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Abstract

The support vector machine is a flexible optimization-basedtechnique widely used for classifica-
tion problems. In practice, its training part becomes computationally expensive on large-scale data sets
because of such reasons as the complexity and number of iterations in parameter fitting methods, un-
derlying optimization solvers, and nonlinearity of kernels. We introduce a fast multilevel framework for
solving support vector machine models that is inspired by the algebraic multigrid. Significant improve-
ment in the running has been achieved without any loss in the quality. The proposed technique is highly
beneficial on imbalanced sets. We demonstrate computational results on publicly available and industrial
data sets.

1 Introduction

Support vector machine (SVM) is one of the most well-known classification methods. The optimal classifier
is achieved through solving a convex optimization model. Despite profound capability of SVM, the training
process becomes highly time-consuming in two phases when the data is big, namely, training the classifier,
and model selection. While training the classifier is a common phase in all SVMs, the model selection
phase is usually applied on difficult data sets (e.g., when the data is noisy, imbalanced, and incomplete)
in order to tune the parameters. On the one hand, SVM models are often much more flexible than other
supervised classification methods. On the other hand, the flexibility comes with the price of finding the best
model through tuning. Typically, the complexity of convex quadratic programming (QP) SVM algorithms
is betweenO(n2) toO(n3) [11]. For example, the solver we compare our algorithm with,namely, LibSVM
[4], which is one of the most popular QP solvers, scales betweenO(nfns

2) to O(nfns
3) subject to how

effectively the cache is exploited in practice, where the numbers of features, and samples are denoted by
nf andns respectively. Clearly, this complexity is prohibitive forkernel based SVM models applied on
practical big data without using parallelization and high-performance computing systems.

One of the major limitations of applying standard data mining classification algorithms is the imbalanced
data, i.e., when the number of instances of one class is substantially greater than that in another class. In
multi-class classification, the problem of imbalanced datais even bolder [18]. This might dramatically
deteriorate the performance of algorithms. The SVM models are flexible enough to address the problem
of imbalanced data. However, such models are usually computationally expensive. Since standard SVM
algorithms often misclassify the data points of a small class, the cost-sensitive version of SVM, known as
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weighted support vector machine(WSVM), has been developed.We are interested in developing a method
that is scalable to very large data, and robust with respect to the imbalanced data.

In recent years, several strategies have been proposed to improve the performance of underlying QP
solvers for big data. Efficient serial algorithms include decomposition techniques [22], shrinking and
caching [13], and fast second order working set selection [9]. Another approach to accelerate the QP solvers
is a chunking [13], in which the models is solved iterativelyon the subsets of training data until the global
optimum is achieved. A popular LibSVM solver [4] implementsthe sequential minimal optimization (SMO)
algorithm. In the cases of easier data for which kernelized SVM is not required such approaches as LibLIN-
EAR [8] exhibit good performance for linear SVMs using a coordinate descent algorithm. Another way to
cope with the big data is through effective parallelization. In PSVM [32], the algorithm reduces memory
use, and parallelizes data loading and computation in interior-point solver. Other works utilize many-core
GPUs to accelerate SMO [23], and other architectures [31].

In this paper, we propose a novel method for efficient and effective solution of (W)SVM. In the heart of
this method lies a multilevel algorithmic framework (MAF) inspired by the multiscale optimization strate-
gies [2]. The main objective of MAF is to construct a hierarchy of problems (coarsening), each approxi-
mating the original problem but with fewer degrees of freedom. This is achieved by introducing a chain
of successive restrictions of the problem domain into low-dimensional or small-size domains and solving
the problem in them using local processing (uncoarsening).Typically, in computational optimization prob-
lems, the MAF combines solutions obtained by the local processing at different levels of coarseness into one
global solution. Such frameworks have several key advantages that make them attractive for applying on
large-scale data: they exhibit a linear complexity, and canbe parallelized. Another advantage of the MAF
is its heterogeneity, expressed in the ability to incorporate external appropriate optimization algorithms (as
a refinement) in the framework at different levels. These frameworks were extremely successful in vari-
ous practical machine learning and data mining tasks such asclustering [21, 16], segmentation [29], and
dimensionality reduction [19].
Our contribution We introduce a novel multilevel framework for efficient and effective computation of
(W)SVM classifiers. The algorithm is based on the algebraic multigrid (AMG) multilevel scheme [2]. We
combine the AMG coarsening with the principles of: (a) coarse approximations of the support vectors, and
(b) effective model selection parameter tuning through inheriting from the coarse scales. The framework is
applied on both SVM and (W)SVM classifiers. To the best of our knowledge this is the first AMG-based
algorithm for (W)SVM classification. The proposed method can be parallelized as any AMG algorithm, and
its superiority is demonstrated on publicly available and industrial datasets ofBMW. Our work extends and
generalizes previous multilevel approaches such as [25, 24, 10] which results in a better running time and
higher quality classifiers.

