
Advanced Coarsening Schemes for Graph Partitioning

ILYA SAFRO, Clemson University
PETER SANDERS and CHRISTIAN SCHULZ, Karlsruhe Institute of Technology

The graph partitioning problem is widely used and studied in many practical and theoretical applications.
Today, multilevel strategies represent one of the most effective and efficient generic frameworks for solving
this problem on large-scale graphs. Most of the attention in designing multilevel partitioning frameworks
has been on the refinement phase. In this work, we focus on the coarsening phase, which is responsible
for creating structures similar to the original but smaller graphs. We compare different matching- and
AMG-based coarsening schemes, experiment with the algebraic distance between nodes, and demonstrate
computational results on several classes of graphs that emphasize the running time and quality advantages
of different coarsening schemes.

Categories and Subject Descriptors: F.2.1 [Numerical Algorithms and Problems]; G.1.6 [Optimization];
G.2.2 [Graph Theory]

General Terms: Algorithms, Graph Partitioning, Algebraic Multigrid

Additional Key Words and Phrases: Coarsening, uncoarsening, refinement, multilevel algorithm, computa-
tional optimization, algebraic distance

ACM Reference Format:
Ilya Safro, Peter Sanders, and Christian Schulz. 2014. Advanced coarsening schemes for graph partitioning.
ACM J. Exp. Algor. 19, 2, Article 2.2 (December 2014), 24 pages.
DOI: http://dx.doi.org/10.1145/2670338

1. INTRODUCTION

Graph partitioning is a class of problems used in many fields of computer science and
engineering. Applications include VLSI design, load balancing for parallel computa-
tions, network analysis, and optimal scheduling. The goal is to partition the vertices
of a graph into a certain number of disjoint sets of approximately the same size so
that a cut metric is minimized. This problem is NP-complete even for several restricted
classes of graphs, and there is no constant factor approximation algorithm for general
graphs [Bui and Jones 1992]. In this article, we focus on a version of the problem
that constrains the maximum block size to (1 + ε) times the average block size and
tries to minimize the total cut size, namely, the number of edges that run between
blocks.

Notable developments in exact algorithms for graph partitioning have been done in
the areas of linear and quadratic programming [Hager et al. 2013; Hager and Krylyuk
1999; Karisch et al. 2000; Fan and Pardalos 2010]. Because of the practical importance,
many heuristics of a different nature (spectral [Pothen et al. 1990], combinatorial

This work is partially supported by DFG SA 933/10-1 and CSCAPES Institute, a DOE project.
Authors’ addresses: I. Safro, School of Computing, McAdams Hall, Clemson University, Clemson SC 29634,
USA; email: isafro@clemson.edu; P. Sanders and C. Shultz, Department of Informatics, Karlsruhe Institute
of Technology, Am Fasanengarten 5, Karlsruhe 76131, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1084-6654/2014/12-ART2.2 $15.00

DOI: http://dx.doi.org/10.1145/2670338

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

http://dx.doi.org/10.1145/2670338
http://dx.doi.org/10.1145/2670338

2.2:2 I. Safro et al.

[Fiduccia and Mattheyses 1982], evolutionist [Bui and Moon 1996; Sanders and Schulz
2012], etc.) have been developed to provide an approximate result in a reasonable
(and, one hopes, linear) computational time. We refer the reader to Fjallstrom [1998],
Schloegel et al. [2000], and Walshaw and Cross [2007] for more material. However,
only the introduction of the general-purpose multilevel methods during the 1990s
has provided a breakthrough in efficiency and quality. The basic idea can be traced
back to multigrid solvers for solving elliptic partial differential equations [Trottenberg
and Schuller 2001], but more recent practical methods particularly are based on mostly
graph-theoretic aspects of edge contraction and local search. Well-known software pack-
ages based on this approach include Jostle [Walshaw and Cross 2007], Metis [Schloegel
et al. 2000], DiBaP [Meyerhenke et al. 2008], and Scotch [Pellegrini n.d.].

A multilevel algorithm consists of two main phases: coarsening, where the problem
instance is gradually mapped to smaller ones to reduce the original complexity (i.e., the
graph underlying the problem is compressed), and uncoarsening, where the solution
for the original instance is constructed by using the information inherited from the
solutions created at the next coarser levels. So far, most of the attention in designing
the multilevel partitioning frameworks has been on the uncoarsening phase. In this
work, we focus on the coarsening phase, which is responsible for creating graphs that
are smaller than but structurally similar to the given graph. We compare different
coarsening schemes, introduce new elements to them, and demonstrate computational
results. For this purpose, different coarsening schemes are integrated into the Karl-
sruhe Fast Flow Partitioner (KaFFPa), a graph partitioning framework [Sanders and
Schulz 2011].

