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Abstract

The support vector machine is a flexible optimization-basetinique widely used for classifica-
tion problems. In practice, its training part becomes cotajoenally expensive on large-scale data sets
because of such reasons as the complexity and number dfdtexan parameter fitting methods, un-
derlying optimization solvers, and nonlinearity of kesélVe introduce a fast multilevel framework for
solving support vector machine models that is inspired leyatlgebraic multigrid. Significant improve-
ment in the running has been achieved without any loss intdlétg. The proposed technique is highly
beneficial on imbalanced sets. We demonstrate computatesdts on publicly available and industrial
data sets.

1 Introduction

Support vector machine (SVM) is one of the most well-knovassification methods. The optimal classifier
is achieved through solving a convex optimization modelksite profound capability of SVM, the training
process becomes highly time-consuming in two phases wheedata is big, namely, training the classifier,
and model selection. While training the classifier is a comrpbase in all SVMs, the model selection
phase is usually applied on difficult data sets (e.g., whenddta is noisy, imbalanced, and incomplete)
in order to tune the parameters. On the one hand, SVM modelefeen much more flexible than other
supervised classification methods. On the other hand, tkibifiy comes with the price of finding the best
model through tuning. Typically, the complexity of convexaglratic programming (QP) SVM algorithms
is betweerO(n?) to O(n?) [11]. For example, the solver we compare our algorithm witimely, LibSVM
[4], which is one of the most popular QP solvers, scales bet@(n sn?) to O(nsns®) subject to how
effectively the cache is exploited in practice, where thebers of features, and samples are denoted by
ny andng respectively. Clearly, this complexity is prohibitive feernel based SVM models applied on
practical big data without using parallelization and hggrformance computing systems.

One of the major limitations of applying standard data nurgfassification algorithms is the imbalanced
data, i.e., when the number of instances of one class isanilaly greater than that in another class. In
multi-class classification, the problem of imbalanced dataven bolder[[18]. This might dramatically
deteriorate the performance of algorithms. The SVM modedsflaxible enough to address the problem
of imbalanced data. However, such models are usually catipoally expensive. Since standard SVM
algorithms often misclassify the data points of a smallg;léise cost-sensitive version of SVM, known as
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weighted support vector machif@/SVM), has been developetlVe are interested in developing a method
that is scalable to very large data, and robust with respedhe imbalanced data

In recent years, several strategies have been proposedtovienthe performance of underlying QP
solvers for big data. Efficient serial algorithms includecalmposition techniques [22], shrinking and
caching[[13], and fast second order working set selectihryBother approach to accelerate the QP solvers
is a chunking([1B], in which the models is solved iterativelythe subsets of training data until the global
optimum is achieved. A popular LibSVM solvér [4] implemettie sequential minimal optimization (SMO)
algorithm. In the cases of easier data for which kerneli2éi1 & not required such approaches as LibLIN-
EAR [8] exhibit good performance for linear SVMs using a @inate descent algorithm. Another way to
cope with the big data is through effective parallelizatidn PSVM [32], the algorithm reduces memory
use, and parallelizes data loading and computation iniamtpoint solver. Other works utilize many-core
GPUs to accelerate SMQ [23], and other architectures [31].

In this paper, we propose a novel method for efficient anactfie solution of (W)SVM. In the heart of
this method lies a multilevel algorithmic framework (MARspired by the multiscale optimization strate-
gies [2]. The main objective of MAF is to construct a hiergrai problems (coarsening), each approxi-
mating the original problem but with fewer degrees of fraaddrhis is achieved by introducing a chain
of successive restrictions of the problem domain into ldmehsional or small-size domains and solving
the problem in them using local processing (uncoarsenifgpically, in computational optimization prob-
lems, the MAF combines solutions obtained by the local ssiog at different levels of coarseness into one
global solution. Such frameworks have several key advastdgat make them attractive for applying on
large-scale data: they exhibit a linear complexity, and lmaparallelized. Another advantage of the MAF
is its heterogeneity, expressed in the ability to incorfmexternal appropriate optimization algorithms (as
a refinement) in the framework at different levels. ThesenBaorks were extremely successful in vari-
ous practical machine learning and data mining tasks sudiuatering [21] 16], segmentation [29], and
dimensionality reduction [19].

