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Linear ordering problems are combinatorial optimization problems that deal with the minimization
of different functionals by finding a suitable permutation of the graph vertices. These problems are
widely used and studied in many practical and theoretical applications. In this paper, we present a
variety of linear–time algorithms for these problems inspired by the Algebraic Multigrid approach,
which is based on weighted-edge contraction. The experimental result for four such problems turned
out to be better than every known result in almost all cases, while the short (linear) running time
of the algorithms enables testing very large graphs.
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1. INTRODUCTION

The objective of the class of linear ordering problems is to minimize different
functionals by finding a suitable permutation of the graph vertices [Dı́az et al.
2002]. This class contains many graph (or matrix) layout problems such as:
the minimum p-sum, the workbound reduction, the wavefront, the envelope
size, etc. Some problems, such as finding the minimum linear arrangement
[Safro et al. 2006a] or the bandwidth [Lai and Williams 1999], appear in many
applications designed for solving problems in the large sparse matrix computa-
tion. Some other are closely related to the problem of calculating the envelope
size of a symmetric matrix or, more precisely, to the amount of work needed
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in the Cholesky factorization of such a matrix [George and Pothen 1997]. Lin-
ear ordering problems may also be motivated as a model used in VLSI design
[Cheng 1987] and may be used in several biological applications, graph draw-
ing, and other fields (see [Dı́az et al. 2002; Lai and Williams 1999; Horton 1997;
Shahrokhi et al. 2001]). Commonly for general graphs (or matrices) these prob-
lems are NP-hard and their decision versions are NP-complete [Garey et al.
1974].

Since these problems have a practical significance, many heuristic algo-
rithms were developed in order to achieve near optimal solution. Among the
most successful are spectral sequencing [Juvan and Mohar 1992], optimally
oriented decomposition tree [Bar-Yehuda et al. 2001], multilevel-based [Koren
and Harel 2002; Hu and Scott 2001], simulated annealing [Petit 2003], and
others. Some of these algorithms have proved themselves superior in solution
quality while others in execution time.

One of the most popular and exploitable methods designed to achieve a
suitable linear ordering for different problems is the spectral sequencing (SS)
[Juvan and Mohar 1992]. This approach consists of ordering the graph ver-
tices according to the sorted coordinates of the second eigenvector of the graph
Laplacian. The heuristic argumentation of SS is based on the fact that the
continuous version of the minimum two-sum problem (see Section 2) can be
solved by this method to the optimum [Juvan and Mohar 1992]. In practice, for
the (discrete) minimum two-sum it was shown in Safro et al. [2006b] that the
direct application of SS (without additional reinforcement postprocessing) on
“real-world instances” does not achieve good enough results, while the lower
bounds based on SS are very far from the best known ordering costs. Rather
poor results of the exact SS were presented in Corso and Romani [2001a] for the
minimum bandwidth problem. Better results were shown there by using differ-
ent approximated SS, i.e., by calculating the second eigenvector less precisely.
In fact, they have tested 19 algorithms (17 of which are different versions of SS)
and presented the best achieved results among all. In Section 4, we show the
significant improvement achieved by our algorithm over all those algorithms;
on average, our results were better by 34%.

In this paper we present a general framework of multilevel algorithms espe-
cially designed for linear ordering problems. Our strategy is based on the alge-
braic multiGrid scheme (AMG) [Brandt et al. 1982, 1984; Brandt 1986; Briggs
et al. 2000; Ruge and Stüben 1987; Stüben 2001a, 2001b]. While in previous
works we have developed and tested special multilevel algorithms for solving
the minimum linear arrangement problem [Safro et al. 2006a] and the mini-
mum two-sum problem [Safro et al. 2006b], in this article we demonstrate how
the building blocks of the general multilevel approach can be used in various
ways to make it suitable for solving more involved functionals. In particular,
we present two algorithms: we show how the bandwidth of a graph can be
approximated by a continuation approach in which a sequence of increasing p-
sum problems are involved until p is large enough to be considered infinite for
practical purposes; in addition, we use the minimum two-sum problem result
as a first approximation for the workbound reduction problem, which is then
improved by a postprocessing of local minimizations with actual use of the
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workbound functional. In fact, we propose to use the ordering obtained by the
minimum two-sum problem as a first approximation for other linear ordering
problems, as demonstrated for the wavefront-reduction problem.

The main objective of a multilevel-based algorithm is to create a hierarchy
of problems, each representing the original problem, but with fewer degrees of
freedom. General multilevel techniques have been successfully applied to var-
ious areas of science (e.g. physics, chemistry, and engineering) [Brandt 2001;
Brandt and Ron 2003]. AMG methods were originally developed for solving lin-
ear systems of equations resulting from the discretization of partial differential
equations. Lately, they have been applied to various other fields, yielding, for
example, novel methods for image segmentation [Sharon et al. 2000] and for
the linear arrangement problem [Safro et al. 2006a]. In the context of graphs,
it is the Laplacian matrix that represents the related set of equations. The
main difference between our approach to most other multilevel approaches (re-
lated to various graph optimization problems) is the coarsening scheme. While
the previous approaches may be viewed as strict aggregation process, the AMG
coarsening is actually a weighted aggregation (as will be explained below): each
node may be divided into fractions, with different fractions belonging to differ-
ent aggregates. This enables more freedom in solving the coarser levels and
avoids making hardened local decisions, such as edge contractions, before ac-
cumulating the relevant global information.

One of the important achievements of our work is the general coarsening
that turns out to be suitable for all the different functionals we have tested.
This fact can be explained by the way the hierarchy of problems is constructed:
variables are eliminated within the coarsening phase only and exactly when
they show strong dominant connections to the remaining (noneliminated) vari-
ables. This, in turn, guarantees that the solution of the eliminated variables
is naturally obtained once the noneliminated variables are solved. The vari-
ous algorithms thus differ only in the disaggregation process, which follows
by projecting to a finer level the final arrangement obtained on a coarser level.
This initial fine-level arrangement is being further improved by applying differ-
ent local reordering methods. We have developed a simultaneous minimization
of several vertices called window minimization. In its basic application (for
the two-sum problem [Safro et al. 2006b]) it involves the minimization of a
quadratic form. Here we show how to quadratize other functionals. Also, we
suggest the use of numerical calculation rather than analytic, for instance, in
calculating derivatives. Finally, our postprocessing is intensified by simulated
annealing (SA) [Kirkpatrick 1981], which is a general method to escape local
minima. In the multilevel framework, SA is aimed at searching only for local
changes that guarantee the preservation of large-scale solution features inher-
ited from coarser levels.

