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Network Community Detection on Small Quantum
Computers

Ruslan Shaydulin,* Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski,
and Yuri Alexeev

In recent years, a number of quantum computing devices with small numbers
of qubits have become available. A hybrid quantum local search (QLS)
approach that combines a classical machine and a small quantum device to
solve problems of practical size is presented. The proposed approach is
applied to the network community detection problem. QLS is
hardware-agnostic and easily extendable to new quantum computing devices
as they become available. It is demonstrated to solve the 2-community
detection problem on graphs of sizes of up to 410 vertices using the 16-qubit
IBM quantum computer and D-Wave 2000Q, and compare their performance
with the optimal solutions. The results herein demonstrate that QLS performs
similarly in terms of quality of the solution and the number of iterations to
convergence on both types of quantum computers and it is capable of
achieving results comparable to state-of-the-art solvers in terms of quality of
the solution including reaching the optimal solutions.

1. Introduction

The recent years saw rapid progress in the development of quan-
tum computing (QC) devices. Multiple paradigms have been
proposed and implemented in hardware introducing a variety
of limitations that must be addressed prior to the wide appli-
cation of QC. In particular, noisy intermediate scale quantum
(NISQ) devices are widely expected to be limited to a few hun-
dred, or perhaps a few thousand qubits,[1] severely restricting the
size of the problems that can be tackled directly. As the poten-
tial of these NISQ-era quantum devices is becoming evident,[2]

there is an increasing interest in developing algorithms that
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leverage the small quantum devices that
are becoming available. This requires the
use of hybrid quantum-classical approaches
where a problem is solved across a classical
machine and a QC device.
The number of qubits in NISQ-era de-

vices available at the time of writing is
not nearly enough to demonstrate quan-
tum advantage, which makes it especially
hard to demonstrate the usefulness of quan-
tum computers to solve real problems.
For example, the possibility of quantum
speedup using the hybrid quantum approx-
imate optimization algorithm (QAOA) for
a network problem similar to the one dis-
cussed in this paper (maximum cut or
max-cut) is a subject of active discussion.
On the one hand, there are theoretical re-
sults demonstrating that QAOA formax-cut
problem improves upon best know classical

approximation algorithms for certain graphs.[3,4] At the same
time, there are indications that achieving speedup using QAOA
might require at least several hundred qubits.[5] Research and de-
velopment of quantum algorithms is necessary as the number
and quality of qubits is improving. These quantum algorithms
can also be used to improve classical algorithms.[6] The need for
development of new quantum algorithms was highlighted in the
recent National Academy of Science report.[7] One of the impor-
tant directions to make quantum computing feasible in the near
future is to use various problem decomposition approaches to
solve a large problems as a set of subproblems. This can be ac-
complished at various levels such as problem formulation or at
the algorithmic level as demonstrated in this paper.
The decomposition approach might be the key method to

achieve a quantum speedup on even modest-size NISQ devices
in near-term future. To support this claim, there is an important
and encouraging work,[8] where it was shown that large combina-
torial optimization problems can be effectively decomposed into
subproblems on quantum annealing hardware, while still obtain-
ing high quality of the overall solution. It was demonstrated for
solving embedding problems on D-Wave quantum computers,
but we believe that the same technique can be used to improve
dramatically the speed and performance of QAOA algorithms on
universal quantum computers.
In this work, we introduce the quantum local search (QLS) al-

gorithm for the network community detection problem that is
based on the local search method.[9] Many different versions of
the local search have been applied to numerous computationally
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hard problems such as the satisfiability testing,[10] and the trav-
eling salesman problem.[11,12] Local search is used for problems
where a global solution cannot be computed directly but instead
can be iteratively approximated in the space of candidate solu-
tions (subproblems), until optimal (or sufficiently good). The im-
portant feature of QLS is that it is a hybrid hardware-agnostic
algorithm that combines a classical machine with a small quan-
tum device. In this method, QLS allows us to leverage available
NISQ-era quantum devices to solve machine learning problems
of practical size for the first time.
A version of the network community detection (also known as

graph clustering) is an unsupervised machine learning problem
used to identify substructure as communities in such networks
as computer and information infrastructures, social activities,
and biological interactions or co-occurrences. It is used to find
non-trivial topological features, with patterns of connection be-
tween nodes that are neither exactly regular nor random. For ex-
ample, in metabolic networks, communities correspond to a se-
ries of chemical reactions called metabolic pathways,[13] whereas
in a protein interaction network, communities correspond to pro-
teins with similar functionality inside a biological cell.[14] In this
work we focus on using Newman’smodularity-based community
detection.[15]