Our contribution We introduce a novel multilevel framework for efficient anifeetive computation of
(W)SVM classifiers. The algorithm is based on the algebraidtigrid (AMG) multilevel schemel[2]. We
combine the AMG coarsening with the principles of: (a) ceaapproximations of the support vectors, and
(b) effective model selection parameter tuning througleiitimg from the coarse scales. The framework is
applied on both SVM and (W)SVM classifiers. To the best of cundedge this is the first AMG-based
algorithm for (W)SVM classification. The proposed method ba parallelized as any AMG algorithm, and
its superiority is demonstrated on publicly available amdlistrial datasets &MW. Our work extends and
generalizes previous multilevel approaches such ds [25LG}4vhich results in a better running time and
higher quality classifiers.

The major difference between typical computational opation MAF, and the (W)SVM is the output
of the model. In (W)SVM, the main output is the set of the supgectors which is usually much smaller
than the total number of data points. We use this observatiaour method by redefining the training
set during the uncoarsening. In particular, we inherit tingoert vectors from the coarse scales, add their
neighborhoods, and refine the support vectors at each fitee $ecather words, we improve the separating
hyperplane throughout the hierarchy by gradual refinemetiteosupport vectors until a global solution at
the finest level is reached. In addition, we inherit the patens of model selection and kernel from the
coarse levels, and refine them throughout the uncoarsening.



2 Support Vector Machines

We briefly define the optimization problem underlying SVM retsd Givenn data points{x;}?_; in R,
we define the corresponding labeled pdits, y;), where each:; belongs to the class determined by the
given labely; € {—1,1}. Data points with positive labels are called “minority” staand are denoted by
C*, where|C*| = n™. The rest of the points belongs to the “majority” class whigtlenoted byC™,
where|C~| = n~. Solving the following convex optimization problem by findiw, andb produces the
hyperplane with maximum margin betwe€h, andC~

_ 1, s =
minimize Sl +c;gi (1)
subject to yiwlo(z) +b)>1-&, i=1,...,n
>0, i=1,...,n

The mapping of data points to higher dimensional space ig ¢y : R¢ — R? (d < p) to make two
classes separable by a hyperplane. The term slack varigflgs, are used to penalize the misclassified
points. The paramet&r > 0 controls the magnitude of the penalization. The primal faation is shown

at () which is known as theoft marginSVM [30]. Solving the Lagrangian dual problem produces a
reliable convergence which is faster than methods for pionmulation. The WSVM addresses imbalanced
problems with assigning different weights to classes wittameters$>+ andC~. The set of slack variables
is split into two disjoint sete{ﬁj};‘;, and{¢; }I,, respectively. In WSVM, the objective dfl(1) is changed
to

o ) 1 ) + 7L+ + B n_— -
minimize - [lw* + C S+t ¢ )

i=1 j=1

In all (W)SVM models, we use the Gaussian keragh(—~||z; — z;{|?). Overall, in WSVM model, three
parameters{ ™, C~, and~) require tuning which is one of the main reasons of high cexipt of these
solvers. Typically, such parameter tuning technigueshstscthe uniform design) apply sophisticated algo-
rithms that iteratively run the solver many times to find tiptimal parameters.

3 Algorithm

The goal of this paper is to introduce a framework to redueecibmputational time of (W)SVM, while
preserving and improving the quality of models. The progdsamework is inspired by the AMG solvers
for computational optimization problems. It belongs to ftmily of multiscale hierarchical learning strate-
gies with the following main phases: (a) coarsening; (bysest scale learning; and (c) uncoarsening. In
the coarsening process, the original problem is graduaiiricted to smaller spaces by creating aggregates
of fine data points and their fractions (an important featfrAMG), and turning them into data points at
coarse levels. The main mechanism underlying the coarggtiase is the AMG which successfully helps
to identify the interpolation operator for obtaining fin@éé solution from the coarse aggregates. When a
hierarchy of coarse representations is created, and thberumhcoarse data points is sufficiently small, the
coarsest scale learning is applied. In this stage, the (W)BXbblem is solved exactly on coarsest aggre-
gates. In the uncoarsening phase, the solution obtaindt atoarsest level (i.e., the support vectors and
parameters) is gradually projected back to the finest leyehterpolation and further local refinement of



support vectors and parameters. A critical difference betwour approach and [25] is that in our approach
the coarse support vectors are, in fact, not real data ppiotengated from the finest level. Instead, they
are aggregates of full fine-level data points and their ivast