We will not discuss here theoretical complexity issues, such as lower and
upper bounds for the solution cost. We are not interested in worst possible sce-
narios or in random instances. Our focus is on practical high-performance and
low-cost computational algorithms that will outperform existing algorithms by
providing better results in less running time. For that purpose, we used a known
benchmark [Davis 1997] from which we took graphs of various origins and sizes,
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including very large instances. Our multilevel algorithm exhibits linear com-
plexity, i.e., the computational running time is proportional to |V | + |E|.

We compared the results obtained by our multilevel algorithms with many
previously described algorithms. In this paper, we present the results of the
bandwidth problem and the workbound problem and show that our results are,
on average, better than previous ones by about 30%, while the running time
for graphs with about 104 nodes and 105 edges is less than 1 min. In general,
our experimental results show that the AMG framework can be used for linear
ordering problems to obtain high-quality results in linear time while using the
exact same set of parameters. The implemented algorithm can be downloaded
from [Safro].

The paper is arranged as follows. The various functionals and their gen-
eralizations are described in Section 2. The multilevel algorithm along with
additional optimization techniques are presented in Section 3. A comparison of
our results with other works is finally summarized in Section 4.

2. DEFINITIONS AND GENERALIZATIONS

Given a weighted graph G = (V , E), where V = {1, 2, . . . , n} is the set of nodes
(vertices) and E is the set of edges. Denote by wij the nonnegative weight of
the undirected edge ij between nodes i and j ; if ij /∈ E then wij = 0. Let π be a
bijection

π : V −→ {1, 2, . . . , n}.
The purpose of linear ordering problems is to minimize some functional over
all possible permutations π . The following functional should be minimized for
the minimum p-sum problem1 (MpSP):

σp(G, π ) =
∑
i j

wij |π (i) − π ( j )|p. (1)

In the generalized form of the problem that emerges during the multilevel
solver, each vertex i is assigned with a volume (or length), denoted vi. Given the
vector of all volumes, v, the task now is to minimize the cost

σp(G, π, v)
def= σp(G, x) =

∑
i j

wij |xi − x j |p,

where xi = vi
2 + ∑

k,π (k)<π (i) vk , i.e., each vertex is positioned at its center of mass
capturing a segment on the real axis, which equals its length. The original
form of the problem is the special case where all the volumes are equal. In
particular, we would like to concentrate on the minimum bandwidth problem,
which seeks a linear layout that minimizes the maximal stretched edge, i.e.,
bw(G) = minπ maxi j wij |π (i) − π ( j )|. The minimization functional of the band-
width problem for unweighted graph (wij = 1, ∀i j ∈ E) can be formulated in

1We use this definition for simplicity, while the usual definition of the functional is σp(G, π ) =
(
∑

i j wi j |π (i) − π ( j )|p)1/p, which yields, of course, the same minimization problem.
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term of σp(G, π ):

bw(G, π ) = lim
p→∞(σp(G, π ))1/p, (2)

since σp(G, π ) for large enough p is practically dominated by the longest edge,
i.e., by the bandwidth [Juvan and Mohar 1992]. Besides the minimum band-
width problem there are two NP-hard well-known problems defined by MpSP:
(a) the minimum linear arrangement problem (where p = 1, see [Dı́az et al.
2002]) and (b) the minimum two-sum problem (where p = 2, see [George and
Pothen 1997]).

The minimization functional of the workbound reduction problem is defined
as

wb(G, π ) =
∑

i

max
j

π ( j )<π (i)

wij (π (i) − π ( j ))2. (3)

The generalized form of this problem for unweighted graph is similar to the
above derivation and the max function may be approximated by

wb(G, π, v)
def= wb(G, x) =

∑
i

max
j :x j <xi

(xi − x j )2 ≈
∑

i

( ∑
j :x j <xi

(xi − x j )p

)2/p

. (4)

3. THE ALGORITHM

In the multilevel framework a hierarchy of decreasing size graphs:
G0, G1, . . . , Gk is constructed. Starting from the given graph, G0 = G, create
by recursive coarsening the sequence G1, . . . , Gk , then solve the coarsest level
Gk directly and, finally, uncoarsen the solution back to G. This entire process
is called a V cycle. As in the general AMG setting, the choice of the coarse vari-
ables (aggregates), the derivation of the coarse problem, which approximates
the fine one and the design of the coarse-to-fine disaggregation (uncoarsening)
process are all determined automatically, as described below. The coarsening
used here is similar to the weighted aggregation we have used in solving the
minimum linear arrangement and the minimum two-sum problems [Safro et al.
2006a, 2006b]. We will briefly repeat its basic components for the completeness
of the paper.

3.1 Coarsening: Weighted Aggregation

The coarsening is interpreted as a process of weighted aggregation of the graph
nodes to define the nodes of the next coarser graph. In weighted aggregation,
each node can be divided into fractions and different fractions belong to different
aggregates. The construction of a coarse graph from a given one is divided into
three stages: first a subset of the fine nodes is chosen to serve as the seeds of the
aggregates (the nodes of the coarse graph). Then, the rules for interpolation are
determined, thereby establishing the fraction of each nonseed node belonging
to each aggregate. Finally, the strength of the connections (or edges) between
the coarse nodes is calculated.
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3.2 Coarse Nodes

The construction of the set of seeds C and its complement, denoted by F , is
guided by the principle that each F node (i.e., a node in F ) should be “strongly
coupled” to C. Also, we will include in C nodes with exceptionally large volume,
or nodes expected (if used as seeds) to aggregate around them exceptionally
large volumes of F nodes. To achieve these objectives, we start with an empty set
C. Hence, F = V . We then sequentially transfer nodes from F to C, employing
the following steps. As a measure of how large an aggregate seeded by i ∈ F
might grow, define its future volume ϑi by

ϑi = vi +
∑
j∈V

vj · wji∑
k∈V

wj k
. (5)

Nodes with future volume larger than η times the average of the ϑi ’s are first
transferred to C as most “representative.” (In our tests η = 2). The insertion
of additional fine nodes to C depends on a threshold Q (in our tests Q = 0.4),
as specified by Algorithm 1. That is, a fine node i is added to C if its relative
connection to C is not strong enough, i.e., smaller than Q . Also, vertices with
larger values of ϑi are given higher priority to be chosen to belong to C.