QLS was applied to solving the 2-community detection prob-
lem on real networks of up to 410 nodes, while solving a 16 vari-
able subproblem on a quantum device. To the best of our knowl-
edge, this is the first attempt to tackle problems of this size using
gate-model (universal) quantum computing. Also, QLS is shown
to work with the D-Wave quantum annealer. We explore the po-
tential of QLS as quantum devices become more and more capa-
ble and demonstrate its potential.
The small size of available quantum devices creates a chal-

lenge, since typical algorithms (both quantum and classical) look
at a problem “as a whole,” requiring large amounts of resources
to store the description of the entire problem. While on classi-
cal computers storing the problem usually does not constitute a
problem, it becomes a bottleneck when working with quantum
computers that only have limited numbers of qubits and limited
connectivity between qubits. The number of variables that can
be represented in a quantum device is dependent on its underly-
ing architecture.
A problem decomposition approach like local search presents

a natural solution to this problem. A local search heuristic starts
with some initial solution and searches its neighborhood itera-
tively, trying to find a better candidate solution with improved
criterion (which is often an objective of the corresponding min-
imization or maximization of the problem). If a better solu-
tion is found, it replaces the current solution, and the search
continues.[16] Searching the neighborhood is a local problem and
its size can be restricted to fit on a small quantum device. In QLS
for graph community detection, the neighborhood of the solution
is searched by selecting a subset of vertices and collectively mov-
ing them between the communities with the goal of improving
the global modularity metric.
The QLS approach provides an additional benefit of being fun-

damentally hardware-agnostic. Local neighborhood search can be
encapsulated as a routine, allowing researchers to easily switch
between different hardware implementations. This is especially

useful, since the landscape of quantum computing in the NISQ
era is in a constant state of flux withmany QC architectures avail-
able and new development happening constantly. It is not clear at
this stage which architecture will become dominant in future. In
this work, we demonstrate how the two most developed and pop-
ular current paradigms, universal quantum computing (UQC)
and quantum annealing (QA), can be integrated into the QLS
framework and utilized to solve problems of practical size. Both
paradigms have demonstrated great potential on a number of im-
portant problems.[2,17–19]

In this paper, we do not aim to analyze performance of quan-
tum optimization algorithms like quantum annealing or QAOA.
Althoughwe do present some performance results (see Figure 2),
they by no means constitute an exhaustive comparison with clas-
sical state-of-the-art. Instead, they provide motivation for our
work, demonstrating that the subproblems offloaded to quantum
solvers are not trivial and that hybridization is needed. For bench-
marking, analysis and exploration the reader is referred to one of
a number of recent paper analyzing QAOA performance.[3,5,20]

In other words, we do not focus on finding and quantifying
quantum speedups. Instead, we focus on a different question:
if these algorithms are indeed capable of providing speedups
in the near term, how can we leverage them to solve practical
problems?
It is important to point out that the introduction of a prob-

lem decomposition heuristic like QLS limits the possible quan-
tum speedup. Since to the best of our knowledge, no asymptotic
speedups have been shown so far for QAOA or QA, decomposi-
tion schemes limit themultiplicative speedup on the entire global
problem by the multiplicative speedup on a small local subprob-
lem. However, they still provide a way to take advantage of the
small quantum devices that are becoming available.
The rest of the paper is organized as follows. We begin by in-

troducing the community detection problem and hybrid local-
search schemes. Then we describe the QC paradigms we utilize
and the quantum algorithms used to perform local search. Fi-
nally, we provide the implementation details, present the results
and discuss their significance.

