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Abstract
Bariatric surgery (BAR) has become a popular treatment for type 2 diabetes mellitus which
is among the most critical obesity-related comorbidities. Patients who have bariatric surgery,
are exposed to complications after surgery. Furthermore, the mid- to long-term complica-
tions after bariatric surgery can be deadly and increase the complexity of managing safety
of these operations and healthcare costs. Current studies on BAR complications have mainly
used risk scoring for identifying patients who are more likely to have complications after
surgery. Though, these studies do not take into consideration the imbalanced nature of the
data where the size of the class of interest (patients who have complications after surgery)
is relatively small. We propose the use of imbalanced classification techniques to tackle the
imbalanced bariatric surgery data: synthetic minority oversampling technique (SMOTE),
random undersampling, and ensemble learning classification methods including Random
Forest, Bagging, and AdaBoost. Moreover, we improve classification performance through
using Chi-squared, Information Gain, and Correlation-based feature selection techniques.
We study the Premier Healthcare Database with focus on the most-frequent complications
including Diabetes, Angina, Heart Failure, and Stroke. Our results show that the ensem-
ble learning-based classification techniques using any feature selection method mentioned
above are the best approach for handling the imbalanced nature of the bariatric surgical
outcome data. In our evaluation, we find a slight preference toward using SMOTE method
compared to the random undersampling method. These results demonstrate the potential of
machine-learning tools as clinical decision support in identifying risks/outcomes associated
with bariatric surgery and their effectiveness in reducing the surgery complications as well
as improving patient care.
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1 Introduction

Being known as the blood sugar level for a prolonged period, Diabetes Mellitus (or just Dia-
betes in a shorter term) is now growing at an Epidemic rate in the United States according
to American Diabetes Association (2015). Studies show that Diabetes Mellitus is among
the leading causes of disability, morbidity, and mortality in the United States (Almdal et al.
2004; Centers for Disease Control and Prevention 2011; Kannel and McGee 1979; Stamler
et al. 1993). In a broader scale, the World Health Organization estimated that about 422 mil-
lion adults were living with Diabetes in 2014 (World Health Organization 2016). Although
the occurrence rate of Diabetes-related complications has significantly been reduced due to
recent endeavors in glycemic control and cardiovascular risk factor management, the rise of
Diabetes prevalence has solely lead to growing numbers of macrovascular and microvascular
disease incidents over the last few years. Diabetes appears in three forms as stated in Ameri-
can Diabetes Association (2006): Diabetes Type 1, which results from insulin deficiency and
accounts for 5–10% of diabetic patients, Diabetes Type 2, which is previously referred as
non-insulin dependent diabetic patients and accounts for 90–95% of diabetic diagnoses and
Gestational diabetes.

Patients with Diabetes Mellitus Type 2 (T2DM) often suffer from Obesity-related ill-
nesses. As a closely-related metabolic syndrome, Obesity is also associated with several
health risks. According to a recent report published by Center for Disease Control and Pre-
vention, more than one-third of adults in the United States suffer from Obesity (Ogden
et al. 2015). According to a study by Cawley and Meyerhoefer (2012), the national medical
care costs of Obesity-related illnesses in adult pass more than $200 billion a year. Obe-
sity, which is defined as having a Body Mass Index (BMI) of 30kg/m2, has been shown
to be a serious health risk factor for both T2DM and Cardiovascular diseases. For exam-
ple, the results from a clinical study conducted by Daousi et al. (2006) show that Obese
patients with T2DM suffer fromworse cardiovascular risk factors compared to other diabetic
patients without obesity. However, a limited number of works have studied the impact of
Obesity on arising cardiovascular consequences on diabetic patients (Johnson et al. 2013,
2012).

Bariatric surgery (BAR) has been shown to be a successful therapy for T2DM patients
with Obesity, which can lead to significant and persistent weight loss (Grundy et al. 1991;
Brolin 1996; Buchwald 2005). According to some studies, BAR has proved to result in
complete remission of T2DM in about 75–80% of patients (Buchwald et al. 2004, 2009).
BAR is performed through one of these four distinct procedures: Rouxen-Y gastric bypass
(RYGB), Gastric banding (LAGB), biliopancreatic diversion (BPD), and sleeve gastrectomy
(SG).