The article is organized as follows. We begin in Section 2 by introducing notation and
the multilevel approach. In Section 3, we describe different coarsening schemes, includ-
ing a novel algebraic, multigrid-inspired balanced coarsening scheme and matching-
based coarsening schemes, as well as new measures for connectivity. We present a large
experimental evaluation in Section 4 on graphs arising in real-world applications and
on graphs that are specifically designed to be hard for multilevel algorithms.

2. PRELIMINARIES

Consider an undirected graph G = (V, E, c, ω) with edge weights1 ω : E → R>0, node
weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω to sets; in other words,

c(V ′) :=
∑
v∈V ′

c(v) and ω(E′) :=
∑
e∈E′

ω(e).

Here, �(v) := {u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks of
nodes V1, . . . , Vk that partition V, namely, V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 	= j.
A balance constraint demands that

∀i ∈ {1..k} : c(Vi) ≤ Lmax := (1 + ε)c(V)/k + max
v∈V

c(v)

for some parameter ε. The last term in this equation arises because each node is
atomic, and therefore a deviation of the heaviest node has to be allowed. Note that
in the unweighted case, this constraint becomes ∀i ∈ {1..k} : |Vi| ≤ Lmax := (1 +
ε)�|V |/k, which is widely used by partitioning packages and in the constraint used in
the Walshaw’s benchmark [Soper et al. 2004]. The objective is to minimize the total
cut ∑

i< j

ω(Eij),

1Subscripts will be used for a short notation; in other words, ωi j corresponds to the weight of {i, j} ∈ E.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:3

Fig. 1. V- and F-cycles schemes.

where

Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.
A vertex v ∈ Vi that has a neighbor w ∈ Vj, i 	= j is a boundary vertex. We denote by
nnzr(A, i) and nnzc(A, i) the number of nonzero entries in the ith row or column of a
matrix A, respectively.

A matching M ⊆ E is a set of edges that do not share any common nodes; that
is, the graph (V, M) has a maximum degree of one. Contracting an edge {u, v} means
replacing the nodes u and v by a new node x connected to the former neighbors of u
and v. We set c(x) = c(u) + c(v) so that the weight of a node at each level is the total
weight of the nodes it is representing in the original graph. If replacing edges of the
form {u, w}, {v,w} would generate two parallel edges {x, w}, we insert a single edge
with ω({x, w}) = ω({u, w}) + ω({v,w}). Uncontracting an edge e undoes its contraction.
A dominating set for a graph is a subset of nodes S ⊂ V such that every vertex in V \ S
is adjacent to some node in S.

2.1. Multilevel Graph Partitioning

In the multilevel framework, we construct a hierarchy of decreasing-size graphs,
G0, G1, . . . , Gk, by coarsening, starting from the given graph G0 such that each next-
coarser graph Gi reflects basic properties of the previous graph Gi−1. At the coarsest
level, Gk is partitioned by a hybrid of external solvers, and starting from the (k − 1)th
level the solution is projected gradually (level by level) to the finest level. Each projec-
tion is followed by the refinement, which moves nodes between the blocks to reduce the
size of the cut. This entire process is called a V-cycle (see Figure 1). KaFFPa [Sanders
and Schulz 2011] extended the concept of iterated multilevel algorithms, which was
introduced for graph partitioning by Walshaw [2004]. The main idea is to iterate the
multilevel-scheme using different random seeds for coarsening and uncoarsening. This
ensures nondecreased partition quality since the refinement algorithms of KaFFPa
guarantee no worsening. In this article, for the purpose of comparison, we consider
also F-cycles [Sanders and Schulz 2011] (see Figure 1) as a potentially stronger and
slower version of the multilevel framework for the graph partitioning problem. The
detailed description of F-cycles for the multilevel graph partitioning framework can be
found in Sanders and Schulz [2011].

3. COARSENING SCHEMES

One of the most important concerns of multilevel schemes is a measure of the connec-
tion strength between vertices. For matching-based coarsening schemes, experiments
indicate that more sophisticated edge rating functions are superior to edge weight as a
criterion for the matching algorithm [Holtgrewe et al. 2010]. To be more precise, first
the edges get rated using a rating function that indicates how much sense it makes to
contract an edge. Then a matching algorithm tries to maximize the sum of the ratings

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:4 I. Safro et al.

of the edges to be contracted. The default configurations of KaFFPa employ the ratings

expansion∗2({u, v}) := ω({u, v})2/c(u)c(v), and
innerOuter({u, v}) := ω({u, v})/(Out(v) + Out(u) − 2ω(u, v)),

where Out(v) := ∑
x∈�(v) ω({v, x}), since they yielded the best results in Holtgrewe et al.

[2010].