Framework initialization We initialize MAF with an undirected affinity grapi = (V, E') generated from
the training set of (W)SVM. Each data poiris associated with nodec V' (same notation is used for points
and nodes), and the sBtis determined by the approximatenearest neighbok(NN) graph connections.
We found a very little difference in the quality of the restiftan exack-NN graph is used while the running
time for finding the approximatge-NN graph is significantly better. Throughout this papdrapproximate
k-NN graphs are computed using FLANN library _[20], whére= 10, and the distance is Euclidean. (We
observed that increasirigdoes not improve the quality of the results.) This graph geélive as a structure
for further coarsening.

In the multilevel graph frameworks [26], the edge weightsresent the strength of connectivity be-
tween nodes in order to “simulate” the following interp@atscheme applied at the uncoarsening, in which
strongly coupled nodes can interpolate solution to eacroffor the classifier learning problems, this can
be expressed as a similarity measure in the spirit 0f [16,si0jve define a distance function between nodes
(or corresponding data points) as an inverse of the Euclidigstance. Due to lack of space, we omit the
results of experiments with other kernels which are culydmg¢ing addressed in another paper as well as
more advanced distance measure approaches such as [3, &tlodten essential in multilevel methods.

In this paper, we work with binary classifiers (and one-vsineulti-class classifiers) only but the
approach is easily generalizible to multi-class clasdifica The coarsening is applied separately on both
majority and minority classes, i.e., ti&" points cannot be aggregated with pointin.

Coarsening Phase The main goal of the coarsening is to create a hierarchy okea@presentations of the
original data manifold using the AMG coarsening for the appnatedk-NN graph Laplacians. We denote
the sequence ok next-coarser graphs byG; = (V;, i)}, whereGy = G is the original graph that
corresponds to the training set, afdis the number of levels in the hierarchy. For the completeéshe
paper, we repeat the main steps of the AMG-based graph odsgsagorithm [28].

We describe a two-level process of obtaining the coarsehgtap= (V., E.) and the corresponding
coarse training set from the current fine leggl = (V, E¢) and its training set (e.g., the transition from
levell to ! + 1). The process is started with selecting seed nodes thasevile as centers of coarse level
nodes, called aggregates. Coarse nodes will corresporigk tooarse data points at lewel Structurally,
each coarse aggregate can include one full se&lel point, and possibly several othérlevel points
and their fractions. Intuitively, it is equivalent to grang nodes inV; into many small subsets allowing
intersections, where each subset of nodes will correspmaadarse point at level During the aggregation
process, most coarse points will correspond to subsetz®fgseater than 1, so we introduce the notion of
a volumev; € R, for all i € V to reflect the importance of a point or its capacity that ideksi finest-level
aggregated points and their fractions. We also introdueetlye weighting function : E; — R for each
graphGy, 0 <1 < K, to reflect the strength of connectivity and similarity beeém nodes.

In Algorithm [, we show the details of AMG coarsening. In thestfistep, we compute the future-
volumesy; for all ¢ € V; to determine the order in whicfrlevel nodes will be tested for declaring them as
seeds (line 2), namely,

Wos
’L%ZUZ'—FZU]" EJUZJ . (3)
T

The future-volume); is defined as a measure of how much an aggregate seeded bypaidaigor a node