However, limited studies (Pories 2008; DeMaria et al. 2007) have addressed the mid- to
long-term outcomes/risks of diabetes and obese patients after bariatric surgery. Risk scoring
using logistic regression analysis is the most commonly used technique in bariatric surgery
risk studies. DeMaria et al. (2007) developed a risk scoring system by logistic regression to
identify the most important predictors of increased rate of mortality after surgery.

Since the majority group (patients who have complications after surgery) dominates the
behavior of logistic regression analysis, it might not be an appropriate method for imbalanced
classification problems (King andZeng 2001). Failing to correctly identify patientswho are at
risk of complications after surgery can lead to significant costs and even loss of life. Hence, it
is necessary to develop classificationmodels that yield accurate detection of complication/risk
events. Because suchmodels will benefit clinicians to improve patient outcomes after surgery
and provide cost-effective care for high-risk patients.
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Our work lies in the medical pattern recognition framework, which is known to be highly
imbalanced, i.e., the instances of interest in the dataset are relatively rare. Examples are
Intensive Care Unit (ICU) infection detection events (Roumani et al. 2013, 2018), medical
diagnoses (Khalilia et al. 2011; Alexe et al. 2003; Şeref et al. 2017), adverse drug events
(Taft et al. 2009; Sarker and Gonzalez 2015), bleeding detection in endoscopic video (Deeba
et al. 2016), and so on. Bariatric surgery results lie in this group as well because BAR
risks/complications are very skewed and the high-risk groups often form the minority class.
However, to the best of authors’ knowledge, there is no comprehensive study that handles
the imbalanced nature of the bariatric surgical risk prediction problems.

In thiswork,we study themerit of using imbalanced classification techniques to predict the
outcomes appearing in T2DMpatients with Obesity, who have undergone BAR. In particular,
we consider Stroke, Diabetes, Angina, Blindness, Myocardial Infarction, Heart Failure, and
Death as the most-potential outcomes of BAR (Johnson et al. 2013) and construct predictive
models by solving classification problems for each of them.

This paper is organized as follows. In Sect. 2, we describe the approaches and methods,
measures, and data used in the study. In Sect. 3, we provide empirical results and discussion.
Finally, in Sect. 4 we give our conclusions, and ideas for future research.

2 Materials andmethods

The Premier Healthcare Database is one of the largest U.S. healthcare datasets, which gathers
the data from 700+ hospitals across U.S. and contains clinical and health-economic data. This
database includes both inpatient and outpatient visits and records the costs, diagnoses, and
procedures associated with each visit as well as the demographic information about the
patients.

Figure 1 shows the overview of our method. In the following subsections, we discuss the
details of our method.

2.1 Data preparation

In this section, we discuss the overview of our data preparation step. (We present the detailed
results in Sect. 4.) For this research work, we limit our study to the T2DM patients with
Obesity, who have undergone BAR. We exclude patients who had no ICD-9-CM diagnosis
code associated withmoderate or severe obesity or containedmissing data. Using the Premier
Healthcare Database, three categories of data are extracted for each of these patients. First,
we select a number of patient-specific attributes including age, race, gender, ethnicity, the
insurance provider, and the marital status for each such patient. Second, we consider an
array of candid health-related attributes that reflect the patient’s clinical history. As stated
in Sect. 2.2., these candid features will be analyzed via feature selection methods that pick
the most influential set of features for the related classification problem. Third, we extract
the information about seven specific outcomes as the most potential outcomes of BAR [as
stated by Johnson et al. (2013)]. For this purpose, only outcomes that occur after BAR date
are identified. It is worth mentioning that we do not include missing or incompatible data in
our study.