Algorithm 1: CoarseNodes(Parameters : Q , η)

C ← ∅, F ← V
Calculate ϑi for each i ∈ F , and their average ϑ

C ← nodes i with ϑi > η · ϑ

F ← V \ C
Sort F in descending order of ϑi

Go through all i ∈ F in descending order of ϑi

If

(∑
j∈C

wij

/ ∑
j∈V

wij

)
≤ Q then move i from F to C

Return C

3.3 The Coarse Problem

Each node in the chosen set C becomes the seed of an aggregate that will
constitute one coarse level node. Define for each i ∈ F a coarse neighborhood
Ni = { j ∈ C, wij ≥ αi}, where αi is determined by the demand that |Ni| does
not exceed the allowed coarse neighborhood size r chosen to control complexity.
(For typical values of r, consider the parameters in Safro et al. [2006b]). Let
I ( j ) be the ordinal number in the coarse graph of the node that represents
the aggregate around a seed whose ordinal number at the fine level is j . The
classical AMG interpolation matrix P (of size |V | × |C|) is defined by

PiI ( j ) =

⎧⎪⎨⎪⎩
wij /

∑
k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise.

(6)
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PiI ( j ) thus represents the likelihood of i to belong to the I ( j ) th aggregate.
Following the weighted aggregation scheme used in Sharon et al. [2000], the
edge connecting two coarse aggregates, p and q, is assigned with the weight
w(coarse)

pq = ∑
k �=l Pkpwkl Plq . The volume of the ith coarse aggregate is

∑
j v j Pj i.

Note that during the process of coarsening the total volume of all vertices is
conserved.

3.3.1 Coarsest levels. Solving the appropriate functional at the coarsest
level is performed by trying all possible arrangements. Since the amount of
work investigated at the coarsest levels is negligible compared with that of the
finest levels, many solutions can, in fact, be kept at each level whose graph
is relatively small with respect to G. In principle, this number depends on
the amount of work associated with the graph parameters of that level. In
particular, a large number of solutions is chosen at the coarsest level; they are
chosen so that they all enjoy a relatively low energy cost and are mutually
significantly different from each other. Each is then propagated to the next
finer level, being optimized there. The best solutions are chosen using the same
criteria, and so on. This variety of solutions enlarges the range of the search
by either extracting different best solutions or combining them using LCC (see
below at the end of this section).

Since we wanted to measure the standard deviation for our algorithm, we
have run it a few times for each of the given graphs by starting with a different
permutation of the nodes of G (see Section 4.1). Experiments show that the
variety of solutions generated thus is similar to those obtained by a single
run with multitude of solutions at the coarsest levels. Thus, it, became less
important to also use later. Still this approach has proved to work well for Ron
et al. [2005].

3.3.2 Disaggregation. While the same identical coarsening procedure was
used for the minimization of all our functionals, the uncoarsening only shares
the same basic structure, but the actual implementation varies from one func-
tional to another. Having solved a coarse problem, the solution to the next-finer-
level problem is initialized by first placing the seeds according to the coarse
order and then adjusting all other Fnodes while aiming at the minimization
of the arrangement cost. This first approximation is subsequently improved
by several relaxation sweeps (explained below). Then, the arrangement is im-
proved by strict minimization, possibly with added stochasticity. These are the
local reordering processes, which either accept only changes that decrease the
arrangement cost (strict minimization) or might also accept steps which in-
crease the cost (with some probability) in order to escape false local minima
(simulated annealing). The entire scheme is explained below and summarized
in Algorithm 4.

Before we turn to the details of these common stages of the disaggrega-
tion process, let us describe the structure we have used for the minimum p-
sum problem. The disaggregation scheme for the minimization of σp(G, x) is
based on continuation in the parameter p, such that p = 2 is used to exactly
solve the coarsest level, and then, at each subsequent finer level, p is increased
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(e.g., by two). Thus, every level l (other than the coarsest) minimizes σp(Gl , x)
by initialization from σp−2(Gl+1, x). Except that in cases where the desired p is
already reached on one of the coarse levels, no further continuation is employed
beyond that level. Our experiments show that the results are not sensitive to
small changes in the continuation of p, e.g., solving the coarsest level with
p = 4, or increasing p by four. In cases where p should tend to infinity (as for
the bandwidth (2)), the increase of p is continued also at the end of the V cycle
in a postprocessing procedure.

3.3.3 Initialization of the next finer level. Given is the arrangement of the
coarse level aggregates in its generalized form, where the center of mass of
each aggregate j ∈ C is positioned at xI ( j ) along the real axis. We begin the
initialization of the fine-level arrangement by letting each seed j ∈ C inherit
the position of its respective aggregate: y j = xI ( j ). At each stage of the initial-
ization procedure, define V ′ ⊂ V to be the subset of nodes that have already
been placed, so we start with V ′ = C. Then proceed by positioning each fine
node i ∈ V \V ′ at the coordinate yi in which the cost of the arrangement, at
that moment when i is being placed, is minimized. The sequence in which the
nodes are placed is roughly in decreasing order of their relative connection to
V ′, that is, the nodes which have strong connections to V ′ compared with their
connections to V are placed first. To be precise, for the minimum p-sum prob-
lem, the coordinate yi is located at its minimum (volumes are not taken into
account):

—if p = 1 then yi ∈ { y : | ∑ y j < y , j∈V ′ wij −∑
y j > y , j∈V ′ wij | is minimal}, i.e., yi is

within the median segment of the nodes in V ′ to which node i is connected,

—if p = 2 then yi =
∑

j∈V ′ y j wij∑
j∈V ′ wij

, i.e., yi is placed at the weighted average position
of y j , j ∈ V ′, to which node i is connected,

—for a general (even) p the location of yi has to minimize
∑

j∈V ′ wij ( yi − y j )p.
This is achieved numerically by several steps of Newton–Rhapson method
starting at the p = 2 solution.