3.1. Algebraic Distance for Graph Partitioning

The notion of algebraic distance introduced in Ron et al. [2011] and Chen and Safro
[2011] is based on the principle of obtaining low-residual error components used in
the Bootstrap AMG [Brandt 2001]. When a priori knowledge of the nature of this
error is not available, slightly relaxed random vectors are used to approximate it. This
principle was used for linear ordering problems to distinguish between local and global
edges [Ron et al. 2011]. The main difference between the k-partitioning problem and
other (not necessarily combinatorial) problems for which the algebraic distance has
been tested so far is the balance constraint. For many instances, it is important to
keep the coarsening balanced; otherwise, even though the structural information will
be captured by a sophisticated coarsening procedure, most of the actual computational
work that constructs the approximate solution will be done by the refinement iterations.
Bounding the number of refinement iterations may dramatically decrease its quality.
Thus, a volume-normalized algebraic distance is introduced to take into account the
balancing of vertices.

Given the Laplacian of a graph L = D− W , where W is a weighted adjacency matrix
of a graph and D is the diagonal matrix with entries Dii = ∑

j ωi j , we define its volume-
normalized version denoted by L̃ = D̃ − W̃ based on volume-normalized edge weights
ω̃i j = ωi j/

√
c(i)c(j). We define an iteration matrix H for Jacobi overrelaxation (for

α = 1/2, also known as a lazy random-walk matrix) as

H = (1 − α)I + αD̃−1W̃,

where 0 ≤ α ≤ 1. The algebraic distance coupling ρi j is defined as

ρi j =
(

R∑
r=1

|χ (k,r)
i − χ

(k,r)
j |2

) 1
2

,

where

χ (k,r) = Hkχ (0,r) (1)

is a relaxed randomly initialized test vector (i.e., χ (0,r) is a random vector sampled over
[–1/2, 1/2]), R is the number of test vectors, and k is the number of iterations. In our
experimental settings, we set α = 0.5, R = 5, and k = 20. Choosing slightly different
parameters is not critical for experimental results. It is important, however, to mention
that setting α = 1 leads to Jacobi iterations that are not convergent for bipartite graphs.
In contrast to the parallelizable Jacobi overrelaxation iterator, one can also use a faster
Gauss-Seidel iterator losing at the same time an easy parallelization of matrix-vector
multiplication iterations of (1). We never observed that adding more test vectors (R > 5)
can either improve or worsen the results. At the same time, decreasing R can make an
initial random choice of test vectors too influential if k is small. These parameters are
described in detail in Ron et al. [2011] and Chen and Safro [2011], where additional
evidence of their robustness is presented for the linear arrangement problems.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:5

3.2. Coarsening

To the best of our knowledge, the existing multilevel algorithms for combinatorial
optimization problems (such as k-partitioning, linear ordering, clustering, and seg-
mentation) can be divided into two classes: contraction-based schemes [Sanders and
Schulz 2011; Dhillon 2005; Karypis and Kumar 1995] (including contractions of small
subsets of nodes [Bartel et al. 2010]) and algebraic multigrid (AMG)-inspired schemes
[Hu and Scott 2001; Sharon et al. 2000; Ron et al. 2005; Safro et al. 2006]. For the
completeness of this work, we refer the reader to Appendix A, where we present a brief
background on AMG.

3.2.1. AMG-Inspired Coarsening. One of the most traditional approaches for derivation
of the coarse systems in AMG is the Galerkin operator [Trottenberg and Schuller 2001],
which projects the fine system of equations to the coarser scale. In the context of graphs,
this projection is defined as

Lc = PT Lf P, (2)

where Lf and Lc are the Laplacians of fine and coarse graphs G f = (V f , Ef) and Gc =
(Vc, Ec), respectively. The (i, J)th entry of projection matrix P ∈ R

|V f |×|Vc| represents
the strength of the connection between fine node i and coarse node J. The entries of P,
referred to as interpolation weights, describe both the coarse-to-fine and fine-to-coarse
relations between nodes.

The coarsening begins by selecting a dominating set of (seed or coarse) nodes C ⊂ V f
such that all other (fine) nodes in F = V f \ C are strongly coupled to C. This selection
can be done by traversing all nodes and leaving node i in F (initially F = V f , and
C = ∅) that satisfies ∑

j∈C

1/ρi j ≥ � ·
∑
j∈V f

1/ρi j, (3)

where � is a parameter of coupling strength. As in AMG-based approaches for linear
ordering problems [Safro et al. 2008], we observed that the order in which V f is tra-
versed does play an important role in reducing the dependence on random seeds. The
nodes are traversed in future volume order, which measures how large an aggregate
seeded by i ∈ F might grow. Namely, we define node future volume νi