in V) might potentially grow at the next level

We assume that in the finest level, all volumes are ones. Wength selecting a dominating set of seed
nodesC C V; toinitialize future coarse aggregates. Nodes that areatett®d taC' will belong to /' such
thatVy = F'U C. Initially, the setF is set to beVy, andC' = () since no seeds have been selected (line
1). After that, points withJ; that is exceptionally larger than the averabare transferred t¢’ as the most
“representative” points (line 3). Then, all pointsihare accessed in the decreasing ordet;afpdatingC'
iteratively (lines 6-11), namely, if with the curre@t, and ", for pointi € F', > w;;/ Zjevf w;; IS less
than or equal to some threshdly i.e., the point is not strongly coupled to already selept@idts inC, then
1 i1s moved fromF' to C'. The points with larger future-volumes usually have a bettance to be selected to
C to serve as centers of future coarse points. Adding moresggesents too aggressive coarsening that can
lead to “overcompressed” information at the coarse levdllaw quality classification model. However, it
has been observed that in most AMG algorithis> 0.6 is not required (however, this depends on the type
and goals of aggregation). In our experime@ts= 0.5, andn = 2. Other similar values do not significantly
change the results.

Algorithm 1 Selecting seeds for coarse nodes
1. C + @, F + Vf
. Calculate Vi € F ¥;, and the averagé
: C < nodes withy; > 7 - (9)
CF Vf \ C
: Recompute; Vi € F
: SortF' in descending order af
: forie Fdo
jeC JEV}
9 move: from £ to C
10:  end if
11: end for
12: return C

~N o o~ WN

©

When the se€ is selected, we compute the AMG interpolation maffix RIVs1XICl that is defined as

w”/Zwlk IfZEF,jGNZ
kEN;
Bij = 1 ificC, j=1I6G) ( (4)
0 otherwise

whereN; = {j € C | ij € E} is the set ofith seed neighbors, ant(i) denotes the index of a coarse
point at levelc that corresponds to a fine level aggregate around seed’. Typically, in AMG methods,
the number of non-zeros in each row is limited by the paranuatiéed the interpolation order or calibér [2]
(see discussion aboiit and Tablé B). This parameter controls the complexity of asssacale system (the
number of non-zero elements in the matrix of cogrddN graph). It limits the number of fractions a fine
point can be divided into (and thus attached to the coarsgg)oilf a row in P contains too many non-
zero elements then it is likely to increase the number of zenos in the coarse graph matrix. In multigrid
methods, this number is usually controlled by differentrapphes that measure the strength of connectivity
(or importance) between fine and coarse variables (seesdiscuand our imlementation in [28]).



Using the matrixP, the aggregated data points and volumes for the coarsedevalalculated. The
edge between points = (i) andq = I(j) is assigned with weightV, <" = >kt Pri - wrt - Py
The volume for the aggregaféi) in the coarse graph is calculated E’] vj Pj;, i.e., the total volume of all
points is preserved at all levels during the coarsening.

The stopping criteria for the coarsening depends on théadkaicomputational resources that can be
used to learn the classifier at the coarsest level. In all gper@ments, the coarsening stops when the size is
less than a threshold (typically, 500 points) that ensurfestgperformance of the LibSVM dual solver.

Note: » One of the major advantages of the proposed coarsening sdlsehe natural ability to deal with
the imbalanced data. When the coarsening is performed ackasgtses simultaneously, and in a small class
the number of points reaches an allowed minimum, this lesssimply copied throughout the rest of levels
required to coarsen the big class. Since the number of patritse coarsest level is small, this does not
affect the overall complexity of the framewox.

Coarsest Level When both classes are small enough, the training reinfobgethe parameter tuning is
fast. We use the uniform design (UD) as a model selectiomiqak to tune the parameters [12]. Another
major advantage of the multilevel learning is the abilityinherit parameter§’*, C~, and~ during the
uncoarsening. The tuned parameters are projected fromotrsast level back to next finer level, where
they will be refined and projected up again. The coarsest leaming is shown in Algorithral2.

Algorithm 2 Coarsest level learning
1: if n™ andn ™ are sufficiently small for the coarsest levhén
Calculate the bestS(, C;", C;, and~;) using UD, and (W)SVM solver ofC; | and|C; |
Return S; (the set of coarsest support vectors);, C;”, and; (learned parameters for leval
end if

AR wbd

Uncoar sening When the coarsest level is solved, we start to project theisalback gradually to the finest
level. In contrast to the classical multilevel methods fomputational optimization problems! [2] in which
each variable should be solved, the solution of (W)SVM csiegif the set of support vectors whose size is
typically much smaller than the number of data points. Tkhes,main time-consuming “operation” of the
uncoarsening is to project back and refine the set of coamgmosivectors. This can be done very fast if
we do not take into account all points at each level for thmitng. Instead, at each level, we define a new
training set that includes only points from fine aggregaféberespective coarse level support vectors.