The major difference between typical computational optimization MAF, and the (W)SVM is the output
of the model. In (W)SVM, the main output is the set of the support vectors which is usually much smaller
than the total number of data points. We use this observationin our method by redefining the training
set during the uncoarsening. In particular, we inherit the support vectors from the coarse scales, add their
neighborhoods, and refine the support vectors at each fine scale. In other words, we improve the separating
hyperplane throughout the hierarchy by gradual refinement of the support vectors until a global solution at
the finest level is reached. In addition, we inherit the parameters of model selection and kernel from the
coarse levels, and refine them throughout the uncoarsening.



2 Support Vector Machines

We briefly define the optimization problem underlying SVM models. Givenn data points{xi}ni=1 in R
d,

we define the corresponding labeled pairs(xi, yi), where eachxi belongs to the class determined by the
given labelyi ∈ {−1, 1}. Data points with positive labels are called “minority” class and are denoted by
C

+, where|C+| = n+. The rest of the points belongs to the “majority” class whichis denoted byC−,
where|C−| = n−. Solving the following convex optimization problem by finding w, andb produces the
hyperplane with maximum margin betweenC+, andC−

minimize
1

2
‖w‖2 + C

n
∑

i=1

ξi (1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

The mapping of data points to higher dimensional space is done byφ : Rd → R
p (d ≤ p) to make two

classes separable by a hyperplane. The term slack variables{ξi}ni=1 are used to penalize the misclassified
points. The parameterC > 0 controls the magnitude of the penalization. The primal formulation is shown
at (1) which is known as thesoft marginSVM [30]. Solving the Lagrangian dual problem produces a
reliable convergence which is faster than methods for primal formulation. The WSVM addresses imbalanced
problems with assigning different weights to classes with parametersC+ andC−. The set of slack variables
is split into two disjoint sets{ξ+i }n

+

i=1, and{ξ−i }n
−

i=1, respectively. In WSVM, the objective of (1) is changed
to

minimize
1

2
‖w‖2 + C+

n+
∑

i=1

ξ+i + C−

n
−

∑

j=1

ξ−j . (2)

In all (W)SVM models, we use the Gaussian kernelexp(−γ‖xi − xj‖2). Overall, in WSVM model, three
parameters (C+, C−, andγ) require tuning which is one of the main reasons of high complexity of these
solvers. Typically, such parameter tuning techniques (such as the uniform design) apply sophisticated algo-
rithms that iteratively run the solver many times to find the optimal parameters.

3 Algorithm

The goal of this paper is to introduce a framework to reduce the computational time of (W)SVM, while
preserving and improving the quality of models. The proposed framework is inspired by the AMG solvers
for computational optimization problems. It belongs to thefamily of multiscale hierarchical learning strate-
gies with the following main phases: (a) coarsening; (b) coarsest scale learning; and (c) uncoarsening. In
the coarsening process, the original problem is gradually restricted to smaller spaces by creating aggregates
of fine data points and their fractions (an important featureof AMG), and turning them into data points at
coarse levels. The main mechanism underlying the coarsening phase is the AMG which successfully helps
to identify the interpolation operator for obtaining fine level solution from the coarse aggregates. When a
hierarchy of coarse representations is created, and the number of coarse data points is sufficiently small, the
coarsest scale learning is applied. In this stage, the (W)SVM problem is solved exactly on coarsest aggre-
gates. In the uncoarsening phase, the solution obtained at the coarsest level (i.e., the support vectors and
parameters) is gradually projected back to the finest level by interpolation and further local refinement of



support vectors and parameters. A critical difference between our approach and [25] is that in our approach
the coarse support vectors are, in fact, not real data pointsprolongated from the finest level. Instead, they
are aggregates of full fine-level data points and their fractions.