Remark 1 We need to consider remedies for the variation in each patient’s age and marital
status considering the fact that the data is related to a period of 4years. These remedies are
stated in Sect. 3 of this paper.
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Fig. 1 The overview of our approach

2.2 Feature selection

Given each outcome, not all features are of significant influence on the outcome. In fact,
considering irrelevant features may produce less-accurate classification results and can lead
to biased predictive models. In addition, such features may result in overfitting, which might
have negative impacts on the accuracy of a model. Hence, feature selection is recommended
prior implementing any data-mining algorithm. A new optimization-based framework, called
Support Feature Machine (SFM), has been found efficient for feature selection in medical
data classification (Fan and Chaovalitwongse 2010). Depending on how the feature selection
search is combined with the classification model, feature selection techniques can be catego-
rized into three strategies: filter techniques, wrapper techniques, and embedded techniques
(Saeys et al. 2007).

In filter techniques, each feature’s relevance score is computed based on the inherent
properties of the data. The most relevant features are then selected for the next step, and the
features at the bottom of the scoring list are eliminated. The most common filter selection
algorithms are Information Gain (IG) (Inza et al. 2000), Chi-square (Zheng et al. 2015), and
Correlation-based Feature Selection (CFS) (Zheng et al. 2015; Hall 2000).

Wrapper methods act based on the appropriateness of subsets of the features (unlike the
filter methods that compute the advantage (i.e., the relevance score) for each feature). These
techniques first determine the space of feature subsets followed by construction of various
combinations of features (stored as subsets). Upon performing the training step of a specific
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classification algorithm (e.g., Naïve Bayes, bagging, etc.), one can compute the most relevant
subset of features. Hence, it is said that we “wrap” a search method around a specific clas-
sification model to examine the entire space of the feature subsets. Note that as the number
of features increases, the space of feature subsets exponentially grows, which can signif-
icantly affect the performance of the wrapping-based methods. Hence, heuristics become
more appropriate choices to tackle real-world problems. The wrapper methods commonly
use randomized search heuristics (Blanco et al. 2004; Jirapech-Umpai and Aitken 2005; Li
et al. 2001; Ooi and Tan 2003) and sequential search techniques (Inza et al. 2004; Xiong
et al. 2001).

In embedded techniques, the classifier construction step also involves a search method for
an optimal subset of featureswithin the combined space of the feature subsets and hypotheses.
Similar to wrapper methods, these methods are also specific to a given learning algorithm,
although they are less computationally expensive (Saeys et al. 2007).

For this work, we choose filter methods for the feature selection step. This is justified by
the fact that filter techniques are known to be computationally fast and, hence, appropriate
for real-world datasets. Moreover, they are independent of the choice of the classification
techniques, which can significantly reduce the computations required for the feature selection
step. Yang and Pedersen (1997) stated that IG and Chi-square performed successfully in the
multi-class classification framework.

2.2.1 Information Gain

The Information Gain (IG) algorithm measures the reduction in entropy when the feature is
present. The concept of entropy is used as a measure of the uncertainty of a random variable.
The entropy of a variable X is calculated as

H(X) = −
∑

i

P(xi ) log2(P(xi )) (1)

where the prior probability for the value of X is denoted by P(xi ). After observing values of
another variable Y , the entropy of X is given by,

H(X |Y ) = −
∑

j

P(y j )
∑

i

P(xi |y j ) log2(P(xi |y j )) (2)

where the P(xi |yi ) is the posterior probability of X = xi given the data Y = yi . Further
information about X provided by Y is measured by the decrease of entropy of X and thus is
defined as information gain (IG) (Quinlan 2014):

IG(X |Y ) = H(X) − H(X |Y ) (3)

Thus, if IG(X |Y ) > IG(Z |Y ), it denotes that the feature Y is more correlated to the feature
X compared to feature Z .

2.2.2 Chi-square

Chi-square (χ2), another popular feature selection method, is used to select relevant features
by considering the classes. In this approach, the continuous-valued features are discretized
into several intervals. Assume that N is the total number of examples and Ni j is the number
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of examples belongs to the class Ci and the j th interval. Mlj is the number of examples in
the j th interval, and l is the number of intervals. The expected frequency of Ni j is given by,

Ei j = Mlj |Ci |
N

(4)

The χ2 statistic of a feature is defined as,

χ2 =
m∑

i=1

l∑

j=1

(Ni j − Ei j )
2

Ei j
(5)

The larger value of χ2 reflects that feature is more informative.