νi = ci +
∑
i j∈E

c j
ρ−1

i j∑
jk∈E ρ−1

jk

(for details, see Ron et al. [2011]).
The Galerkin operator construction differs from other AMG-based approaches for

combinatorial optimization problems. Balancing constraints of the partitioning prob-
lem requires a limited number of fine-to-coarse attractions between i ∈ C (ith column in
P) and its neighbors from F (nonzero entries in the ith column in P). In particular, this
is important for graphs where the number of high-degree nodes in C is smaller than the
number of parts in the desired partition. Another well-known problem of AMG that can
affect the performance of the solver is the complexity of coarse levels. Consideration
of the algebraic distance makes it possible to minimize the order of interpolation (the
number of fractions to which a node from F can be divided) to 1 or 2 only [Ron et al.
2011]. Algorithm 1 summarizes and Figure 2 illustrates the construction of P.

Algorithm 1 can be viewed as simplified version of bootstrap AMG [Brandt 2001]
with the additional restriction on future volume of aggregates and adaptive interpo-
lation order. PiI(j) thus represents the likelihood of i belonging to the I(j)th aggre-
gate. The edge connecting two coarse aggregates p and q is assigned with the weight

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:6 I. Safro et al.

Fig. 2. Different cases for the construction of interpolation weights P. Seed vertices are surrounded by
a circle. (a) For seed vertices i, we set PiI(j). (b) The algorithm first tries to split a vertex between two
seed vertices such that the seed vertices will not be overloaded when the grey vertex is split among them.
(c) If this is not successful, the algorithm tries to find a seed vertex that is not overloaded if the grey vertex
is aggregated with it. (d) If (b) and (c) are not successful, then the grey vertex is added to the set of seed
vertices.

ALGORITHM 1: Interpolation weights for P
input: G, i ∈ V f , P

1 if i ∈ C then
2 PiI(i) ← 1;

3 else
4 l ← list of at most κ algebraically strongest connections of i to C;
5 {e1, e2} ← algebraically strongest pair of edges (according to ρe1 + ρe2) in l such that the

corresponding C-neighbors are not overloaded if i is divided between them;
6 if {e1, e2} 	= ∅ then
7 l ← {e1, e2}
8 else
9 e1 ← algebraically strongest connection of i to C such that the corresponding

C-neighbor is not overloaded if i is aggregated with it;
10 l ← {e1};
11 if l is empty then
12 move i to C

13 else
14 Nc

i ← C-neighbors of i that are adjacent to edges in l;
15 PiI(j) ← 1/(ρi j · ∑

k∈Nc
i

1/ρik) for all j ∈ Nc
i ;

16 update future volumes of all j ∈ Nc
i ;

wpq = ∑
k	=l Pkpwkl Plq. The volume of the pth coarse aggregate is

∑
j c(j)Pjp. We em-

phasize the property of adaptivity of C (line 12 in Algorithm 1), which is updated if the
balancing of aggregates is not satisfied.

We mention the difference between our AMG scheme and the weighted aggregation
(WAG) scheme in Chevalier and Safro [2009]. The common principle that works in both
schemes is based on the division of F-nodes between their C-neighbors. However, two
critical components are missing in Chevalier and Safro: (1) the algebraic distance that
forms both the set of seeds and the interpolation operator, and (2) the weight-balancing
algorithmic component when aggregates are created, namely, operator P in Chevalier
and Safro is created as in classical AMG schemes. One important disadvantage of
Chevalier and Safro is a relatively high density of coarse levels, which is eliminated
with introduction of the algebraic distance. This was achieved by reducing the order
of interpolation to 1 or 2. The balancing factor played an important role in reducing

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:7

the running time of the algorithm. Recently introduced max-flow/min-cut refinement
leads to noticeably better results than FM/KL heuristics (explained in Section 3.4).
In contrast to simple FM/KL swaps, however, its complexity becomes higher if the
aggregates are unbalanced with respect to the maximum size of one part. Applying
this refinement with unbalanced WAG can significantly increase the total running
time of the solver or lead to weak solutions if the refinement is terminated before
it finds a good local minimum. Overall, the performance of our AMG scheme differs
significantly from what we observed with WAG.

3.2.2. Matching-Based Coarsening. Another coarsening framework, which is more popu-
lar because of its simplicity and faster performance, is the matching-based scheme. In
this scheme, a coarse graph is constructed by using contractions derived from a pre-
processed edge matching. This scheme represents a special case of PLf PT , in which
nnzr(P, r) = 1 for all rows r in P and 1 ≤ nnzc(P, c) ≤ 2 for all columns c in P.