Then V ′ ← V ′∪{i} and the process continues until V ′ = V . Finally each position
yi is changed to

xi = vi

2
+

∑
yk< yi

vk , (7)

thus retaining order while taking volume (length) into account. This solution
is now feasible, i.e., there is no overlap between any pair of nodes.

3.3.4 Relaxation. The arrangement obtained after the initialization is
a first feasible solution for the MpSP, which is then improved by employ-
ing several sweeps of relaxation, first compatible then Gauss–Seidel-like (see
Algorithm 2). These two types of relaxation are very similar to the above ini-
tialization: The compatible relaxation, improves the positions of the F nodes
one by one according to the minimization criteria above (where V ′ = V ), while
keeping the positions of the seeds (C-nodes) unchanged. The Gauss–Seidel-like
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relaxation is similarly performed, but for all nodes (including C). Each such
sweep is again followed by Equation (7).

Algorithm 2: Compatible/Gauss–Seidel-like relaxation(current feasible order x)

Initialize yi = xi for all i ∈ V
For all i ∈ F (in case of the Gauss–Seidel-like relaxation i ∈ V )

If p = 1 then yi has to minimize | ∑ y j < yi , j∈V wij − ∑
y j > yi , j∈V wij |

If p = 2 then yi =
∑

j∈V y j wi j∑
j∈V wij

If p > 2 then yi has to minimize
∑

j∈V wij ( yi − y j )p

End
For all i ∈ V recalculate the new feasible order xi = vi

2 + ∑
yk< yi

vk

Return

3.4 Window Minimization

The cost of the arrangement can be further reduced by strict minimization, i.e.,
a sequence of rearrangements that accepts only changes that decrease the ar-
rangement cost. Since done in the multilevel framework, it can be restricted at
each level to just local changes, i.e., reordering small sets of neighboring nodes,
which are adjacent (or relatively close) to each other at the current arrange-
ment. It is easy to see that switching positions between several adjacent nodes
is inexpensive, since the resulting new arrangement cost can be calculated only
at the vicinity of the adjustment and not elsewhere. Such a node-by-node min-
imization was applied in our algorithm for the minimum linear arrangement
problem (one-sum problem, see Safro et al. [2006a]). This method may also be
used for any functional. However, for the minimum two-sum problem, we have
introduced a more advanced method of local minimization, called window min-
imization (WM), which is suitable not only for the multilevel framework but
can also be used as local postprocessing relaxation in other frameworks (like
the spectral approach). The difference between WM and simple node by node
minimization is that WM simultaneously minimizes the arrangement cost of a
small number of nodes (e.g., 5–20).

We have described the basic WM involving the quadratic form for p = 2
in Safro et al. [2006b]. Here we show some possible generalizations. Given a
current approximation x̃ to the arrangement of the graph, denote by δi a small
correction to x̃i. Let W = {i1 = π−1(s + 1), . . . , iq = π−1(s + q)} be a window, i.e.,
q successive vertices in the current arrangement, positioned at x̃i1 , . . . , x̃iq . The
local minimization problem of the power p functional associated with a given
window W can be formulated as follows:

minimize σp(W, x̃, δ) = 1
2

∑
i, j∈W

wij (x̃i + δi − x̃ j − δ j )p + 1
2

∑
i∈W
j �∈W

wij (x̃i + δi − x̃ j )p.

(8)

Since we seek for small corrections δi to the current approximation x̃i, the p-
power term in σp(W, x̃, δ) can be quadratized by evaluating out the current p−2
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power into the coefficient wij , leaving only quadratic terms as desired. Define
ŵi j = wij (x̃i − x̃ j )p−2, then the WM follows by substituting ŵi j in (8). The new
functional σ̂2(W, x̃, δ) involved in the corresponding minimization problem is
given by

minimize σ̂2(W, x̃, δ) = 1
2

∑
i, j∈W

ŵi j (x̃i + δi − x̃ j − δ j )2 + 1
2

∑
i∈W
j �∈W

ŵi j (x̃i + δi − x̃ j )2.

(9)

To prevent the possible convergence of many coordinates to one point (as the
minimization of the energy would tend to do), and, more precisely, to express
the aim of having {xi +δi}i∈W an approximate permutation of {xi}i∈W, one should
add constraints of the form∑

i∈W

(x̃i + δi)mvi =
∑
i∈W

x̃i
mvi , m = 1, 2 (10)

where for m = 2 we have neglected the (presumably small) quadratic term in δi.
Note that the sums

∑
i∈W x̃i

mvi for m = 1, 2 are invariant under permutations.
Using Lagrange multipliers (λ1 and λ2), the final formulation of the WM is:

minimize ̂̂σ 2(W, x̃, δ, λ1, λ2) = σ̂2(W, x̃, δ) + λ1

∑
i∈W

δivi + λ2

∑
i∈W

δivi x̃i, (11)

under the second and third constraints of Equation (12) below, yielding the
following system of equations: ∂̂̂σ 2

∂xi
= 0, for i = 1, . . . , q and ∂̂̂σ 2

∂λi
= 0, for j =

1, 2, i.e.,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
j∈W

wij (δi − δ j ) + δi

∑
j �∈W

wij + λ1vi + λ2vi x̃i =
∑

j

wij (x̃ j − x̃i) for i = 1, . . . , q∑
i

δivi = 0∑
i

δivi x̃i = 0.

(12)

Usually in a correct multilevel framework, the changes δi are supposed to be
relatively small, since the global approximation for the arrangement is inher-
ited from the coarser levels. Their smallness is effected by the very restriction of
the minimization to one window at a time. After solving the system (12), every
vertex i ∈ W is thus positioned at yi = x̃i + δi. Feasibility with respect to the
volumes of the nodes is retained by applying Equation (7). Since the size and
location of W are quite arbitrary, the energy cost of the new subarrangement
can be further improved by Gauss–Seidel-like relaxation sweeps applied to an
enlarged window W, where, say 5% of the window’s size at each end (if possi-
ble) are added to W. As usual, each sweep is followed by (7). The final obtained
energy cost is then compared with the one prior to all the window changes. The
minimum of the two is accepted, updating x̃.

