
different sets of patterns for different sides. Player one, for
example, wins when either a vertical or horizontal line of
four of his pieces is constructed. Player two wins upon
construction of a diagonal four-in-a-row or a square of four
pieces.

A topic for future study is designing and simulating
asymmetric versions of Four in a Row that can mimic var-
ious essential aspects of the conflict between the immune
system and pathogens. Here is a tentative example. Team
one, representing the pathogens, goes first and tries to
“win” by constructing a row of four team one members. We
think of the task of building this structure as analogous to
the pathogens “goal” of constructing an entity, for example,
a sneeze, that can propagate them to a new host. Team two,
representing the immune system, can kill, i.e., cause the
removal of, pathogens of team one, if 2 team two members
eventually land on a dormant column surmounted by one
or more members of team one. If this occurs, all the team
one members in the column are removed. The resulting
“collapse” leaves a column that is solely composed of team
two members. Pathogens of team one can kill a single team
two member at the top of a column if a team one member
lands on that column.

Team two (the immune system) wins if all of team one
are killed or if the board is filled without a win by team one

(pathogens survive but do not propagate). In this game, the
asymmetry in killing ability reflects the relative simplicity by
which a single pathogen can do damage, compared with the
fact that, at least for the adaptive immune system, coordi-
nation among different types of effectors is required for the
immune system to dispose of pathogens.

In running the game just described, we found that the
pathogens always won. We then made life progressively
more difficult for the pathogens, by requiring construction
of X-in-a-row for team one to win. Figure 7 shows the
results. For X = 14, in a 20 X 20 board, the asymmetric game
provides a fairly even match between pathogens and the
immune system. There is thus a “proof of principle” that
evenly matched asymmetric games can be designed by
quantitative manipulations.

We have made an initial step toward inventing games
that exemplify aspects of the conflict between pathogens
and the immune system. Further steps would involve the
introduction of sensors, analogously to what has been done
above. An important additional step is to introduce propa-
gation to other members of the same team of the informa-
tion gained by one member’s sensor—and disturbance of
this propagation by the opposing team (pathogens sabotage
the signals of their host’s immune system).

DISCUSSION

We have examined a novel class of games, which are of
interest in themselves and which also illustrate matters of
concern in the study of distributed autonomous systems.
Classically, there seem to be two main types of games. The
first type is games in the sense of von Neumann and Mor-
genstern, games that feature a payoff matrix and that are
normally analyzed under the assumption that the opponent
will make his/her best possible move. Such games are not
considered here, although there is relevant, important and
interesting research concerning interaction games that com-
bine incomplete information, local interaction, and ran-
domness [3].

A second classical type of games, combinatorial games,
have perfect information, no chance moves, and an out-
come (win, lose, draw). See Fraenkel [4] for a brief survey
and an extensive bibliography. Among combinatorial games
Fraenkel distinguishes between people-games, games peo-
ple play such as chess and go, and math-games, games
mathematicians play such as Nim. He points out that peo-
ple-games invariably are computationally intractable. For
example, Fraenkel and Lichtenstein [13] showed (roughly
speaking) that there are board positions in generalized N X
N chess for which calculations of order exp N are required to
determine whether these are winning positions. True, there
are excellent chess playing programs that combine heuristic
board evaluation schemes with massive “look ahead” com-
putations, but this emphasizes the computational difficulty
in another way. Yet, paradoxically, in contrast to math-
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games, computationally difficult people-games exhibit
board feel [4]. The presence of board feel means that even
non-experts can often successfully judge which of the two
sides is ahead. The possibility of exploiting such intuition
supports the selection of a people-game, Connect Four, as
the basis for our study.

People-games normally pit one human versus another.
To serve the purpose of modeling complex systems, people-
games must be generalized to become competitions be-
tween autonomous groups. Although we do not make the
distinction here, one might wish to term such groups mobs
if group members do not communicate and teams if they
do. Armies are (nonautonomous) groups run by an overar-
ching intelligence, as in standard chess.

Our first analyses of “team connect four” (TC4) exam-
ined random strategies, as controls. Two possibilities were
considered, wherein each team alternately (i) moves once,
or (ii) moves so that its expected number of moves is one.
Our simulations showed, somewhat surprisingly, that if
these two possibilities are pitted against each other then
possibility (ii) is superior. Here and for all the simulation
results that we obtained, it remains for the future to try to
prove theorems that are suggested by these results. We did
succeed in proving a result for possibility (i) in random play
of tic-tac-toe, the granddaddy of TC4. By enumerating the
various probabilities, we found that (0.514, 0.305, 0.181)

were, respectively, the fractions of wins by the first player,
wins by the second player, and draws.

Sensors of specialized information are found throughout
biology, and it is of interest to develop intuition for their
effectiveness. Accordingly, most of our simulations of TC4
concerned the relative advantages of various sensors of
partial information concerning the board situation. This
seems novel; the common way to take into account partial
information, for example, in cellular automata and Check-
ered Life (see below), is to define once and for all a local
neighborhood for all agents. Perfect knowledge of what goes
on in this restricted neighborhood determines agent ac-
tions.