2.2.3 Correlation-based feature selection (CFS)

CFS selects the best feature subset with respect to the predictive performance of individual
feature as well as the amount of redundancy among them. The correlation between a sub-
set of features and classes and the inter-correlation between the features are calculated by
correlation coefficients. As the correlation between features and classes increases and the
inter-correlation decreases, the relevance of a subset of features increases (Hall 1999). CFS
typically applies search methods such as forward selection, best-first search, bi-directional
search, backward elimination, and genetic search. The merit of a feature subset (S) with k
features is given by

MeritSk = krc f√
k + k(k − 1)r f f

(6)

where k is the number of features, rc f is the average of the correlations between the subset
features and the class label, and r f f is the average inter-correlation between subset features
(Hall 1999).

2.3 Classification approaches andmethods

The construction of a classification model for imbalanced bariatric surgical data is performed
upon finishing the data preparation and feature selections steps. The presence of imbalanced
classes often results in serious bias in the performance metrics. In fact, most of the state-of-
the-art data-mining techniques tend to obtain a decision boundary that is biased toward the
majority class. As a result, if imbalanced-ness is neglected, the technique tends to misclassify
instances from the minority class (e.g., the rare outcomes of BAR), while it is highly crucial
to identify the minority class instances.

2.3.1 Approaches

To cope with the imbalanced-ness issue, several remedies have been suggested including
undersampling (Batista et al. 2004), oversampling (Chawla et al. 2002), the cost sensitive
algorithms (Zadrozny et al. 2003) and ensemble learningmethods (Polikar 2006). Both under-
sampling and oversampling methods try to balance the two classes through either decreasing
the size of the majority class or increasing the size of the minority class. Cost-sensitive
learning methods employ larger penalty for misclassification of minority class (compared
to the one of majority class). This prohibits generation of boundaries biased to the majority
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class. Although being very precise, the main difficulty in using these methods arise in the
computation of appropriate penalty values. The main idea of ensemble-based classifiers is
to aggregate the predictions obtained by applying several base classifiers into an imbalanced
data set with the hope of getting improved results compared to each classifier’s result (Rokach
2010). Adaptive Boosting (AdaBoost) (Schapire 1990), Bagging (Breiman 1996), and Ran-
dom Forest (Liaw and Wiener 2002) are among the mostly-used algorithms in the ensemble
learning framework.

Random undersampling (RUS) removes the instances from the majority class randomly until
the desired majority to minority class ratio is reached.

Synthetic minority over-sampling technique (SMOTE) generates a synthetic instance by inter-
polating k instances (for a given integer value k) of the minority class that lies close enough
to each other (López et al. 2013). Oversampling methods aim to achieve the desired ratio by
creating “synthetic” instances of the minority class.

Adaptive Boosting (AdaBoost) Freund and Schapire (1995) is themost well-known algorithm
in the boosting family (Schapire 1990). AdaBoost trains each classifier sequentially using
the entire dataset. After each iteration, it concentrates more on problematic observations that
were misclassified in the previous iteration. It aims to classify these observations correctly
in current iteration through a weighting strategy. All observations get equal weights in the
first round of training, then at each iteration, AdaBoost increases the weights of incorrectly
classified examples while decreases the weights of correctly classified examples. Moreover,
this algorithm assigns another weight to each classifier based on its overall accuracy. Better
classifiers receive higher weights. Then the class label of a new example is determined by
selecting majority of weighted votes that are given by each classifier.

Bagging or the bootstrap aggregating to construct ensembles was first introduced by Breiman
(1996). It uses bootstrapped replicas of the initial training set to train different classifiers.
Finally, when an unknown example is given to each classifier, the class label is identified by
a majority or weighted vote. Algorithm 1 demonstrates the pseudocode for Bagging.