2. The Community Detection Problem

The community detection problem (or modularity network clus-
tering) is an NP-hard problem[21] with a variety of applications in
complex systems.[22] Practical usefulness and complexity make
community detection an interesting problem to tackle using QC.
The goal of community detection in a networkwith an underlying
simple undirected graph G = (V, E ) is to split the set of vertices
V into communities such that the modularity is maximized:[15]

H = 1
4|E |

∑
i j

(
Ai j − ki k j

2|E |
)
si s j = 1

4|E |
∑
i j

Bi j si s j (1)

where the variables si ∈ {−1, +1} indicate community assign-
ment of vertex i (si = −1 meaning vertex i is assigned to the
first community and s j = +1 meaning that vertex j is assigned
to the second community), ki is a degree of i ∈ V , and A is the
adjacency matrix of G. In this work, we focus on clustering the
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network into two communities. There are several classical ap-
proaches to extend the problem to cases when the number of
communities is greater than 2.[15,23]

Community detection using a hybrid quantum-classical ap-
proach targeted for specific quantum architectures has been
demonstrated previously. The 2-community problem was solved
using qbsolv and the D-Wave quantum annealer[24] and ex-
tended for k-communities.[25,26] Solving for 2-communities us-
ing QAOA and the IBM Q Experience was shown in ref. [25].
Solving for k-communities on signed graphs using block coordi-
nate descent[27,28] and D-Wave quantum annealer was shown in
ref. [29].

3. Quantum-Accelerated Decomposition
Heuristics for Optimization

Central to the discipline of QC in the NISQ era is the prob-
lem of a limited number of available noisy qubits. For example,
at the time of writing, the largest gate-model QC device avail-
able on the cloud was IBM Q 20 Tokyo[30] with twenty super-
conducting qubits. Twenty qubits translates into up to 20 vari-
ables due to connectivity constraints. This implies that the max-
imum number of nodes of a network we can cluster directly is
20. This example highlights the challenges of leveraging limited
NISQ-era devices to solve practical problems and motivates
our local-search approach. Note that same considerations ap-
ply for problems other than optimization. For example, sim-
ilar hybrid approaches have been applied to blind quan-
tum computation,[31–34] and distributed quantum machine
learning.[35] Parallel quantum computation (PQC)[36] can be used
to speed up Grover’s search algorithm[37] by dividing a database
on which the search is performed between an ensemble of quan-
tum computers running in parallel.[38,39]

In response to the challenges of quantum computation in the
NISQ era, a number of decomposition approaches have been
explored. The methods described in this section use limited in
size quantum optimization solvers to search a restricted neigh-
borhood of a given solution with the goal of finding a better so-
lution. Here, the given solution comes either from running a
classical heuristic solver or from the previous iteration. These
methods are inspired by the success of classical large-scale neigh-
borhood local search methods (the reader is referred to [40] for
a survey of local-search heuristics in general and to [41] for a
survey of large-scale neighborhood methods in particular). It
is important to note that unlike this paper, all the works de-
scribed in this section focus exclusively on D-Wave quantum
annealers.
The first family of methods builds on classical preprocess-

ing methods for quadratic unconstrained binary optimization
(QUBO) problems (see ref. [42] for a review). One such prepro-
cessing technique is heuristically fixing variables. The variables
are chosen by maintaining a set of elite solutions and fixing
the variables that have the same value across many or all local
optima, with the intuition being that they will have the same
values for the global optimum.[43] Sample persistence variable
reduction (SPVAR)[44] in its basic version uses a sample of so-
lutions (obtained either from a quantum annealer or a classi-
cal heuristic) and fixes the variables that have the same value

across the entire sample. Then SPVAR uses a quantum annealer
as the solver for the restricted QUBO. This method was later
extended by introducing multistart (multiple samples) and was
extensively benchmarked using both the D-Wave quantum an-
nealer as well as state-of-the-art classical heuristics for Chimera
Hamiltonians.[45]