Global paths algorithm. The Global Paths algorithm (GPA) was proposed in Maue
and Sanders [2007] as a synthesis of Greedy and Path Growing algorithms [Drake
and Hougardy 2003]. Similar to the Greedy approach, GPA scans the edges in order
of decreasing weight (or rating), but rather than immediately building a matching, it
first constructs a collection of paths and even-length cycles. To be more precise, these
paths initially contain no edges. While scanning the edges, the set is then extended
by successively adding applicable edges. An edge is called applicable if it connects two
endpoints of different paths or the two endpoints of an odd-length path. Afterward,
optimal solutions are computed for each of these paths and cycles using dynamic
programming. KaFFPaStrong [Sanders and Schulz 2011] employs innerOuter on the
first level of the hierarchy since expansion∗2 evaluates to one on unweighted graphs.
Afterward, it uses expansion∗2.

RandomGPA algorithm. This algorithm is used by the classic KaFFPaEco configu-
ration. It is a synthesis of the most simple random matching algorithm and the GPA
algorithm. To be more precise, this matching algorithm depends on the number of blocks
in which the graph has to be partitioned. It matches the first max{2, 7 − log k} levels
using the random matching algorithm and switches to the GPA algorithm afterward.
The random matching algorithm traverses the nodes in a random order, and if the
current node is not already matched, it chooses a random unmatched neighbor for the
matching. KaFFPaEco employs expansion∗2 as a rating function as soon as it uses GPA.

3.3. The Coarsest Level

Contraction is stopped when the graph is small enough to be partitioned by some
other expensive algorithm. We use the same initial partitioning scheme as in KaFFPa
[Sanders and Schulz 2011], namely, the libraries Scotch and Metis for initial par-
titioning. For AMG, some modifications have to be made, as Scotch and Metis can-
not deal with fractional numbers and Metis expects ωi j ≥ 1. To overcome this im-
plementational problem, we perform the following two steps. First, we divide each
edge weight of the coarsest graph by the smallest edge weight that occurred on that
level. This step assures edge weights larger than or equal to one without skewing the
graph partitioning problem for the library used. Second, we get rid of the fractional
edge weights using randomized rounding. Let e ∈ E be an edge with fractional edge
weight. We then obtain an integer edge weight ω̃(e) by flipping a coin with proba-
bilities P(head) = ω(e) − �ω(e)�,P(tail) = 1 − P(head). In the case of heads, we set
the edge weight ω̃(e) to �ω(e); otherwise, we set it to �ω(e)�. This way we can assure
that the value of the cut in the graph G̃ = (Vk, Ek, ω̃) produced by the external initial
partitioning algorithm is close to the real cut value in G.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:8 I. Safro et al.

3.4. Uncoarsening

Recall that uncoarsening undoes contraction. For AMG-based coarsening, this means
that fine nodes have to be assigned to blocks of the partition of the finer graph in the
hierarchy. We assign a fine node v to the block that minimizes cutB · pB(v), where cutB
is the cut after v would be assigned to block B and pB(v) is a penalty function to avoid
blocks that are heavily overloaded. To be more precise, after some experiments, we
fixed the penalty function to pB(v) = 2max(0,100 c(B)+c(v)

Lmax
), where Lmax is the upper bound for

the block weight. Note that slight imbalances (e.g., overloaded blocks) can usually be
fixed by the refinement algorithms implemented within KaFFPa. For matching-based
coarsening, the uncoarsening is straightforward: a vertex is assigned to the block of
the corresponding coarse vertex.

Karlsruhe Fast Flow Partitioner. Since we integrated different coarsening schemes
into the multilevel graph partitioner KaFFPa [Sanders and Schulz 2011], we now
briefly outline the techniques used by KaFFPa during uncoarsening. After a matching
is uncontracted, local search-based refinement algorithms move nodes between block
boundaries to reduce the cut while maintaining the balance constraint. Local improve-
ment algorithms are usually variants of the FM algorithm [Fiduccia and Mattheyses
1982]. The variant used by KaFFPa is organized in rounds. In each round, a priority
queue P is used that is initialized with all vertices that are incident to more than one
block in a random order. The priority is based on the gain g(i) = maxP gP(i), where
gP(i) is the decrease in edge cut when moving i to block P. Local search then repeatedly
looks for the highest gain node v and moves it to the corresponding block that maxi-
mizes the gain. However, in each round, a node is moved at most once. After a node
is moved, its unmoved neighbors become eligible—that is, its unmoved neighbors are
inserted into the priority queue. When a stopping criterion is reached, all movements
after the best-found cut that occurred within the balance constraint are undone. This
process is repeated several times until no improvement is found.