Algorithm 1 Bagging
1: Input: S: Training set, N : Bootstrap size, T : Number of iterations, I : weak classifier
2: for k = 1 : T do
3: Sk ← RandomSampleReplacement(N , S)

4: hk ← I (Sk )
5: end for
6: Output: An ensemble by the Majority voting scheme, H(x) = sign(

∑T
k=1 hk (x)) where hk ∈ {−1, 1}

are base classifiers.

Random Forest (RF) Breiman (2001) is an ensemble learning method that builds a set of
decision tree classifiers to find the label of a new example by voting for the most popular
class. For each decision tree classifier, Bagging is used on the original training data to create
many copies of it. Each decision tree classifier differs from the rest in a way that the split on
each node is based on the best feature chosen from a randomly selected set of all candidate
features. Finally, the class label of a new instance is assigned through majority voting among
all votes (i.e., predicted label) given by each tree (small base classifier) of an RF. Algorithm 2
shows the pseudocode for RF.
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Algorithm 2 Random Forest
1: Input: S: Training set, F : Feature Set, T : Number of trees in forest
2: function RandomForest(S, F)
3: for i = 1 : T do
4: Si ← bootstrapSample(S) (select a bootstrap sample from S)
5: At each node:
6: f ← randomly select a subset of the features from F
7: Split on best feature in f
8: return hi
9: end for
10: end function
11: Output: An ensemble by the Majority voting scheme, H(x) = sign(

∑T
i=1 hi (x)) where hi ∈ {−1, 1}

are tree classifiers.

2.3.2 Methods

In this paper, we employ six of the most popular classification methods coupled with
(under/over) sampling methods as remedies to treat the imbalanced nature of the data. These
methods are (1) Naïve Bayes, (2) Radial Basis Function Neural Network (RBFNN), (3) 5-
NearestNeighbors (5NN), (4)DecisionTrees (C4.5Algorithmalso known as J48Algorithm),
(5) SupportVectorMachines (SVMs), and (6)LogisticRegression (LR).The reader is referred
to the book authored by Friedman et al. (2001) to obtain more information about the afore-
mentioned techniques. In addition, we employ a hybrid approach. Our motivation originates
from studies that advocate combining the (under/over) sampling procedures with the ensem-
ble learning algorithms (Galar et al. 2012, 2013). In particular, we study six such approaches,
which are obtained by combining each of (under/over) sampling methods with ensemble
learning techniques including Random Forest (RF), Bagging, and AdaBoost classifiers. Our
initial experimental studies (refer to A5) demonstrated the superiority of using Radial Basis
Function (RBF) kernel over linear kernel when implementing SVM algorithm. So, in our
implementations, we onlyworkwith SVMs equippedwith RBF kernels. The nonlinear kernel
is often prohibitive on too big data because of the complexity. In such cases, acceleration tech-
niques such as multilevel SVM (Razzaghi et al. 2016; Razzaghi and Safro 2015) can be used.

3 Results and discussion

3.1 Classifier evaluationmetrics

Several metrics have been proposed to validate the results of a classification algorithm.
Accuracy, Precision, Sensitivity, Specificity, G-mean, F-Measure, and the area under the
ReceiverOperatingCharacteristic (ROC) curve are fewof commonmetrics, which aremainly
computed from the Confusion Matrix as depicted in Table 1 (Gu et al. 2009).

Accuracy = T P + T N

T P + FP + T N + FN
(7)

Sensitivity = T P

T P + FN
, Specificity = T N

T N + FP
(8)

G-mean = √
Sensi tivi t y ∗ Speci f ici t y (9)

F-measure = 2T P

2T P + FP + FN
, Precision = T P

T P + FP
(10)
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Table 1 Confusion matrix for
binary classification problem

Positive class Negative class

Positive class True positive (TP) False positive (FP)

Negative class False negative (FN) True negative (TN)

Note that since the bariatric surgical complication datasets are highly imbalanced, some of the
metrics above may produce misleading interpretations [e.g., “Accuracy” performance metric
as stated byGalar et al. (2012)].Here,we putmore emphasis on theG-mean performancemet-
rics due to the fact that it reflects both “Specificity” and “Sensitivity”measures.Moreover, we
report the area underROCcurve,whichplots “Sensitivity” versus “Specificity.”TheROCarea
measures the ability of the classifier to classify the majority and minority classes correctly.