The second family of methods extends iterative large-scale
neighborhood local search methods. Local search commonly
considers the neighborhood of bit strings that have Hamming
distance one from the current solution at each step. The per-
formance of local search methods can be improved by consider-
ing larger neighborhoods (Liu et al.[46] shows significant perfor-
mance improvements for neighborhood of Hamming distance
four, equivalent to fixing all but four variables). Quantum opti-
mizers provide a potentially efficient way to explore these larger
neighborhoods. This rather straightforward idea was introduced
in ref. [47] and extended and rigorously tested in refs. [8,48,49].
A similar hybrid tree search method was presented in ref. [50].
These methods utilize the D-Wave quantum annealer as the
quantum optimizer, enabling them to solve problems with thou-
sands of variables. In this work, we limit the subproblem size to
be small enough to fit on the IBMQ quantum computer, limiting
the size of the problems we can tackle. D-Wave provides a set of
utilities for problemdecomposition, including a hybrid extension
of the tabu search QSage.[51]

4. Quantum Local Search

To address the challenges outlined above, we introduce the QLS
algorithm. QLS is a hybrid quantum-classical local-search ap-
proach, inspired by numerous existing local-search heuristics.
QLS is motivated by the successful application of local-search
heuristics to a variety of optimization problems. The novelty of
QLS is that it can utilize both quantum annealers and universal
quantum computers. In this work, we apply QLS to the problem
of 2-community detection on graphs, but the success and versa-
tility of local-search heuristics make us confident that QLS can
be extended to other optimization problems.
In QLS for community detection, the local search starts with

a random assignment of communities to vertices and attempts
to iteratively optimize the current community assignment of a
subset of vertices with the goal of increasing modularity. Here
the space of potential community assignments of a subset of ver-
tices plays the role of the neighborhood where the local search is
performed. At each iteration, a subset X ⊂ V is populated by se-
lecting vertices with the highest potential gain in modularity ob-
tained when changing their community assignment. This can be
done efficiently[15] since at each iteration we only need to update
the gains of vertices in X and their neighbors. Then at each iter-
ation, the community assignment of the vertices in the subset X
(subproblem) is optimized using a routine that includes a call to a
quantum device. The local search proceeds until it converges. We
define convergence as three iterations with no improvement in
modularity. Note that in general it is not necessary to consider all
vertices before convergence: in the 2-community problem, ran-
dom initial assignment would be correct for 50% of vertices on
average. Our approach is outlined in Algorithm 1.
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Algorithm 1: QLS Community Detection

solution = initial_guess(G)

while not converged do

X = populate_subset(G)

// using IBM UQC or D-Wave QA

candidate = solve_subproblem(G , X )

if candidate > solution then

solution = candidate

The subproblem of optimizing community assignment of the
subset is formulated by fixing community assignment for all ver-
tices not in the subset (i �∈ X) and encoding them into the opti-
mization problem as boundary conditions. This is a commonly
used technique in many heuristics.[52,53] Denoting fixed assign-
ments by s̃ j , the subproblem can be formulated as:

Qs =
∑

i> j |i, j∈X
2Bi j si s j +

∑
i∈X

∑
j �∈X

2Bi j si s̃ j

=
∑

i> j |i, j∈X
2Bi j si s j +

∑
i∈X

Ci si

where Ci =
∑
j �∈X

2Bi j s̃ j (2)

Clearly, maximizing (2) can only increase global modular-
ity (1). The objective defined in Equation (2) can be optimized
using a QC algorithm. The exact way the optimization is per-
formed can vary between different QC implementations, mak-
ing our approach extendable to new emerging QC platforms. We
demonstrate this portability by implementing two subproblem
optimizing routines that use IBM Q 16 Rueschlikon[30] and D-
Wave 2000Q.[54] Additionally, we implement a subset optimiza-
tion routine that uses the classical Gurobi solver[55] for quality
comparison. The choice of Gurobi is not of importance, since
for subproblems with 16 variables any classical integer program-
ming solver is capable of finding the optimum.