Max-flow min-cut local improvement. During the uncoarsening phase, KaFFPa ad-
ditionally uses more advanced refinement algorithms. The first method is based on
max-flow min-cut computations between pairs of blocks—in other words, a method to
improve a given bipartition. Roughly speaking, this improvement method is applied
between all pairs of blocks that share a nonempty boundary. The algorithm basically
constructs a flow problem by growing an area around the given boundary vertices of
a pair of blocks such that each s-t cut in this area yields a feasible bipartition of the
original graph/pair of blocks within the balance constraint. One can then apply a max-
flow min-cut algorithm to obtain a min-cut in this area and therefore a nondecreased
cut between the original pair of blocks. This can be improved in multiple ways, such
as by iteratively applying the method, searching in larger areas for feasible cuts, and
applying most balanced minimum cut heuristics. For more details, we refer the reader
to Sanders and Schulz [2011].

Multitry FM. The second method for improving a given partition is called multitry
FM. This local improvement method moves nodes between blocks to decrease the cut.
Previous k-way methods were initialized with all boundary nodes—in other words, all
boundary nodes were eligible for movement at the beginning. Roughly speaking, the
multitry FM algorithm is a k-way improvement method that is initialized with a single
boundary node, thus achieving a more localized search. This is repeated several rounds.
For more details about the multitry FM algorithm, we refer the reader to Sanders and
Schulz [2011].

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:9

Table I. Description of the Six Configurations Used for the Computational Experiments

ECO Represents the classical KaFFPaEco configuration, a good trade-off of partition quality
and runtime.

ECO-ALG Same refinement as in ECO; coarsening uses the GPA algorithm at each level, and the
edge rating function employs algebraic distances—in other words, it uses the rating
function ex_alg(e) := expansion∗2(e)/ρe.

F-CYCLE Represents the classical KaFFPaStrong configuration using strong refinement schemes
and the F-cycle scheme, with the purpose of achieving high partition quality; this
configuration achieved the best-known partitions for many instances from Benchmark I in
2010 [Sanders and Schulz 2011].

STRONG Uses the same refinement and matching schemes as in the F-CYCLE configuration;
however, here only one single V-cycle is performed.

AMG-ECO AMG coarsening based on algebraic distances with interpolation order at most 2 and
refinement as in ECO.

AMG Same coarsening as in AMG-ECO and same refinement as in STRONG.

4. EXPERIMENTAL EVALUATION

The AMG coarsening was implemented separately based on the coarsening for linear
ordering solvers from Ron et al. [2011] and was integrated into KaFFPa [Sanders and
Schulz 2011]. The computational experiments have been performed with six configura-
tions of KaFFPa, which are presented in Table I. All configurations use the described
FM algorithm and flows for the refinement. The strong configurations further em-
ploy flows using larger areas, multitry FM, and F-cycles. A detailed description of
the refinement configurations can be found in Sanders and Schulz [2011]. Throughout
this section, because of the respective similar running times, we concentrate on two
groups of comparison: for fast versions (AMG-ECO, ECO, ECO-ALG) and for strong
versions (AMG, STRONG, F-CYCLE). To be precise, usually the running time of F-
CYCLE is bigger than that of STRONG and AMG. However, the running time gap
between fast and strong versions is even more significant on average. Since the main
goal of this article is to introduce the AMG coarsening with different uncoarsening con-
figurations, most of the comparisons will be of type AMG versus respective non-AMG
ratios. A comprehensive comparison of the F-CYCLE and the STRONG configuration
can be found in Sanders and Schulz [2011].

All experiments are performed with a fixed imbalance factor of 3%. We also checked
other small values, namely, 0%, 1%, and 5%; however, no significant difference in the
comparison of the respective methods was observed.

4.1. Benchmark I: Walshaw’s Partitioning Archive

Chris Walshaw’s benchmark archive [Soper et al. 2004] is a collection of real-world in-
stances for the partitioning problem. The rules used there imply that the running time
is not an issue, but one wants to achieve minimal cut values for k ∈ {2, 4, 8, 16, 32, 64}
and balance parameters ε ∈ {0, 0.01, 0.03, 0.05}. It is the most used graph partitioning
benchmark in the literature. The main properties of the 34 graphs are shown later
in Table V (see Appendix B). Most of the graphs of the benchmark come from finite-
element applications; however, there are also some graphs from VLSI design and a
road network. Over the years, many different heuristics have been tested and adjusted
on this benchmark, so many heuristics are able to obtain good results on these graphs.

In Figure 3 , we present the results of the comparison of the algorithms on these
graphs for different numbers of blocks k. The horizontal axes represent ordered graphs
from the benchmark (however, the ordering itself will be different for each curve). The
vertical axes are for ratios that represent the comparison of averages of final results
for a pair of methods. Each figure contains four curves. Each curve corresponds to
a comparison of the following pairs of methods: ECO versus AMG-ECO, ECO-ALG

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:10 I. Safro et al.