Framework initialization We initialize MAF with an undirected affinity graphG = (V,E) generated from
the training set of (W)SVM. Each data pointi is associated with nodei ∈ V (same notation is used for points
and nodes), and the setE is determined by the approximatek-nearest neighbor (k-NN) graph connections.
We found a very little difference in the quality of the results if an exactk-NN graph is used while the running
time for finding the approximatek-NN graph is significantly better. Throughout this paper, all approximate
k-NN graphs are computed using FLANN library [20], wherek = 10, and the distance is Euclidean. (We
observed that increasingk does not improve the quality of the results.) This graph willserve as a structure
for further coarsening.

In the multilevel graph frameworks [26], the edge weights represent the strength of connectivity be-
tween nodes in order to “simulate” the following interpolation scheme applied at the uncoarsening, in which
strongly coupled nodes can interpolate solution to each other. For the classifier learning problems, this can
be expressed as a similarity measure in the spirit of [16, 10], so we define a distance function between nodes
(or corresponding data points) as an inverse of the Euclidean distance. Due to lack of space, we omit the
results of experiments with other kernels which are currently being addressed in another paper as well as
more advanced distance measure approaches such as [3, 5] that are often essential in multilevel methods.

In this paper, we work with binary classifiers (and one-vs-many multi-class classifiers) only but the
approach is easily generalizible to multi-class classification. The coarsening is applied separately on both
majority and minority classes, i.e., theC+ points cannot be aggregated with points inC

−.

Coarsening Phase The main goal of the coarsening is to create a hierarchy of coarse representations of the
original data manifold using the AMG coarsening for the approximatedk-NN graph Laplacians. We denote
the sequence ofK next-coarser graphs by{Gi = (Vi, Ei)}Ki=0, whereG0 = G is the original graph that
corresponds to the training set, andK is the number of levels in the hierarchy. For the completeness of the
paper, we repeat the main steps of the AMG-based graph coarsening algorithm [28].

We describe a two-level process of obtaining the coarse graph Gc = (Vc, Ec) and the corresponding
coarse training set from the current fine levelGf = (Vf , Ef ) and its training set (e.g., the transition from
level l to l + 1). The process is started with selecting seed nodes that willserve as centers of coarse level
nodes, called aggregates. Coarse nodes will correspond to the coarse data points at levelc. Structurally,
each coarse aggregate can include one full seedf -level point, and possibly several otherf -level points
and their fractions. Intuitively, it is equivalent to grouping nodes inVf into many small subsets allowing
intersections, where each subset of nodes will correspond to a coarse point at levelc. During the aggregation
process, most coarse points will correspond to subsets of size greater than 1, so we introduce the notion of
a volumevi ∈ R+ for all i ∈ V to reflect the importance of a point or its capacity that includes finest-level
aggregated points and their fractions. We also introduce the edge weighting functionw : El → R+ for each
graphGl, 0 ≤ l ≤ K, to reflect the strength of connectivity and similarity between nodes.

In Algorithm 1, we show the details of AMG coarsening. In the first step, we compute the future-
volumesϑi for all i ∈ Vf to determine the order in whichf -level nodes will be tested for declaring them as
seeds (line 2), namely,

ϑi = vi +
∑

j∈F

vj ·
wji
∑

k∈V

wjk

. (3)

The future-volumeϑi is defined as a measure of how much an aggregate seeded by a datapoint i (or a node



in Vf ) might potentially grow at the next levelc.
We assume that in the finest level, all volumes are ones. We start with selecting a dominating set of seed

nodesC ⊂ Vf to initialize future coarse aggregates. Nodes that are not selected toC will belong toF such
thatVf = F ∪ C. Initially, the setF is set to beVf , andC = ∅ since no seeds have been selected (line
1). After that, points withϑi that is exceptionally larger than the averageϑ are transferred toC as the most
“representative” points (line 3). Then, all points inF are accessed in the decreasing order ofϑi updatingC
iteratively (lines 6-11), namely, if with the currentC, andF , for point i ∈ F ,

∑

j∈C wij/
∑

j∈Vf
wij is less

than or equal to some thresholdQ, i.e., the point is not strongly coupled to already selectedpoints inC, then
i is moved fromF toC. The points with larger future-volumes usually have a better chance to be selected to
C to serve as centers of future coarse points. Adding more seeds prevents too aggressive coarsening that can
lead to “overcompressed” information at the coarse level and low quality classification model. However, it
has been observed that in most AMG algorithms,Q ≥ 0.6 is not required (however, this depends on the type
and goals of aggregation). In our experimentsQ = 0.5, andη = 2. Other similar values do not significantly
change the results.