5. Quantum Computing Paradigms

Quantum annealing (QA) is a form of adiabatic quantum com-
putation (AQC).[56] QA solves an optimization problem by encod-
ing it as an Ising model Hamiltonian, with the ground state of
that Hamiltonian corresponding to the global solution of the op-
timization problem. The Ising Hamiltonian describes the energy
of a collection of n spin variables, with each variable being in one
of two spin states (±1). A spin configuration describes assign-
ment of states to spin variables, with si denoting the state of spin
variable i (note that the 2-community problem maps naturally to
this system, with the resulting spin state, si , denoting commu-
nity assignment). The energy of a configuration is then defined
by

H(s ) =
∑
i> j

Ji j si s j +
∑
i

hi si (3)

where hi correspond to external forces applied to spin vari-
ables, and Ji j to coupling strengths between pairwise spin
interactions.[56]

QA finds the ground state of the objective Hamiltonian by per-
forming a quantum evolution. As the initial Hamiltonian, QA
uses a transverse field Hamiltonian. It introduces quantum fluc-
tuations that help the annealing process to escape local minima
by “tunneling through” hills in the energy landscape, enabling
the evolution to move faster than adiabatic requirement would
allow. As the evolution is performed, the transverse field Hamil-
tonian is slowly “turned off” (scaled with a coefficient decreasing
to 0), such that the evolution finishes in a system described by
the problem Hamiltonian.[56]

Since AQC was introduced in 2000 by Farhi et al.[57], D-
Wave Systems, Inc.,[54] IARPA’s Quantum Enhanced Optimiza-
tion effort[58] and other researchers[59] have achieved a lot of
progress in developing a system implementing QA[56] and apply-
ing it to a variety of problems, including optimization problems
on graphs,[24] machine learning,[60] traffic flow optimization,[61]

integer factoring,[62] and simulation problems.[63] Optimization
problems can be solved byQAwhen formulated in the Ising form
(2) or as a quadratic binary optimization (QUBO).
Universal (or gate-based) quantum computing was introduced

in the 1980s[64] and has seen great theoretical advances since.
Shor’s[65] and Grover’s[37] algorithms are two most famous exam-
ples of quantum algorithms with theoretically proven speedups
over classical state-of-the-art. Universal quantum computing has
been implemented in hardware by a number of companies, na-
tional laboratories, and universities.[66–70]

To optimize (2) on a universal quantum computer, we use a
hybrid quantum-classical approach, QAOA.[71,72] Similar to QA,
a problem is encoded as an objective Hamiltonian H. Then a
quantum evolution is performed starting with some fixed initial
easy-to-prepare state (traditionally, uniform superposition over
computational basis states is used). The difference is that unlike
QA, in which the evolution is analog, in QAOA the evolution is
performed by applying a series of gates parameterized by a vec-
tor of variational parameters θ . A hybrid approach, combining
the quantum device performing the evolution and a classical op-
timizer, finds the optimal variational parameters. QAOA starts
with an initial set of variational parameters θ0. At each step, a
multiqubit state |ψ(θ )〉 parameterized by the variational parame-
ters θ is prepared on the quantum co-processor. Then a cost func-
tion E (θ ) = 〈ψ(θ )| H |ψ(θ )〉 is measured and the result is used by
the classical optimizer to choose new parameters θ with the goal
of finding the ground-state energy EG = minθ 〈ψ(θ )| H |ψ(θ )〉.
QAOA provides a viable path to quantum advantage,[73] making
it a good algorithm to explore on near-term quantum computers.

6. Results and Discussion

We implement the classical part of QLS in Python 3.6, using
NetworkX[74] for network operations. The subproblem solvers are
implemented using QA (D-Wave SAPI), QAOA (IBM QISKit[75])
and the classical Gurobi solver.[55] Our framework ismodular and
easily extendable, allowing researchers to add new subproblem
solvers as they become available. The framework is available on
GitHub at http://bit.ly/QLSCommunity.
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Figure 1. Box-plots showing the range of modularity scores for 2-community detection (left, greater is better) and number of solver calls (right, less is
better), respectively, for the three different subproblem solvers. The results show that the proposed approach is capable of achieving results close to the
state-or-the-art (Global Solver).