Table II. Computational Comparison for Benchmark I

k ECO/ECO-ALG ECO-ALG/ECO-AMG STRONG/AMG F-CYCLE/AMG
2 1.026 1.034 1.013 1.012
4 1.053 1.021 1.009 1.004
8 1.019 1.023 0.998 0.995
16 1.015 1.012 1.001 0.999
32 1.008 1.017 1.003 1.002
64 1.004 1.009 1.000 0.997

Note: Each number corresponds to the ratio of averages of final cuts for pair of methods
in the column title and k given in the row.

Table III. Computational Comparison for Scale-Free Graphs

ECO
ECO-ALG

ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

k quality full time uncoarsening time quality uncoarsening time
2 1.38 0.77 1.62 1.16 3.62
4 1.24 1.32 1.85 1.11 2.14
8 1.15 1.29 1.45 1.07 1.94
16 1.09 1.27 1.33 1.06 1.69
32 1.06 1.18 1.23 1.00 1.60
64 1.06 1.13 1.13 1.01 2.99

versus AMG-ECO, STRONG versus AMG, and F-CYCLE versus AMG. Each point on
the curves corresponds to the ratio between the average over 10 runs of one method and
the average over 10 runs of another method. Each run depends on different random
seeds and thus can produce different results. For example, the last point at the black
solid curve in Figure 3(a) has a value of 2.03, which means that

average(ECO final cut given seed s1, . . . , ECO final cut given seed s10)
average(AMG-ECO final cut given seed s1, . . . , AMG-ECO final cut given seed s10)

=2.03

in experimental series for k = 2. A comparison of the running time for uncoarsening
phases is presented in Figure 4. Each point on the curves in Figure 4 corresponds to a
ratio of uncoarsening running times of two methods. We observed that the uncoarsening
performances of fast versions (ECO, ECO-ALG, AMG-ECO) are more or less similar
to each other. The uncoarsening of a STRONG V-cycle is somewhat slower than AMG
because of the density of coarse levels. With regard to partition quality, we observed
that there is not much difference between all of the methods here. The averages are
summarized in Table II. Full results are summarized in Safro et al. [n.d.].

4.2. Benchmark II: Scale-Free Networks

In scale-free networks, the distribution of vertex degrees asymptotically follows the
power-law distribution. Examples of such networks include WWW links, social com-
munities, and biological networks. These types of networks often contain irregular
parts and long-range links (in contrast to Benchmark I) that can confuse both con-
traction and AMG coarsening schemes. Since Walshaw’s benchmark does not contain
graphs derived from such networks, we evaluate our algorithms on 15 graphs collected
from Bader et al. [n.d.] and Lescovec [n.d.]. Table VI (presented later) summarizes the
main properties of these graphs. Full information about these graphs, along with the
computational results, is available at Safro et al. [n.d.].

The results of the comparison on scale-free graphs are presented in Figure 5. Because
of the large running time of the strong configurations on these graphs, we compare only
the fast versions of AMG and matching-based coarsening. Each figure corresponds to

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:11

Fig. 3. Comparison of coarsening schemes on Walshaw’s benchmark graphs. Parts (a) through (f) contain
results of comparison for k = 2, 4, 8, 16, 32, and 64, respectively. Each figure contains four curves that cor-
respond to ECO/AMG-ECO, ECO-ALG/AMG-ECO, STRONG/AMG, and F-CYCLE/AMG ratios, respectively.
Each point on a curve corresponds to the average of ratios of final cuts related to one graph.

a different number of blocks k. The horizontal axes represent graphs from the bench-
mark. The vertical axes are for ratios that represent comparison of averages of final
results for a pair of methods. Each graph corresponds to one quadruple of bars. First,
second, third, and fourth bars represent averages of ratios ECO/AMG-ECO, ECO-ALG/
AMG-ECO after finest refinement, ECO/AMG-ECO, and ECO-ALG/AMG-ECO before

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:12 I. Safro et al.

Fig. 4. Comparison of uncoarsening running time on Walshaw’s benchmark graphs for k = 32. The figure
contains four curves that correspond to ECO/AMG-ECO, ECO-ALG/AMG-ECO, STRONG/AMG, and F-
CYCLE/AMG ratios, respectively. Each point on the curves corresponds to the average of ratios of final cuts
related to one graph.

finest refinement, respectively. As in the previous case, the averages are calculated
over 10 runs.

4.3. Benchmark III: Potentially Hard Graphs for Fast k-Partitioning Algorithms

Today, multilevel strategies represent one of the most effective and efficient generic
frameworks for solving the graph partitioning problem on large-scale graphs. The rea-
son is obvious: given a successful global optimization technique X for this problem, one
can consider applying it locally by introducing a chain of subproblems along with fixed
boundary conditions. Given this and if the coarsening preserves the structural prop-
erties of the graph well enough, the multilevel heuristic can behave better and work
faster than a direct global application of optimization technique X. Examples of such
combinations include FM/KL, spectral, and min-cut/max-flow techniques with multi-
level frameworks. When can the multilevel framework produce low-quality results?