Algorithm 1 Selecting seeds for coarse nodes
1: C ← ∅, F ← Vf

2: Calculate ∀i ∈ F ϑi, and the averagēϑ
3: C ← nodes withϑi > η · (ϑ̄)
4: F ← Vf \ C
5: Recompute ϑi ∀i ∈ F
6: SortF in descending order ofϑ
7: for i ∈ F do

8: if

(

∑

j∈C
wij/

∑

j∈Vf

wij

)

≤ Q then

9: movei from F toC
10: end if
11: end for
12: return C

When the setC is selected, we compute the AMG interpolation matrixP ∈ R
|Vf |×|C| that is defined as

Pij =











wij/
∑

k∈Ni

wik if i ∈ F , j ∈ Ni

1 if i ∈ C, j = I(i)
0 otherwise











, (4)

whereNi = {j ∈ C | ij ∈ Ef} is the set ofith seed neighbors, andI(i) denotes the index of a coarse
point at levelc that corresponds to a fine level aggregate around seedi ∈ C. Typically, in AMG methods,
the number of non-zeros in each row is limited by the parameter called the interpolation order or caliber [2]
(see discussion aboutR and Table 3). This parameter controls the complexity of a coarse-scale system (the
number of non-zero elements in the matrix of coarsek-NN graph). It limits the number of fractions a fine
point can be divided into (and thus attached to the coarse points). If a row inP contains too many non-
zero elements then it is likely to increase the number of non-zeros in the coarse graph matrix. In multigrid
methods, this number is usually controlled by different approaches that measure the strength of connectivity
(or importance) between fine and coarse variables (see discussion and our imlementation in [28]).



Using the matrixP , the aggregated data points and volumes for the coarse levelare calculated. The
edge between pointsp = I(i) andq = I(j) is assigned with weightW (coarse)

pq =
∑

k 6=l Pki · wkl · Plj.
The volume for the aggregateI(i) in the coarse graph is calculated by

∑

j vjPji, i.e., the total volume of all
points is preserved at all levels during the coarsening.

The stopping criteria for the coarsening depends on the available computational resources that can be
used to learn the classifier at the coarsest level. In all our experiments, the coarsening stops when the size is
less than a threshold (typically, 500 points) that ensures afast performance of the LibSVM dual solver.

Note: ◮ One of the major advantages of the proposed coarsening scheme is the natural ability to deal with
the imbalanced data. When the coarsening is performed on both classes simultaneously, and in a small class
the number of points reaches an allowed minimum, this level is simply copied throughout the rest of levels
required to coarsen the big class. Since the number of pointsat the coarsest level is small, this does not
affect the overall complexity of the framework.◭

Coarsest Level When both classes are small enough, the training reinforcedby the parameter tuning is
fast. We use the uniform design (UD) as a model selection technique to tune the parameters [12]. Another
major advantage of the multilevel learning is the ability toinherit parametersC+, C−, andγ during the
uncoarsening. The tuned parameters are projected from the coarsest level back to next finer level, where
they will be refined and projected up again. The coarsest level learning is shown in Algorithm 2.

Algorithm 2 Coarsest leveli learning

1: if n+ andn− are sufficiently small for the coarsest levelthen
2: Calculate the best (Si, C

+
i , C−

i , andγi) using UD, and (W)SVM solver on|C+
i | and|C−

i |
3: Return Si (the set of coarsest support vectors),C+

i , C−
i , andγi (learned parameters for leveli)

4: end if

Uncoarsening When the coarsest level is solved, we start to project the solution back gradually to the finest
level. In contrast to the classical multilevel methods for computational optimization problems [2] in which
each variable should be solved, the solution of (W)SVM consists of the set of support vectors whose size is
typically much smaller than the number of data points. Thus,the main time-consuming “operation” of the
uncoarsening is to project back and refine the set of coarse support vectors. This can be done very fast if
we do not take into account all points at each level for the training. Instead, at each level, we define a new
training set that includes only points from fine aggregates of the respective coarse level support vectors.