In order for a subproblem to be solved on the D-Wave sys-
tem, the problem is embedded onto the physical layout (Chimera
graph). The clique embedder[76] is used to calculate an embed-
ding of a complete 16-variable problem once and is reused for
each subproblem. In this work, we utilized D-Wave’s Solver API
(SAPI) which is implemented in Python 2.7, to interact with the
system. We used the D-Wave 2000Q which has up to 2048 avail-
able qubits. Subproblems of approximately 64 variables can be
solved on the the 2000Q, however, for a fair comparison, we limit
ourselves to up to 16 variables. The D-Wave system is intrinsi-
cally a stochastic system, where solutions are sampled from a
distribution corresponding to the lowest energy state. For each
subproblem, the best solution out of 10 000 samples is returned.
The QAOA subproblem solver is implemented using the

IBM QISKit framework. We ran QAOA with RYRZ ansatz[77]

on the IBM 16 Q Rueschlikon[30] with 16 qubits. For op-
timization of the variational parameters we used a SciPy[78]

implementation of Constrained Optimization BY Linear Ap-
proximation (COBYLA) method.[79] For each subproblem, we
performed optimization of the variational parameters θ using a
high-performance simulator[80] and ran QAOA with optimized
parameters on a quantum device using the IBM Q Experience[30]

cloud service.We allowed COBYLA 100 function evaluations (i.e.,
100 QAOA runs on the simulator) to find optimal parameters θ .
We used this setup (training on a simulator and running on the
quantum device) because of the limitations of the IBM Q Experi-
ence job queue at this time. In our experience, jobs submitted to
the IBM quantum device can spend minutes to hours in queue,
requiring days to complete a full variational parameter optimiza-
tion loop. It is our understanding that this will be remedied in the
future. Themain downside of this setup is that the variational pa-
rameters trained on a simulator do not encode the noise profile
of the device, decreasing the quality of the solution. This is one
of the main factors contributing to slightly slower convergence
for QAOA compared to other methods. In the future, as various
QC devices become available, it will be straightforward to per-
form QAOA fully on a QC device. However, even using the cur-

rent setup we achieved very promising results, indicating great
potential for applying variational quantum-classical methods to
combinatorial optimization problems.
Our results are presented in Figure 1. We ran our algorithm

on six real-world networks from the Koblenz Network Collection
(KONECT) dataset[81] with up to 410 nodes as our benchmark.
The networks come from different real world phenomena and
include social and metabolic networks. For each network, we ran
30 experiments with different random seeds. The same set of
seeds was used by the three subproblem solvers, with all solvers
starting with the same initial guess and therefore making the re-
sults directly comparable. We fixed the subproblem size at 16 ver-
tices. Our results demonstrate that QLS with both D-Wave QA
and QAOA on IBM Q as quantum subproblem solvers perform
similarly in terms of quality of the solution (modularity) and the
number of iterations to convergence, and are capable of achieving
results comparable to state-of-the-art. Our results are compared
to results using the Gurobi Optimizer, which is a state-of-the-art
solver for mathematical programming. We use the Gurobi Op-
timizer in two ways: first as a solver for solving the entire prob-
lem at once, which we report as the Global Solver and second as
a solver for solving small size subproblems of fixed size within
the local search framework. For solving the entire problem, the
Gurobi Optimizer is unable to reach a provable global optima
for most of the problems within the specified time frame. For
the graph problems of up to approximately 400 variables, we run
Gurobi (as a global solver) for up to 72 h and the results reported
are within an optimality gap of up to 33%. For the smaller size
subproblems of 16 variables, Gurobi was able to find the optimal
solution within less than second. The networks and the set of
seeds we used are available online at http://bit.ly/QLSdata.
The results demonstrate the promise of the proposed ap-

proach. We presented a framework that is able to find 2 com-
munities in graphs of size up to 410 vertices using only NISQ-
era devices. We explored the potential of our approach as new
and better QC hardware becomes available in two ways. First, we
used the classical Gurobi solver[55] to simulate the performance