A sweep of WM with a given window size q consists of a sequence of over-
lapping windows, starting from the first node in the current arrangement and
stepping by �q

2 � for each additional window. One such sweep is employed for
every given q, while a small number of different q’s is used (for actual values
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see Sections 4.1 and 4.2). Our experiments show that the algorithm is robust
to changes in the chosen q’s. Note that because of the multiscale framework,
only bounded values of q need be used, which guarantees linear execution time
of the entire algorithm. The WM is summarized in Algorithm 3 (actual values
for q and k1 are given at the end of the section).

Algorithm 3: WindowMinimization(graph G, current order x̃, window length q,
power p)

Parameter: k1

For i = 1 To |V | − q + 1 Step i = i + � q
2 �

W = {π−1(i), . . . , π−1(i + q − 1)}
Store x̃|W
Define ̂̂σ 2(W, x̃, δ, λ1, λ2)
Solve the system of equations (12)
Apply k1 sweeps of Gauss–Seidel-like relaxation on the enlarged W with x̃ + δ

Make the solution feasible by applying (7)
Restore x̃|W if the arrangement cost has been increased

Return x̃

For the bandwidth problem, where p should tend to infinity, additional WM
sweeps with further increase of p are employed at the end of the V cycle as a
postprocessing procedure. More details are provided in Section 4.1.

A more involved example is the workbound reduction problem. Using
Equation (4), the respective functional for W can be approximated by

wb(W, x̃, δ) ≈
∑
i∈W

( ∑
j∈W, x̃ j <x̃i

(x̃i + δi − x̃ j − δ j )p

+
∑

j �∈W, x̃ j <x̃i

(x̃i + δi − x̃ j )p
)2/p

= wbp(W, x̃, δ), (13)

where p should tend to infinity so that the longest edges become dominant as
desired. The quadratization of Equation (13) is achieved by Taylor expansion
up to the third term as follows

wbp(W, x̃, δ) ≈ wbp(W, x̃, 0) +
∑
i∈W

∂wbp

∂δi
(W, x̃, 0)δi +

∑
i, j∈W

∂2wbp

∂δi∂δ j
(W, x̃, 0)δiδ j .

(14)
Thus, the system of equations to be solved is composed of q equations of the
form ∂wbp

∂δi
= 0 and constraints (10). In our experiments, this minimization was

applied only as a postprocessing procedure right after completing the V cycle
for σ2(G). Each ith iteration of WM was done with sequentially growing even
power parameter p. Since the involved analytic derivatives of Equation (14)
are rather lengthy, it is easier and more efficient to use numerical derivatives.

3.4.1 Adding stochasticity. A general method to escape false local minima
and advance to lower costs is to replace the strict minimization by a process
that still accepts each candidate change, which lowers the cost, but also assigns
a positive probability for accepting a candidate step, which increases the cost
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of the arrangement. The probability assigned to a candidate step is equal to
exp(−δ/T ), where δ > 0 measures the increase in the arrangement cost and
T > 0 is a temperaturelike control parameter, which is gradually decreased
toward zero. SA [Kirkpatrick 1981], in large problems, would usually need to
apply very gradual cooling (decrease of temperatures), making it extremely
slow and inefficient for obtaining global optimum.

In the multilevel framework, however, the role of SA is somewhat different.
At each level it is assumed that the global approximate solution has been in-
herited from the coarser levels and, thus, only local, small-scale improvements
are needed. We have developed a multilevel simulated annealing tool for the
linear ordering problems in which the search space for some improvement at
every step is small enough to be very local. For that purpose, we have started
at relatively high T , lowered it substantially at each subsequent sweep until
strict minimization is employed.

Repeated heating and cooling is successively employed for better search
over the local landscape. This search can be further enhanced by the intro-
duction of a “memory like” tool consisting of an additional permutation, which
stores the best-so-far (BSF) observed arrangement. Henceforth, the BSF is be-
ing occasionally updated by the procedure called lowest common configura-
tion (LCC) [Brandt et al. 1986], which enables the systematic accumulation of
subpermutations into it over a sequence of different arrangements, such that
each BSF subpermutation exhibits the best minimal suborder encountered so
far. The cost of the obtained BSF is, at most, the lowest cost of all the arrange-
ments it has observed, and usually it is lower. The use of LCC becomes more im-
portant for larger graphs, where it is expected that the optimum of a subgraph
is only weakly dependent on other subgraphs. The BSF is improved by the LCC
procedure, which updates parts of it taken from the new arrangements reached
right after each heating–cooling procedure. All these accumulated updates are
thus stored at the BSF, which actually provides the current calculated mini-
mum. The complete description of the LCC algorithm is given in Ron [1990],
Safro et al. [2006a], and Ron et al. [2005].

The entire disaggregation procedure for the minimum p-sum problem is sum-
marized below in Algorithm 4.

Algorithm 4: Disaggregation(coarse level C, fine level F)

Parameters: k2, k3

Decide on the appropriate power p
Initialize F from C
Apply k2 sweeps of compatible relaxation on F
Apply k3 sweeps of Gauss–Seidel-like relaxation on F
Apply Window Minimization on F
Possibly Apply Simulated Annealing on F
If F is the finest level add postprocessing of minimization

Return the linear order of F

We tested many options for the window sizes in Algorithm 3. Usually these
sizes were relatively small and very robust to changes. In our implementation,
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we used WinSizes = {5, 10, 15, 20, 25, 30}, however similar results were
obtained with other sets of windows, for example, WinSizes = {5, 9, 17, 23, 29}.
The results presented in Tables I and II were received with the following param-
eters: k1 = 5 (used in the WM); k2 = 10 (the number of sweeps of compatible
relaxation); k3 = 10 (the number of sweeps of Gauss–Seidel relaxation) and
with no use of SA.

4. RESULTS AND RELATED WORK

We have implemented and tested the algorithm using standard C++,
LAPACK++ [Pozo et al. 1993] and LEDA libraries [Mehlhorn and Näher 1995]
on Linux 1.7GHz machine. The implementation is nonparallel and not fully
optimized.

4.1 Previous Work: The Minimum Linear Arrangement and the Minimum
Two-Sum Problems [Safro et al. 2006a, 2006b]

We have evaluated our algorithm on the benchmarks provided in Petit [2003],
Koren and Harel [2002], and George and Pothen [1997]. Most successful com-
petitive heuristics were: spectral sequencing, optimally oriented decomposition
tree, multilevel based, simulated annealing, genetic hillclimbing, and some of
their combinations. Almost all best known results and/or corresponding run-
ning time were significantly improved.