Thei+1→ i uncoarsening is presented in Algorithm 3. The set of supportvectorsSi+1 and parameters
C+
i+1, C

−
i+1, andγi+1 from level i + 1 are the inputs for leveli. First, the new training data (datatrain) is

created by taking all leveli points from the aggregates that correspond to the support vectors inSi+1 (lines
2-6). We denote byI−1 the reverse index function.

The parameter tuning using UD or other similar methods is a computationally expensive part of (W)SVM
training which takes most of the time for large-scale data sets. Since it can be applied at the coarse levels
of small size, we verify the size of a newdatatrain (parameterQdt), and decide whether the UD is still
applicable (line 7) or not. In case it can be applied, we run itaround the parametersC+

i+1, C−
i+1, andγi+1

inherited from the coarse leveli+1 (lines 8-9). Otherwise, if the size of the training data is too large for the
UD, we continue to inherit the parameters without adjustingthem. Because in most problems, the number
of support vectors is much smaller than the number of data points, even in very large data sets, we succeed
to refine the parameters using UD at, approximately, 8-10 levels without any significant loss in the running



Table 1: Performance measures and running time (in seconds)for WSVM, and MLWSVM on publicly
available data in [17].

Datasets WSVM MLWSVM
Name rimb nf l |C+| |C−| ACC SN SP κ Time ACC SN SP κ Time
Advertisement 0.86 1558 3279 459 28200.92 0.99 0.45 0.67 231 0.83 0.92 0.81 0.86 213
Buzz 0.80 77 140707 27775 1129320.96 0.99 0.81 0.89 26026 0.88 0.97 0.86 0.91 233
Clean (Musk) 0.85 166 6598 1017 5581 1.00 1.00 0.98 0.99 82 0.97 0.97 0.97 0.97 7
Cod-RNA 0.67 8 59535 19845 396900.96 0.96 0.96 0.96 1857 0.94 0.97 0.92 0.95 102
Forest 0.98 54 581012 9493 5715191.00 1.00 0.86 0.92 3532100.88 0.92 0.88 0.90 479
Hypothyroid 0.94 21 3919 240 3679 0.99 1.00 0.75 0.86 3 0.98 0.83 0.99 0.91 3
Letter 0.96 16 20000 734 192661.00 1.00 0.97 0.99 139 0.98 1.00 0.97 0.99 12
Nursery 0.67 8 12960 4320 8640 1.00 1.00 1.00 1.00 192 1.00 1.00 1.00 1.00 2
Ringnorm 0.50 20 7400 3664 3736 0.98 0.99 0.98 0.98 26 0.98 0.98 0.98 0.98 2
Twonorm 0.50 20 7400 3703 3697 0.98 0.98 0.99 0.98 28 0.98 0.98 0.97 0.98 1

time. This gives us an effective and efficient practical parameter tuning technique that has been applied for
several customer satisfaction classification problems in real-world large-scale data in recommender systems
of BMW.

Algorithm 3 Uncoarsening from leveli+ 1 to i

1: Input: Si+1, C
+
i+1, C

−
i+1, γi+1

2: datatrain← ∅
3: for all p ∈ Si+1 do
4: Np ← all points in the aggregateI−1(p)
5: datatrain← datatrain ∪Np

6: end for
7: if |datatrain| < Qdt then
8: CO ← (C+

i+1, C
−
i+1); γ

O ← γi+1

9: (Si, C
+
i , C−

i , andγi)← Run UD on (W)SVM using the initial center(CO, γO)
10: else
11: C+

i ← C+
i+1

12: C−
i ← C−

i+1

13: γi ← γi+1

14: Si ← Apply (W)SVM ondatatrain

15: end if
16: Return Si, C

+
i , C−

i , andγi

The framework works in a similar way for both regular SVM and WSVM. The WSVM shows better
performance for classification of the small class when the data is imbalanced.