Adv. Quantum Technol. 2019, 1900029 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900029 (5 of 8)



www.advancedsciencenews.com www.advquantumtech.com

Figure 2. A projection of QLS performance as the hardware size of quantum devices increases. A) Projected QLS performance as the quality of the
local search solver solution is improved. The projection is performed by comparing the performance of classical solver Gurobi with time limit fixed at
0.25 s (D-Wave time to solution) and Gurobi with time limit 1000 s (projected good solution). The assumption is that the new quantum optimization
algorithms would be able to scale and provide results of the same quality as Gurobi with time limit 1000 s while taking approximately the same time to
solve the problem as they do today. B) Projected number of iterations for QLS to converge as larger devices become available (projection performed by
using Gurobi as a subproblem solver).

improvements in QLS as the subproblem size is increased (see
Figure 2B). We generate a 2000 node random graph with realistic
community structure and known modularity.[82] Unsurprisingly,
QLS finds the optimal solution faster (using fewer local search
iterations) as the subproblem size increases. Second, we demon-
strate the need for quantum acceleration by demonstrating the
limitations of existing state-of-the-art solvers. We used Gurobi[55]

as a subproblem solver with subproblem size of 200. Figure 2A
shows that for the subproblem of this size, Gurobi cannot pro-
duce a good solution quickly. We compared Gurobi with time
limit 0.25 s (the running time ofQA onD-Wave) withGurobi with
time limit 1000 s, with the assumption that Gurobi would con-
verge to a good solution. We use the running time of QA as our
estimate because at the time of writing we do not have a good way
of measuring the running time of QAOA due to the architecture
of the IBM Q Experience. We expect QAOA to have similar per-
formance. This assumes that quantummethods would scale well
to larger problems, which is a strong assumption. However, the
goal here is to motivate the exploration of quantum optimization
heuristics by showing the limitations of classical state-of-the-art
and not to demonstrate quantum advantage. Using a better solu-
tion within the local search enables 25% (4 iterations) improve-
ment in time to convergence (convergence is defined as three
iterationswith no improvement). This demonstrates that the sub-
problems become computationally hard even for sizes that are
small enough to potentially fit on near-term devices. It is im-
portant to note that even though in our experiments Gurobi per-
formed better than other integer programming solvers, it is quite
possible that other solvers can perform better on this problem,
especially after tuning. Indeed, in the past the improvements in
classical heuristics have forced researchers to downgrade claims
of quantum advantage.[83,84] However, demonstrating quantum
advantage is outside of scope of this paper. Instead, we use these
results to motivate our hybrid approach by showing the com-
putational complexity of the subproblems offloaded to quantum
solvers. As quantum solvers improve and become capable of pro-
viding speedups at subproblem level, out QLS will enable us to
leverage these speedups at the global problem level.

7. Conclusion

In the next few years, a number ofQChardware implementations
are expected to becomemature enough to be applied to practically
important problems.QCusing trapped ions[85] andRydberg atom
arrays[86] are just two examples of quantum hardware now mov-
ing out of the laboratory, with the potential to realize quantum
advantage. However, none of them promise to deliver more than
a few hundred qubits in the near future. Therefore, we believe
the future of QC is hybrid, with algorithms combining both clas-
sical and quantum computation. QLS presents a path to integrate
NISQ-era devices into computational workflows in a flexible way,
both in terms of adding different hardware backends and extend-
ing to different problems. Classical local search heuristics have
proven useful for a variety of problems in many fields.[40] We be-
lieve that QLS can be similarly extended to problems beyond net-
work community detection. We also believe that the decomposi-
tion approaches like QLS can improve dramatically the speed and
performance of QAOA algorithms on universal quantum com-
puters, which might the key to achieve quantum advantage on
NISQ devices.
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