Biological sensors measure some variable that is impor-
tant to the system; then transduction machinery converts
this information into a suitable (i.e., evolutionarily selected)
modification of behavior. In our games, behavioral modifi-
cation is expressed by changing the relative probabilities of
various “moves” in the games. In (1) we normalized activi-
ties a,,; and a,; to obtain probabilities. This procedure re-
quires communication among all team members. Commu-
nication can be made unnecessary if a,,5¢t and a,;5t are
respectively regarded as the probabilities that the ith white
or black player moves during a short time 8z Now each
team member’s action is determined independently by each
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individual; the team becomes a “mob” according to the
definition given above.

We found situations where there was an optimal weight-
ing of sensory information. It must be kept in mind, how-
ever, that such optima generally exist “when all other things
are equal.” When conditions change, the optima change;
this means that efficient use of biological sensors requires
continual feedback to track the changing circumstances [6].

One precedent for using games as metaphors is Papad-
imitriou’s examination of decision under uncertainty as a
“new sort of game, in which one opponent is ‘disinterested’
and plays at random, while the other tries to pick a strategy
that maximizes the probability of winning—a ‘game against
nature’” [7]. Noteworthy is the presentation of Eigen and
Winkler [8] of newly invented board games (but not people-
games) as a vehicle for demonstrating the essence of pro-
found scientific concepts, particularly in statistical physics
but also in biology and social science.

The present article can be regarded as a continuation of
a study of a team version of checkers called Checkered Life.
This game was suggested to help clarify assertions that
distributed autonomous systems can profitably be regarded
as simultaneously pursuing multiple overlapping and con-
flicting goals [10]. Examples of such goals in ordinary check-
ers are “jump,” “control the center,” “get a king,” and “don’t
move from the back row.” Checkered Life is played on a
board that is 8 rows deep, as usual, but is N columns wide,
where N is large. If white is to play, each member of the
white team examines its neighborhood and calculates its
activity based on that player’s perception of how much its
move can advance the various checker goals. After every
standard move there is a probability that any legal square
can “give birth” to a white or black checker. Segel [10]
suggested that there be a tiny probability that the game is
terminated by a deus ex machina at any given move; then

» o«

the team with the larger number of surviving members is
deemed the winner. Alternatively, the game can be deemed
ended when one team becomes extinct. Perhaps more bio-
logical than prescribing situations for a “win,” in Checkered
Life and other games that somewhat mimic biology, is the
possibility of tracking statistics of the evolving state of play,
without paying undue attention to eventual ultimate extinc-
tion. Indeed, in such combats as that between vertebrate
immune systems and attacking pathogens, each side is “in-
terested” in its own survival, which is not necessarily pro-
moted by the extinction of the other side.

A classical article in artificial intelligence deals with how
simultaneously to pursue the multiple goals of checkers, by
weighting their importance, and how to learn to do better
by adjusting the weights according to experience [5]. Rep-
resentative of recent research along this line is an article by
Chellapilla and Fogel [11]. The present article is in accord
with their assertion that “Intelligence pertains to the ability
to make appropriate decisions in light of specific goals and

to adapt behavior to meet these goals in a range of environ-
ments. Mathematical games provide a framework for study-
ing intelligent behavior.” Chellapilla and Fogel evolve neural
networks for skillfully playing games including tic-tac-toe
and checkers. We have not made explicit use of evolution in
our studies, but our results concerning comparative perfor-
mance measures can be regarded as providing fitness data
for evolutionary calculations.

As an embodiment of a complex biological-like sys-
tem, Checkered Life seems to suffer from the disadvan-
tage that it is not amenable to rapid simulation, thereby
making difficult the compilation of reliable statistics. As
we have seen, such statistics can be compiled by running
various versions of TC4. These seem to approximate the
delicate balance required in a simulation game between
fidelity to the essence of some important biological fea-
tures and adherence to the principle that game is better if
its rules are simple.

Probably the part of this article that has most relevance
to biology (and other distributed complex systems) is its
treatment of sensor weighting. It might seem that this mat-
ter has already been covered thoroughly in many papers
and books concerned with the subject of “sensor fusion” or
“data fusion” [12,9], but these studies generally treat the
blending of different pieces of sensory information so as to
optimally achieve a single well-defined goal. Here we are
concerned with complex situations that can be regarded as
characterized by multiple overlapping and contradictory
goals. Note, however, that in testing sensor weightings we
did not make reference to the abstraction of “goals” but
rather tested the different possibilities “in the field” by
actually “playing the game.”

The assignment by an observer of abstract goals to teams
that tend to win competitions can be accomplished by
noting what sensors are heavily weighted. Thus the success
of teams possessing a simple sensor suggests the conclusion
that a goal for team i in TC4 is to extend any existing
columns of team i pieces, i = 1, 2. This is not trivial, for it is
not clear that extending a team’s own 4-in-a-row possibili-
ties is more important than blocking nascent 4-in-a-row
possibilities for the other team. But such seems to be the
case, perhaps not surprisingly, when teams move with a
high degree of randomness. At all events, our game-playing
has exhibited the process of inferring “goals” from evidence
of competitive success.
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