4 Computational Results

The proposed framework is implemented in C++, and PETSc library which is the collection of data struc-
tures and methods for solving scientific computing problems[1]. PETSc provides a high-performance
parallelization of algebraic structures that will be used in our future work that will be related to paralleliza-



Table 2: Evaluation of regular and multilevel WSVM for DS1 set of the COMPANY benchmark.

Class Size in Size in WSVM on DS1 MLWSVM on DS1 MLWSVM on DS2
number DS1 DS2 ACC κ ACC κ ACC κ Time (in sec.)
Class 1 6867 204497 0.87 0.90 0.79 0.79 0.80 0.79 1123
Class 2 373 9892 0.99 0.36 0.90 0.69 0.63 0.69 200
Class 3 5350 91952 0.96 0.92 0.91 0.91 0.83 0.82 135
Class 4 278 9339 0.99 0.42 0.87 0.57 0.77 0.71 52
Class 5 2167 57478 0.93 0.62 0.63 0.69 0.62 0.66 53

Table 3: Quality of classifiers on publicly available data sets for different orders of interpolation.
Data set κ Time

R=1 R=2 R=4 R=6 R=8 R=10 R=1 R=2 R=4 R=6 R=8 R=10
Advertisement 0.86 0.80 0.84 0.84 0.86 0.82 219 205 220 205 213 268
Buzz 0.92 0.71 0.77 0.91 0.92 0.91 12 21 96 233 411 594
Clean (Musk) 0.96 0.96 0.95 0.97 0.96 0.97 6 7 7 7 8 8
Cod-RNA 0.94 0.95 0.95 0.95 0.95 0.94 48 140 84 59 146 150
Forest 0.63 0.51 0.59 0.90 0.89 0.85 84 68 168 479 1060 648
Hypothyroid 0.35 0.58 0.91 0.76 0.90 0.77 1 1 2 3 4 4
Letter 0.97 0.98 0.99 0.99 0.99 0.99 5 5 12 24 35 39
Nursery 1.00 1.00 1.00 1.00 1.00 1.00 2 3 3 3 4 5
Ringnorm 0.90 0.87 0.98 0.96 0.88 0.96 2 2 2 3 3 4
Twonorm 0.97 0.97 0.98 0.98 0.98 0.98 2 1 1 1 1 2

tion of the framework. Current implementation is not parallel. In general, based on the experience with with
similar multilevel approaches [2], we anticipate the totalcomplexity and performance of parallel version
will be comparable to those of parallel AMG with small ordersof interpolation. In our serial version, the
linear complexity is comparable to serial AMG. The data structure we use are sparse matrices and vectors
in the compressed row format. The rest of the data structuresare STL of C++ 11. Small-scale (W)SVM
models, that appear during the refinement, are solved using LibSVM 3.20 and the approximatek-NN graphs
are constructed using FLANN.

To evaluate our algorithms, we use sensitivity (SN), specificity (SP), G-mean (κ), and accuracy (ACC),
namely,

SN=
TP

TP + FN
, SP=

TN

TN + FP
, κ =

√
SP· SN (5)

and

ACC =
TP + TN

FP + TN + TP + FN
, (6)

whereTP , TN , FP , andFN are true positives, true negatives, false positives, and false negatives, re-
spectively. We experimented with publicly available and real-workd industrial data ofBMW. The publicly
available data is available at the UCI collection [17]. The industrial data of recommendation systems is
given in two data sets, namely, DS1, and DS2. They can also be available for limited research purposes. All
computational results are averages over 20 similar executions with different random seeds, and randomly
reordered data. The training-test split was 80%-20%.



In Table 1 (section “Datasets”), we present an information about the size of the data and its split into
majority and minority classes. The notationrimb, andnf correspond to the imbalance factor, and the
number of features, respectively. Performance measures ofregular and multilevel WSVM are presented
in sections WSVM, and MLWSVM of Table 1, respectively. Our main performance measure isκ since we
are dealing with the imbalanced classification. We observedone significant improvement in the quality ofκ
in Advertisement data set.In general, on these and several other data sets, no significant difference in the
quality ofκ between the proposed fast ML(W)SVM, and the full-time (W)SVM has been observed.