4.2 Bandwidth

There are many different theoretical and practical results for the bandwidth
problem (e.g., Campos et al. [2001]; Pinana et al. [2004]; Caprara and González
[2005]; Dueck and Jeffs [1995]; Martı́ et al. [2001]; Lim et al. [2006]), to mention
just a few. However, only a small number allow tests on large inputs within a
reasonable execution time (e.g., Barnard et al. [1995]; Corso and Romani [2001b,
2001a]). Since we believe that a fair comparison of two heuristics should include
final results as well as running times and since our algorithm is able to deal
with very large instances, we have thus chosen to test it on the test suites of
Barnard et al. [1995] and Corso and Romani [2001b, 2001a], which include
large enough graphs to make the picture complete. These graphs are presented
at the leftmost three columns of Table I.

We compare our results to the best results achieved in Barnard et al. [1995]
and Corso and Romani [2001b, 2001a], presented in column “bk∞” of Table
I. These results are the best obtained by testing many (e.g., 19 in Corso and
Romani [2001a]) different algorithms, most of which are versions of the spectral
approach. That is, ordering the graph vertices according to the sorted coordi-
nates of the second eigenvector of the graph’s Laplacian A (a |V |× |V | matrix),
whose terms are defined by

Aij =
⎧⎨⎩

−wij for ij ∈ E, i �= j
0 for ij �∈ E, i �= j∑

k �=i wik for i = j .
(15)

Our results (columns “M5,” “M10,” and “M200”) are given as ratios to theirs,
i.e., to column “bk∞.” “M5” introduces the results obtained by one V cycle with
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Table I. Comparison of Three V Cycles with the Previous Best Known Results for the Bandwidth
and the Workbound Problems

Bandwidth Workbound
Graph |V | |E| bk∞ M5 TM5 M10 M200 bkwb σ2 σ2+WM
3dtube 4.5E+04 1.6E+06 2334 0.89 11.00 0.87 0.81 1.48E+11 1.04 0.99
add20 2.4E+03 5.4E+03 711 0.60 0.03 0.55 0.50 9.78E+07 0.39 0.20
add32 5.0E+03 7.4E+03 669 0.03 0.05 0.03 0.03 1.67E+07 0.02 0.01
barth 6.7E+03 2.0E+04 200 0.76 0.12 0.72 0.64 4.09E+07 0.99 0.88
barth4 6.0E+03 1.7E+04 213 0.60 0.10 0.58 0.55 3.23E+07 0.76 0.71
barth5 1.6E+04 4.6E+04 370 0.65 0.30 0.63 0.57 1.89E+08 0.93 0.88
bcspwr08 1.6E+03 2.2E+03 131 0.63 0.03 0.63 0.53 1.10E+06 0.76 0.64
bcspwr09 1.7E+03 2.4E+03 123 0.68 0.07 0.65 0.57 1.18E+06 0.76 0.63
bcspwr10 5.3E+03 8.3E+03 288 0.68 0.18 0.63 0.52 1.43E+07 0.85 0.71
bcsstk12 1.4E+03 1.6E+04 109 0.61 0.10 0.61 0.57 4.29E+06 0.87 0.83
bcsstk13 2.0E+03 4.1E+04 546 0.69 0.20 0.64 0.60 1.63E+08 0.80 0.58
bcsstk24 3.6E+03 7.8E+04 227 0.79 0.29 0.80 0.79 7.10E+07 1.01 1.00
bcsstk29 1.4E+04 3.0E+05 838 0.68 1.48 0.67 0.63 1.09E+09 0.85 0.78
bcsstk30 2.9E+04 1.0E+06 2512 0.50 3.15 0.48 0.43 4.32E+09 0.91 0.67
bcsstk31 3.6E+04 5.7E+05 1104 1.14 3.50 1.03 0.78 1.97E+10 0.60 0.51
bcsstk32 4.5E+04 9.9E+05 2339 0.97 4.50 0.87 0.71 2.83E+10 0.61 0.47
bcsstk33 8.7E+03 2.9E+05 519 1.12 1.55 1.03 0.99 1.93E+09 0.98 0.87
bcsstk35 3.0E+04 7.1E+05 1764 0.69 3.16 0.66 0.55 1.00E+10 0.74 0.62
bcsstk36 2.3E+04 5.6E+05 1474 0.70 2.71 0.67 0.57 8.52E+09 0.74 0.66
bcsstk37 2.6E+04 5.6E+05 1373 0.75 3.06 0.70 0.59 1.45E+10 0.49 0.44
bcsstk38 8.0E+03 1.7E+05 669 0.64 0.60 0.58 0.55 4.52E+08 0.84 0.69
bcsstm13 6.5E+02 9.9E+03 171 0.62 0.06 0.62 0.60 6.50E+06 0.89 0.78
blckhole 2.1E+03 6.4E+03 105 1.15 0.13 1.11 0.96 8.91E+06 0.98 0.85
bus1138 1.1E+03 1.5E+03 106 0.61 0.06 0.59 0.51 5.52E+05 0.85 0.69
bus685 6.9E+02 1.3E+03 83 0.47 0.05 0.46 0.42 2.28E+05 0.82 0.70
can1054 1.1E+03 5.6E+03 121 0.74 0.06 0.73 0.67 2.59E+06 1.00 0.67
can1072 1.1E+03 5.7E+03 159 0.81 0.06 0.78 0.74 4.08E+06 0.90 0.55
can445 4.5E+02 1.7E+03 78 0.76 0.02 0.74 0.71 9.12E+05 0.93 0.80
can838 8.4E+02 4.6E+03 126 0.77 0.03 0.75 0.71 2.80E+06 0.98 0.66
ct20stif 5.2E+04 1.3E+06 3187 1.30 6.40 1.26 0.80 1.94E+11 0.38 0.29
dwt1007 1.0E+03 3.8E+03 38 0.76 0.07 0.76 0.74 4.63E+05 0.98 0.94
dwt2680 2.7E+03 1.1E+04 65 0.97 0.16 0.95 0.86 3.74E+06 1.00 0.94
dwt918 9.2E+02 3.2E+03 50 0.72 0.06 0.70 0.68 4.55E+05 0.92 0.85
ex27 9.7E+02 2.0E+04 128 0.96 0.05 0.96 0.95 5.81E+06 1.01 0.77
finan512 7.5E+04 2.6E+05 1331 0.91 2.65 0.87 0.84 6.19E+09 0.87 0.64
gearbox 1.5E+05 4.5E+06 6271 0.68 26.00 0.86 0.65 1.36E+12 0.57 0.42
gupta3 1.7E+04 4.7E+06 12535 0.70 68.00 0.70 0.66 3.26E+11 1.11 0.99
jagmesh1 9.4E+02 2.7E+03 27 1.19 0.04 1.19 1.11 5.38E+05 1.04 1.00
jagmesh9 1.3E+03 3.9E+03 40 0.98 0.08 0.98 0.98 9.82E+05 0.90 0.87
memplus 1.8E+04 4.2E+04 5747 0.85 0.16 0.81 0.59 7.48E+10 0.57 0.15
msc10848 1.1E+04 6.1E+05 1349 0.78 1.50 0.73 0.64 3.08E+09 0.96 0.62
msc23052 2.3E+04 5.6E+05 1524 0.70 2.14 0.64 0.56 8.00E+09 0.78 0.69
nasa1824 1.8E+03 1.9E+04 205 0.80 0.14 0.77 0.73 2.68E+07 1.03 0.93
nasa4704 4.7E+03 5.0E+04 348 0.67 0.39 0.64 0.60 1.36E+08 0.96 0.91
pwt 3.7E+04 1.4E+05 339 0.92 1.20 0.88 0.76 7.51E+08 0.93 0.89
pwtk 2.2E+05 5.7E+06 2190 0.89 31.00 0.86 0.77 2.27E+11 0.67 0.66
shuttleeddy 1.0E+04 4.7E+04 177 0.72 0.56 0.70 0.67 6.46E+07 0.83 0.74
skirt1 1.3E+04 9.2E+04 309 0.60 0.50 0.57 0.50 1.73E+08 0.31 0.26
sstmodel 2.7E+03 9.7E+03 83 0.92 0.13 0.90 0.81 4.72E+06 0.82 0.74
twotone 1.2E+05 9.4E+05 19538 0.77 16.00 0.74 0.67 4.43E+12 0.76 0.65
vibrobox 1.2E+04 1.7E+05 3961 0.60 1.80 0.56 0.46 2.70E+10 0.90 0.58
Average 0.77 0.74 0.66 0.82 0.69
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Table II. Results for Random Graphs