Thei+1 — i uncoarsening is presented in Algorithin 3. The set of supgmtiorsS; | and parameters
C';;l, Ci.1, andv; 41 from leveli + 1 are the inputs for level. First, the new training datal¢tatain) is
created by taking all levelpoints from the aggregates that correspond to the suppctdrgen.S;, 1 (lines
2-6). We denote by~ the reverse index function.

The parameter tuning using UD or other similar methods isw@prdationally expensive part of (W)SVM
training which takes most of the time for large-scale data.s8ince it can be applied at the coarse levels
of small size, we verify the size of a nedatayain (parameter))y), and decide whether the UD is still
applicable (line 7) or not. In case it can be applied, we ruaraund the paramete(%jjrl, Ciiyy andyiq
inherited from the coarse levek-1 (lines 8-9). Otherwise, if the size of the training data i3 large for the
UD, we continue to inherit the parameters without adjustigm. Because in most problems, the number
of support vectors is much smaller than the number of datatgceven in very large data sets, we succeed
to refine the parameters using UD at, approximately, 8-1€ldewithout any significant loss in the running



Table 1. Performance measures and running time (in secédod¥ySVM, and MLWSVM on publicly
available data in [17].

Datasets WSVM MLWSVM
Name Timb  Nf l |C+| IC7] |ACC SN SP & Time |ACC SN SP k Time
Advertisement 0.86 1558 3279 459 28200.92 0.99 0.45 0.67 231|0.83 0.92 0.81 0.86 213
Buzz 0.80 77 140707 27775 112983D.96 0.99 0.81 0.89 260260.88 0.97 0.86 0.91 233
Clean (Musk) 0.85 166 6598 1017 558[L1.00 1.00 0.98 0.99 82| 0.97 0.97 0.97 0.97 7
Cod-RNA 0.67 8 59535 19845 396900.96 0.96 0.96 0.96 1857 0.94 0.97 0.92 0.95 107
Forest 0.98 54 581012 9493 5715/19.00 1.00 0.86 0.92 3532100.88 0.92 0.88 0.90 479
Hypothyroid 094 21 3919 240 3679 0.99 1.00 0.75 0.86 3 (098 0.83 099 0.91 3
Letter 0.96 16 20000 734 192661.00 1.00 0.97 0.99 139( 0.98 1.00 0.97 099 12
Nursery 0.67 8 12960 4320 8640 1.00 1.00 1.00 1.00 192 1.00 1.00 1.00 1.00 2
Ringnorm 050 20 7400 3664 3736 0.98 0.99 0.98 0.98 26| 0.98 0.98 0.98 0.98 2
Twonorm 050 20 7400 3703 3697 0.98 0.98 0.99 0.98 28 |1 0.98 0.98 0.97 0.98 1

time. This gives us an effective and efficient practical peter tuning technique that has been applied for
several customer satisfaction classification problemeaiworld large-scale data in recommender systems
of BMW.

Algorithm 3 Uncoarsening from level+ 1 to
Input: Sit1,Ci 1, Cry, Yig
datayain < 0
for all p € S;11 do
N, «+ all points in the aggregate! (p)
datarain < datatrain U Ny
end for
if |datatain| < Qa then
CO (Cifys G 7° +— vYim
(S;, Cf, C;, and;) < Run UD on (W)SVM using the initial centdC, 4©)
ese
Ci « Cf
C; < Ciy
Yi < Vitl
S; < Apply (W)SVM on dataiain
. end if
: Return S;, C;, C;, andv;

=

e e o e =
@ g K W NNkR o

The framework works in a similar way for both regular SVM and&&VM. The WSVM shows better
performance for classification of the small class when thia dambalanced.

4 Computational Results

The proposed framework is implemented in C++, and PETSarltawwhich is the collection of data struc-
tures and methods for solving scientific computing probleftity PETSc provides a high-performance
parallelization of algebraic structures that will be usedur future work that will be related to paralleliza-



Table 2: Evaluation of regular and multilevel WSVM for DS1 eéthe COMPANY benchmark.