3.2 Results

In this section, we present the detailed results of our study including the data preparation,
feature selection, and classification. We start by providing details about the data preparation
regarding the patients’ characteristics (including both demographic and clinical attributes)
and discuss the outcomes next. Finally, we state the results of our implementations.

3.2.1 Patients characteristics

The Premier Healthcare Database contains no patient-identifiable information, and the
patients cannot be tracked across institutions; their visits to the same hospital can be tracked
using theMEDRECKEY; the PATKEYwould represent each individual visit to that institution
andwould be different for each visit. Through a careful study of the database records between
2011 and 2014, we have observed more than 4M patients’ visits along with more than 50M
records about the diagnoses/procedures occurred during those visits. To store and query such
a massive amount of data, we employ MySQL a© Community Server (as depicted in Fig. 1).
By employing the ICD-9 codes for T2DM, Obesity, and BAR, we also extract only those
records that belong to T2DM patients with Obesity, who have undergone BAR. (Please refer
to Table A1 in the Appendix for the ICD-9 codes.) These include 11636 patients. In the rest
of this section, we limit our focus to such records.

In selecting the most significant features for our predictive model, we heavily rely on
previous studies in Johnson et al. (2012, 2013) and Stamler et al. (1993), which are conducted
bymedical researchers. For the demographic data, we collect each patient’s gender, ethnicity,
insurance provider, age, and marital status. That is, five candid attributes of demographic
data has been stored for each patient. Note that these attributes are recorded at all visits
that each patient makes. Therefore, as mentioned in Remark 1, variations in the age and
marital status can be substantial and must be taken into account. We explain our remedies to
cope with this issue next. Within the records of the patients under of our study, we observed
a variation of less than 2 for the age, so we decided to work with the average of the age
feature. Regarding the marital status, three possible states had originally been defined within
the Mart Stat field in the Premier Healthcare Database: (1) Married, (2) Single, and (3)
Other. However, we observed that a patient’s marital status might change between the date
of BAR and the outcome under study. Hence, we considered six more possible values for the
marital status, which reflect the possible change in the marital status. For each patient, we
first let the Mart Stat field be the marital status at the time of bariatric surgery. Depending
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Table 2 Patient demographic attributes

Feature Value Frequency Feature Value Frequency

Gender Female 8259 (70.9%) Married (M) 3867 (33.2%)

Male 3377 (29.1%) Single (S) 5834 (50.1%)

Ethnicity White 7780 (66.8%) Other (O) 1839 (15.9%)

Black 1553 (13.4%) Marital status M to S 15 (0.1%)

Other 2303 (19.8%) M to O 21 (0.2%)

Insurance Medicare 3305 (28.4%) S to M 27 (0.2%)

Medicaid 1130 (9.7%) S to O 13(0.1%)

Managed care 5208 (44.8%) O to M 8 (0.1%)

Commercial 1101 (9.4%) O to S 12 (0.1%)

Self-pay 221 (1.9%) Age Varies in 13–86

Other 671 (5.8%) Years old.

Table 3 Patient clinical attributes

Feature Frequency Feature Frequency

COPD 2978 (25.6%) Coronary artery disease 1179 (10.1%)

Diabetic manifestations 416 (3.6%) Transient ischemic attack 11 (0.1%)

Tobacco abuse 590 (5.1%) Sleep apnea 2337 (20.1%)

Hypertension 9074 (77.9%) Dyslipidemia 7457 (64.9%)

on the outcome under study, if the patient maintains the same marital status at the date of
the outcome occurred, we leave this field unchanged. Otherwise, depending on the change
in the marital status, we let Mart Stat take one of the following six values: (4) Married to
Single, (5) Married to Other, (6) Single to Married, (7) Single to Other, (8) Other to Single,
and (9) Other to Married. To include the clinical history of the patients into our analysis,
we also collect information about eight comorbid conditions/diseases [as stated in Johnson
et al. (2012)] as candid features using their associated ICD-9 codes. We include these candid
clinical-based features provided that the condition/diagnosis have occurred earlier than the
BAR date. Tables 2 and 3 show the general information regarding the patients’ demographic
data and clinical attributes, respectively.