Graph |V | |E| Spectral Cuthill-McKee M5 M10 M200
randomA1 1.0E+03 5.0E+03 828 0.80 0.65 0.59 0.55
randomA2 1.0E+03 2.5E+04 969 0.92 0.91 0.88 0.84
randomA3 1.0E+03 5.0E+04 985 0.95 0.95 0.94 0.90
randomA4 1.0E+03 8.2E+03 855 0.89 0.83 0.75 0.69
randomG4 1.0E+03 8.2E+03 143 0.71 0.54 0.51 0.50

five WM at all levels (with q = 5, 10, 15, 20, 25; see Algorithm 3). Note that on
the finest level p is increased by two from one window size to another. We run
the algorithm one hundred times, each starts from a different permutation of
the nodes. The best obtained results show an improvement of about 23% over
“bk∞.” The means of the one hundred runs are worse than the corresponding
“M5”-values by an average of 7%, while the standard deviation (around the
means) is 4.7%, on average. We have next tested the outcome of our algorithm
with an enlarged number of WM. The V cycle corresponding to “M10” uses ten
WM at all levels (with window sizes 5–50 and increased p only at the finest level)
and results with an improvement of 26%, while “M200” has the same ten WM at
each coarse level and 200 iterations at the finest, where p is increased by two
every four iterations of window sizes 5, 10, 20, and 40. (In fact, even though p in
(2) should tend to infinity, in practice, the minimization process has almost not
progressed after p ≈ 100.) The “M200” shows improvement of 34%, on average,
over “bk∞.” In these two versions, the means of the hundred runs are worse
than the corresponding “M10” (“M200”) values by an average of 6(4)%, while the
standard deviation (around the means) is 3.6(2.3)%, on average.

The running time of one M5 V cycle (measured in minutes) is presented in
column TM5 . The dependence of the running time on the graph size is depicted
in Figures 1(a) and 1(b), where in both parts the graphs are ordered through the
x axis according to their size |V | + |E|. In part (a), the dependence is presented
in logarithmic scale. Each point represents the dependence between the log
of the graph size and the log of its running time. Two straight lines fit the
experimental points best in a least-squares sense. The bold line (with slope
1.05) corresponds to the experimental points of the largest 25 graphs, while
the thin straight line (with slope 0.89) fits the whole set of points. The straight
line with slope 1 is presented as a dashed line for comparison purposes. It is
easy to see that the dependence is very close to linear. The graph (b) roughly
shows the amount of data (|V | + |E|) processed per minute (i.e., the ratio of
values from the respective columns in Table I: |V |+|E|

TM5
). In the worst cases, only

0.5 × 105 data units are being processed per minute, while for most graphs
this number varies between 105 to 4.2 × 105 units. Clearly, the slower graphs
are not necessarily the largest. We do not expect a more precise relationship
between |V | + |E| and the running time, since the implementation is far from
being optimized and since it may depend also on the degree of the graph, on its
diameter, etc.