The running time (in seconds) for both WSVM and MLWSVM is presented in columns “Time” in Table
1. The running time includes calculation of the approximated k-NN graphs and UD (model selection) for
parameter tuning.We demonstrate that the proposed fast AMG inspired framework justifies the idea of
multilevel algorithms for (W)SVM, and clearly exhibits superior running time.

Not surprisingly, it is much easier to analyze benchmarks like UCI machine learning dataset than the
real-life industrial data which is very noisy, and containsmissing values. In theBMW data, there are 5
labeled classes of plain text customer satisfaction surveys. First, the plain text is converted into normalized
tf-idf form using the uni-, and bi-gram information which makes the number of features approximately
200.000 because of the extensive use of the domain-specific jargon. Then, we reduce the dimensionality of
the data to 100 by applying SVD projections.We note that we did not observe any change in the quality of
the results for full, and reduced dimensional data except the increased running time for full dimensionality.
While the multilevel (W)SVM framework running time is not fast but still realistic, the regular (W)SVM
cannot be executed on such data at all without introducing significant changes such as high-performance
parallelization or switching to linearized SVM version which significantly decreases the quality.

The size of both DS1 and DS2 data sets is presented in columns 2-3, Table 2. Different classes (1-5)
correspond to different major product problems addressed in the customer satisfaction surveys. For the
evaluation of DS1 we focus only on the quality of the classifier because all running times are fast for this
small dataset and mostly depend on the hardware, while for the DS2 set the running time is reported. While
there is no loss in quality on both DS1, and DS2, the running time of MLWSVM on DS2 is substantially
better than that of the regular WSVM which is measured in days, so it is comparable to the difference in
running time of the Forest data set.
Does AMG help? One of the main reasons for developing a multilevel AMG-based SVM framework was
an observation that for the real data ofBMW, and experiments with complex healthcare data provided in
[24], it is not enough to coarsen the data in the spirit of strict aggregation when data points are simply
merged or eliminated based on some strong connectivity criteria such as in many clustering approaches
[7, 10]. Applying other acceleration techniques such as an ensemble SVM learning [15, 6] also did not
improve the quality of classifiers. We observed, that in manycases, the hyperplanes obtained at the coarse
levels (i.e., without full uncoarsening) were substantially worse than the best known (but slowly computed)
hyperplanes computed for the data sets that are known in the literature. Thus, we asked a question whether
finding a better geometry of the data through more accurate AMG approximation of the spectral properties
of the coarse approximatedk-NN graphs can improve the quality of the classifier? We anticipated to have
similar improvements to those obtained in segmentation [29], and clustering [16]. Unfortunately, because
of several restrictions we cannot present full results of increasing interpolation order on theBMW data but
we analyze them on public data sets.

In Table 3, we show the comparison ofκ for data sets from [17] for different orders of interpolation (the
number of non-zeros in rows of matrixP , see Eq. 4). It is easy to see that for the data sets Forest, and
Hypothyroid the quality of classifier is improved for increased interpolation orderR. Improvement of the
quality comes with a price of increasing running time that isdemostrated in the “Time” section of Table 3.



Omitted observations (1) We are mostly interested in imbalanced problems, so we donot discuss the results
of SVM and MLSVM, because theirκ-quality is constantly worse than that of corresponding WSVM and
MLWSVM. (2) We do not discuss a faster LibLINEAR solver [8] because of its significantly worseκ-
quality. However, we note that if the data is not difficult enough, it can also be used as a part of the
refinement instead of LibSVM. (3) We tested other solvers such as SVMlight [14]. No running time or
quality improvements were observed.

5 Conclusions

We presented a new algorithmic framework for fast (W)SVM models. The framework belongs to the family
of multiscale algorithms in which the problem is solved at multiple scales of coarseness, and gradually com-
bined into one global solution of the original problem. We introduced the flexibility of the AMG coarsening
and reinforced it with local learning of the support vectorsand model selection parameters. This opens a
number of interesting research directions to pursue. In particular, when the number of support vectors is
indeed huge (which is not the case in many practical systems), we need to know how to combine multiple
local hyperplanes into one global at the refinement stage that has to be applied locally for different clusters
in the spirit of local refinement in other multiscale algorithms. Another major issue is related to effective
inheritance scheme (such as bagging or ensemble SVM) of the model parameters for multiple hyperplanes.
The implementation of our algorithms for ML(W)SVM is available at [27].
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