It is worth mentioning that for this period of study, the patients under study were between
13 and 86years old and had no previous history of myocardial infarction (MI), angina,
congestive heart failure, stroke, and blindness in at least one eye.

3.2.2 Outcomes

Based on the study by Johnson et al. (2013), we refer to seven common outcomes that can
occur after any of the four standard BAR procedures (as mentioned in Sect. 2). Table 4 state
these outcomes along with their frequencies within the patients under study. According to
Table 4, the number of patients in the class of risks/outcomes (positive class) is extremely
fewer than the number of patients of the class of no risks/outcomes (negative class). Hence,
this data is highly imbalanced and justifies our choice of using special classification methods.
Note that none of the “Blindness,” “Myocardial Infarction,” and the “Death” outcomes yield
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Table 4 Outcomes of BAR and
their frequency among patients
under study

Label Frequency

Diabetes 1543 (13.2%)

Heart failure 396 (3.4%)

Stroke 43 (0.3%)

Angina 51 (4.4%)

Myocardial infarction 4 (0.03%)

Death 0

Blindness 6 (0.05%)

a reasonable-size data set for data-mining techniques. Hence, we limit our study to four
outcomes: Diabetes, Angina, Heart Failure, and Stroke.

3.2.3 Implementation

In this section, we describe experimental results using both random undersampling and over-
sampling (SMOTE) in combination with base classifiers and widely-used ensemble learning
algorithms (as stated in Sect. 2.3). We implement our approaches using Waikato Environ-
ment for Knowledge Analysis known asWEKA (Witten et al. 2016). WEKA is a free license
workbench developed to perform predictive modeling and data analysis and includes several
modules. In particular, we use WEKA Explorer module to implement various classification
algorithms. We also employ feature selection tool available in WEKA.

For both undersampling and oversampling methods, the desired ratio of the class sizes
is considered to be 50:50. For the oversampling (SMOTE) technique, we employ 5-nearest
neighbors (5NN) algorithm to create new instances of the minority class. Euclidean distances
are used to compute the necessary closeness values for the 5NN technique embedded within
SMOTE method. Finally, we employ 10-fold cross-validation to calculate the estimates of
the performance metrics.

Our work lies in the context of the one-against-all multi-class classification problem. The
classification task is conducted to find out whether a patient suffers from an outcome or not
(nomatter if the patient develops other issues or not). Table 5 reports the performancemetrics
for the three feature selection methods when applied to the classification problems for the
Diabetes outcome. Note that for each classification algorithm and each performance metric,
we report the results of both undersampling (in column “U”) and oversampling (in column
“O”) methods. We have reported similar information regarding Angina, Heart Failure and
the other three outcomes in the Appendix in tables A2, A3, and A4, respectively.

To obtain an idea about the performance of each feature selection method, we also report
the selected number of features. In particular, for each outcome, we report the number of
original features as well as the number of selected features that have been employed by
the best classifier (which is determined as having the highest value of G-mean performance
metric for that outcome). Table 6 demonstrate such information.