In spite of the fact that the real power of the multilevel framework can be
observed usually on large instances, where the number of levels is big enough,
we have checked the quality of our algorithm on a large set of small graphs. For
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Fig. 1. Dependence of the running time on the graph size.

this goal, we have chosen the most recent work [Lim et al. 2006] in which the
authors collected the best known values obtained by several algorithms (includ-
ing their heuristics) on the benchmark of small graphs from Martı́ et al. [2001]
and Pinana et al. [2004]. This benchmark consists of 113 graphs, each of which
has no more than 1000 vertices. The comparison of quality and running time
includes the following heuristics: (1) genetic algorithm and (2) node weighting
with shifting algorithm implemented under the hillclimbing framework; and
recently developed (3) GRASP and (4) GRASP with Path Relinking methods,
presented in Martı́ et al. [2001] and Pinana et al. [2004]. Our numerical results
are very similar to the previous best known results from Lim et al. [2006]. In
particular,

averageG∈ [Lim et al. 2006]

(
best known bandwidth from [Lim et al. 2006] on G

our best bandwidth on G

)
≈ 0.993. (16)

The picture regarding the running time is essentially different

averageG∈ [Lim et al. 2006]

(
running time of GA from [Lim et al. 2006] on G

our running time on G

)
≈ 28, (17)

averageG∈ [Lim et al. 2006]

(
running time of Nsa from [Lim et al. 2006] on G

our running time on G

)
≈ 80, (18)

averageG∈ [Lim et al. 2006]

(
running time of Nsb from [Lim et al. 2006] on G

our running time on G

)
≈ 250, (19)

averageG∈ [Lim et al. 2006]

(
running time of GRASPPRa from [Lim et al. 2006] on G

our running time on G

)
≈ 78, (20)

averageG∈ [Lim et al. 2006]

(
running time of GRASPPRb from [Lim et al. 2006] on G

our running time on G

)
≈ 235. (21)

The quality of Equation (16) can be improved to 0.999 by adding WM sweeps to
the postprocessing at the price of doubling the average running time. We may
conclude that our multilevel algorithm provides the same results (on average)
as many other heuristics do for small graphs, while presenting an impressive
speed-up in running time.

We have finally tested our algorithm on the five random graphs appearing
in the benchmark [Petit 2003]. We compare a single run of our V cycles with
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the results of the exact spectral method and with those of the Cuthill–McKee
permutation [Cuthill and McKee 1969], which was also checked in Corso and
Romani [2001a]. The results are summarized in Table II showing a clear advan-
tage to our multilevel approach even for those obviously unstructured random
graphs.

4.3 Workbound Reduction

Continuing the comparison of multilevel and spectral frameworks started in
Safro et al. [2006b], we present our results for the workbound reduction problem
versus the best known values from Corso and Romani [2001b, 2001a]. The test
suite graphs are the same as in the bandwidth problem. The results we have
obtained for these graphs are presented in the second part of Table I. In column
“bkwb,” we have extracted the best results reported in Corso and Romani [2001b,
2001a]. These results were obtained by several modifications of the spectral
sequencing method. Then the results for two types of V cycles (ten executions
for each V cycle) are given: the “σ2(G)” V cycle, which is aimed at achieving fast
performance and thus somewhat compromising the quality of the arrangement
cost by simply approximating the workbound only with the σ2(G) solution; and
the “σ2(G)+WM” V cycle, which starts with the σ2(G) solution and then applies
a postprocessing of 20 additional iterations with increased p of WM (of sizes
5,10,15,20,25,5,10, . . . ) using Equation (4) and then ten sweeps of node by node
minimization using Equation (3). The latter version runs longer, but succeeds in
finding lower cost arrangements. Our results are presented in the form of ratio
between our cost and the best known values from Corso and Romani [2001b,
2001a]. On average, they exhibit 18% improvement for σ2(G) and 31% when
the postprocessing is added. The means of the ten runs are worse than the
corresponding “σ2(G)”(“σ2(G) + WM”) values by an average of 2.5(1.5)%, while
the standard deviation (around the means) is 1(0.5)%, on average.

Finally, we have also tried to add stochasticity by implementing the SA pro-
cess. Here, as well as for the bandwidth problem, we obtained no significant
improvement, i.e., no more than the observed variance. Still, as was shown in
Safro et al. [2006a] and Ron et al. [2005], SA can be extremely important in
other problems.

4.4 Additional Experiments

We have tried to use the minimum two-sum as a first approximation also for
the bandwidth as it was done for the workbound. However, this attempt was
unsuccessful. The nature of the bandwidth functional is somewhat different
than other p-sum problems or the workbound. It deals with the minimization
of only several concrete edges, those which are the longest, while in the p-sum
and workbound it is necessary to minimize many edges, at least one per node.

As an additional preliminary experiment aimed at checking whether the
minimum two-sum may indeed provide a good first approximation for another
functional. We tested it for the wavefront reduction problem defined by

wf (G, π ) =
(∑

i | fi|2
n

)1/2

, (22)
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where fi = ad j ({π−1(1), . . . , π−1(i)}) ⋃{π−1(i)} and ad j (X ) = ⋃
j∈X {k : k j ∈

E}\X . We have compared our results with those of Hu and Scott [2001] obtained
by a multilevel algorithm. We have just evaluated for 15 graphs the wavefront
functional on the arrangement produced by the V cycle with p = 2 and obtained
similar results to those presented in Hu and Scott [2001]. We emphasize that
these results are prior to any postprocessing, which would involve minimization
with the particular wavefront functional.

5. CONCLUSIONS

We have presented a variety of multilevel algorithms for the class of linear or-
dering problems for general graphs. These algorithms are based on the general
principle that during coarsening each vertex may be associated to more than
just one aggregate according to some “likelihood” measure. The uncoarsening
initialization, which produces the first arrangement of the fine graph nodes,
strongly relies on energy considerations (unlike usual interpolation in classical
AMG). This initial order is further improved by Gauss–Seidel-like relaxation,
window minimization, and possibly by employing stochasticity, i.e., simulated
annealing. The running time of the algorithms is linear. Thus, it can be applied
to very large graphs. In addition, we have proposed two general principles that
can be used for different functionals: (1) the continuation approach in which
functionals that contain an evaluation of power p are successively approxi-
mated by a sequence of similar but with lower power functionals; (2) a first
approximation can be obtained from the arrangement produced by one V cycle
of the minimum two-sum problem instead of using the very popular spectral
approach.

Since our algorithms were developed for practical purposes we compared
them to many different heuristics such as: spectral sequencing, optimally
oriented decomposition tree, multilevel based, simulated annealing, genetic
hillclimbing, and others. For almost all instances, we observed significant
improvement either of the results or of the computational time compared vari-
ous state-of-the-art methods. Our algorithms have proved themselves to be very
stable (i.e., small standard deviations) and of high quality both as a first ap-
proximation (using “light” V cycles) and as more aggressive energy minimizers
(with more “heavy” postprocessing).

We recommend our multilevel algorithms as a general practical method for
solving linear ordering problems and as a fast and high-quality method for
obtaining first approximation for them. The implemented algorithm can be
obtained at Safro.
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