Class Sizein Sizein WSVM on DS1| MLWSVM on DS1 MLWSVM on DS2
number DS1 DS2 | ACC K ACC K ACC k Time (insec.)
Class1 6867 204497 0.87 0.90 | 0.79 0.79 0.80 0.79 1123
Class 2 373 9892 | 0.99 0.36 | 0.90 0.69 0.63 0.69 200
Class3 5350 91952 0.96 0.92 | 0.91 0.91 0.83 0.82 135
Class 4 278 9339| 0.99 0.42 | 0.87 0.57 0.77 0.71 52
Class5 2167 57478 0.93 0.62 | 0.63 0.69 0.62 0.66 53

Table 3: Quality of classifiers on publicly available dattsder different orders of interpolation.
Data set K Time
R=1 R=2 R=4 R=6 R=8 R=10R=1 R=2 R=4 R=6 R=8 R=10
Advertisement| 0.86 0.80 0.84 0.84 0.86 0.82 219 205 220 205 213 268
Buzz 092 0.71 0.77 0.91 0.92 0.91 12 21 96 233 411 594
Clean (Musk) | 0.96 0.96 0.95 0.97 0.96 0.97 6 7 7 7 8 8
Cod-RNA 094 095 095 095 095 094 48 140 84 50 146 150

Forest 063 051 059 0.90 0.89 0.83 84 68 168 479 1060 648
Hypothyroid | 0.35 058 091 076 090 077 1 1 2 3 4 4
Letter 097 098 099 099 099 099 5 5 12 24 35 39
Nursery 1.00 1.00 1.00 1.00 100 100 2 3 3 3 4 5
Ringnorm 090 087 098 096 083 094 2 2 2 3 3 4
Twonorm 097 097 098 098 098 098 2 1 1 1 1 2

tion of the framework. Current implementation is not pagialin general, based on the experience with with
similar multilevel approaches]|[2], we anticipate the taainplexity and performance of parallel version
will be comparable to those of parallel AMG with small ordefsanterpolation. In our serial version, the
linear complexity is comparable to serial AMG. The datacttice we use are sparse matrices and vectors
in the compressed row format. The rest of the data strucane$TL of C++ 11. Small-scale (W)SVM
models, that appear during the refinement, are solved usit®MM 3.20 and the approximateNN graphs
are constructed using FLANN.

To evaluate our algorithms, we use sensitivity (SN), spatifiSP), G-meanx), and accuracy (ACC),

namely,
TP TN

SN=7p v P 7Ny Ep 7T VSPSN ®)
and TP+ TN
ACC= P T TN T TP T N (6)

whereT P, TN, FP, and FN are true positives, true negatives, false positives, alsg faegatives, re-
spectively. We experimented with publicly available anal+sorkd industrial data oBMW. The publicly
available data is available at the UCI collection![17]. Thdustrial data of recommendation systems is
given in two data sets, namely, DS1, and DS2. They can alsedialale for limited research purposes. All
computational results are averages over 20 similar exawtvith different random seeds, and randomly
reordered data. The training-test split was 80%-20%.



In Table[1 (section “Datasets”), we present an informatibaua the size of the data and its split into
majority and minority classes. The notatiep,;, andn; correspond to the imbalance factor, and the
number of features, respectively. Performance measuresgafar and multilevel WSVM are presented
in sections WSVM, and MLWSVM of Tablég 1, respectively. Ourimperformance measure issince we
are dealing with the imbalanced classification. We obseovedsignificant improvement in the quality of
in Advertisement data seln general, on these and several other data sets, no signifidiéference in the
quality ofx between the proposed fast ML(W)SVM, and the full-time (\WM)B&s been observed.

The running time (in seconds) for both WSVM and MLWSVM is meted in columns “Time” in Table
. The running time includes calculation of the approxirdadteNN graphs and UD (model selection) for
parameter tuning.We demonstrate that the proposed fast AMG inspired frameyustifies the idea of
multilevel algorithms for (W)SVM, and clearly exhibits stipr running time.