3.3 Discussion

According to Tables 5, A2–A4, the oversampling method dominates the undersampling
methodwhen both considered for ensemble learning classifiers and the same feature selection
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Table 6 Summary of the result for best feature selection and classification of each outcome

Outcome Classifiers Feature selection ‖Selected Features‖ G-mean ROC area

Diabetes Bagging Chi-squared 24 0.84 0.91

IG 21 0.84 0.91

CFS 8 0.84 0.91

Angina RF Chi-squared 25 1.00 1.00

IG 21 1.00 1.00

CFS 14 1.00 1.00

Bagging Chi-squared 25 1.00 1.00

IG 21 1.00 1.00

Heart failure RF Chi-squared 22 0.95 0.98

IG 20 0.95 0.98

Stroke RF Chi-squared 25 1.00 1.00

IG 21 1.00 1.00

CFS 13 1.00 1.00

The number of original features is 25

technique. We observe, for example, the former method can produce an improvement of
about 30% in some cases. For example, for the “Heart Failure” outcome reported in Table
A3, compare the methods using the G-mean when they are used within Random Forest
classifierwith any feature selection technique. The oversamplingmethod also outperforms the
undersampling method when both considered for 5NN, C4.5, and SVM base classifiers with
any feature selection technique. We relate this result to the loss of valuable information that
is more likely in undersampling technique due to removing instances from the majority class
(which could negatively affect building an accurate model). For the RBFNmethod, however,
we observe slightly better G-mean values for the undersampling method. The difference
between methods when employed with Naïve Bayes and LR are indistinguishable (with the
Stroke outcome as the exception for Naïve Bayes). The “CFS” feature selection method
is very slightly outperformed by the “Chi-Squared” and the “Information Gain” feature
selection methods in some cases (i.e., combinations of classifiers and sampling method) for
all outcomes, although they remain indistinguishable. An interesting exception occurs when
this behavior is studied for RBFN base classifier, which reveals the superiority of “CFS”
to the other two feature selection methods for all outcomes. This agrees with some present
studies (Karegowda et al. 2010).

In general, the ensemble learning classifiers yield better performance metrics compared
to base classifiers when studying all outcomes. The highest performance values for these
classifiers are attained when oversampling method is employed. Within ensemble learning
classifiers, we observe that “AdaBoost” classifier is almost always outperformed by the
“Random Forest” and “Bagging” classifiers. This result is held for all performance metrics.
Within base classifiers, the “5NN” and the “C4.5” classifiers result in best G-mean values in
all outcomes followed by the “SVM” classifier.We note that while the best performance of the
RBFN classifier may occur using any of the sampling methods, it is always outperformed by
the “NaïveBayes” and “LR” base classifiers. The difference between the two latter classifiers,
however, is not substantial in terms of the G-mean performance metric.

Based on Tables 5, A2–A4, the best approach to classify the Diabetes outcome is the
combining of any of feature selection methods and Bagging classifier, which produces 84%
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classificationG-mean and 91%ROC area value. In the classification of Angina outcome, both
RandomForest classifier (independent from our choice of feature selectionmethod) and Bag-
ging classifier (when combinedwith either InformationGain or Chi-squared feature selection
methods) produce the highest classification G-mean and ROC area values. The best methods
for the classification of Heart Failure outcome data set are combining either Information Gain
or Chi-squared feature selection methods with Random Forest classifier, which yields 95%
G-mean and 98% ROC area values. The next best choice here is obtained by combining the
Information Gain or Chi-squared feature selection with Bagging classifier. The Random For-
est also yields the highest performancevalues for the classificationofStroke independent from
our choice of feature selectionmethod. Interestingly, both theBagging and theC4.5 classifiers
are ranked the second best alternative, in this case, yielding 99% G-mean value and 100%
for the ROC area value. Table 6 reports the best approaches for each outcome. It also states
the actual number of selected features that have been used by the feature selection methods.

4 Conclusion

This paper proposes the application of imbalanced classification techniques to identify
bariatric surgery’s complications for each patient. By extracting the required data sets from
the Premier Healthcare Database, we investigate various data-mining methods to determine
the risk group of a particular patient, including commonly-used base classifiers as well as
ensemble learning and sampling methods to mitigate the effects of the imbalanced data set.
Furthermore, we compare the advantage of using well-known feature selectionmethods prior
to classification. Our results show that the combination of a suitable feature selection method
with ensemble learningmethods equippedwith Oversampling (SMOTE)method can achieve
higher performance metrics.
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