Not surprisingly, it is much easier to analyze benchmaitks WCI machine learning dataset than the
real-life industrial data which is very noisy, and contamissing values. In th& MW data, there are 5
labeled classes of plain text customer satisfaction ssrveist, the plain text is converted into normalized
tf-idf form using the uni-, and bi-gram information which kes the number of features approximately
200.000 because of the extensive use of the domain-spextjorj. Then, we reduce the dimensionality of
the data to 100 by applying SVD projectiondle note that we did not observe any change in the quality of
the results for full, and reduced dimensional data excepiiticreased running time for full dimensionality.
While the multilevel (W)SVM framework running time is nat faut still realistic, the regular (W)SVM
cannot be executed on such data at all without introduciggificant changes such as high-performance
parallelization or switching to linearized SVM version wiisignificantly decreases the quality.

The size of both DS1 and DS2 data sets is presented in coluBn3able 2. Different classes (1-5)
correspond to different major product problems addressdtieé customer satisfaction surveys. For the
evaluation of DS1 we focus only on the quality of the classifiecause all running times are fast for this
small dataset and mostly depend on the hardware, while édD82 set the running time is reported. While
there is no loss in quality on both DS1, and DS2, the runnimge tof MLWSVM on DS2 is substantially
better than that of the regular WSVM which is measured in dagst is comparable to the difference in
running time of the Forest data set.

Does AM G help? One of the main reasons for developing a multilevel AMG-HaS¥M framework was

an observation that for the real dataB¥IW, and experiments with complex healthcare data provided in
[24], it is not enough to coarsen the data in the spirit ofcstaiggregation when data points are simply
merged or eliminated based on some strong connectivitgrizrisuch as in many clustering approaches
[7,[10]. Applying other acceleration techniques such asraemble SVM learning [15,/ 6] also did not
improve the quality of classifiers. We observed, that in meeses, the hyperplanes obtained at the coarse
levels (i.e., without full uncoarsening) were substahtialorse than the best known (but slowly computed)
hyperplanes computed for the data sets that are known int¢hatlre. Thus, we asked a question whether
finding a better geometry of the data through more accurat&Addproximation of the spectral properties
of the coarse approximatédNN graphs can improve the quality of the classifier? We gied to have
similar improvements to those obtained in segmentatiof @& clustering[[16]. Unfortunately, because
of several restrictions we cannot present full results ofgasing interpolation order on tBMW data but

we analyze them on public data sets.

In Table[3, we show the comparisonsofor data sets from [17] for different orders of interpolati@ihe
number of non-zeros in rows of matrik, see Eq.[4). It is easy to see that for the data sets Forest, and
Hypothyroid the quality of classifier is improved for incsed interpolation ordeR. Improvement of the
guality comes with a price of increasing running time thatesnostrated in the “Time” section of Talble 3.



Omitted observations (1) We are mostly interested in imbalanced problems, so wetdiscuss the results
of SVM and MLSVM, because thek-quality is constantly worse than that of corresponding Wsahd
MLWSVM. (2) We do not discuss a faster LIbLINEAR solver [8]daeise of its significantly worse-
quality. However, we note that if the data is not difficult egh, it can also be used as a part of the
refinement instead of LiIbSVM. (3) We tested other solverdisag SVMIight [14]. No running time or
quality improvements were observed.

5 Conclusions

We presented a new algorithmic framework for fast (W)SVM eledThe framework belongs to the family
of multiscale algorithms in which the problem is solved attiple scales of coarseness, and gradually com-
bined into one global solution of the original problem. Weaduced the flexibility of the AMG coarsening
and reinforced it with local learning of the support vectarel model selection parameters. This opens a
number of interesting research directions to pursue. ltiqodar, when the number of support vectors is
indeed huge (which is not the case in many practical systemesheed to know how to combine multiple
local hyperplanes into one global at the refinement stagehttsato be applied locally for different clusters
in the spirit of local refinement in other multiscale algbniis. Another major issue is related to effective
inheritance scheme (such as bagging or ensemble SVM) of ddelrparameters for multiple hyperplanes.
The implementation of our algorithms for ML(W)SVM is avdila at [27].
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