We present a simple strategy for checking the quality of multilevel schemes. To
construct a potentially hard instance for gradual multilevel projections, we consider a
mixture of graphs that are weakly connected with each other. These graphs have to
possess different structural properties (such as finite-element faces, power-law degree
distribution, and density) to ensure nonuniform coarsening and mutual aggregation of
well-separated graph regions. Such mixtures of structures may have a twofold effect.
First, they can force the algorithm to contract incorrect edges; second, they can attract
a “too strong” refinement to reach a local optimum, which can contradict better local
optimums at finer levels. The last situation has been observed in different variations
as well in multilevel linear ordering algorithms [Safro et al. 2008]. In other words, the
uneven aggregation with respect to the scales (not to be confused with uneven sizes
of clusters) can lead refinement algorithms to wrong local attraction basins. Examples
of graphs that contain such mixtures of structures include multimode networks [Tang
et al. 2008] and logistics multistage system networks [Stock 2006]. In general, such
graphs can be difficult not only to the multilevel algorithms.

We created a benchmark (available at Bader et al. [2013]) with potentially hard
mixtures. Each graph in this benchmark represents a star-like structure of different
subgraphs S0, . . . , St. Graphs S1, . . . , St are weakly connected to the center S0 by ran-
dom edges. Since all constituent subgraphs are sparse, a faster aggregation of them
has been achieved by adding more than one random edge to each boundary node.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:13

Fig. 5. Comparison of coarsening schemes on scale-free graphs. Parts (a) through (f) contain results of
comparison for k = 2, 4, 8, 16, 32, and 64, respectively. Each quadruple of bars corresponds to one graph. First,
second, third, and fourth bars represent averages of ratios (of final cuts) ECO/AMG-ECO, ECO-ALG/AMG-
ECO after refinement, ECO/AMG-ECO, and ECO-ALG/AMG-ECO before refinement, respectively. Three
exceptionally high ratios on both figures are between 2.1 and 3.

The total number of edges between each Si and S0 was less than 3% out of the total
number of edges in Si. We considered the mixtures of the following structures: social
networks, finite-element graphs, VLSI chips, peer-to-peer networks, and matrices from
optimization solvers. The main properties of the graphs are shown later in Table VII
(see Appendix B).

The comparison on this benchmark is demonstrated in Figure 6. Each graph corre-
sponds to one quadruple of bars. The first, second, third, and the fourth bar represent

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:14 I. Safro et al.

Table IV. Computational Comparison for Potentially Hard Graphs

ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

STRONG
AMG

STRONG
AMG

F-CYCLE
AMG

k quality full time quality uncoarsening time quality uncoarsening time quality
2 1.42 0.51 1.18 0.55 1.15 2.11 1.11
4 1.15 0.88 1.23 0.64 1.13 1.69 1.12
8 1.12 1.08 1.08 0.98 1.05 1.37 1.04

Fig. 6. Comparison of coarsening schemes on hard examples. Parts (a), (c), and (e) contain results (averages
of cuts’ ratios) of comparison before applying finest-level refinement. Parts (b), (d), and (f) contain results
of comparison of final results (averages of final cuts’ ratios). Each quadruple of bars corresponds to one
graph. First, second, third, and fourth bars represent averages of ratios ECO/AMG-ECO, ECO-ALG/AMG-
ECO, STRONG/AMG, and F-CYCLE/AMG, respectively. Four exceptionally high ratios on both figures are
between 3.5 and 5.7.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:15

averages over 10 ratios of ECO/AMG-ECO, ECO-ALG/AMG-ECO, STRONG/AMG, and
F-CYCLE/AMG, respectively. In almost all experiments, we observed that introduction
of algebraic distance as a measure of connectivity plays a crucial role in both fast ver-
sions AMG-ECO and ECO-ALG, as it helps to separate the subgraphs and postpone
their aggregation into one mixture. We also observe that both fast and slow AMG coars-
enings almost always lead to better results. Note that in contrast to Benchmarks I and
II, the uncoarsening of ECO-ALG is significantly faster than that of AMG-ECO.

4.4. Discussion

Role of the algebraic distance. In this work, the importance of the algebraic distance as
a measure of connectivity strength for graph partitioning algorithms has been justified
in almost all experimental settings. In particular, the most significant gap was observed
between ECO and ECO-ALG versions (see all benchmarks), which confirms preliminary
experiments in Chen and Safro [2011], where the algebraic distance has been used
at the finest level only. The price for improvement in the quality is the additional
running time for Jacobi overrelaxation, which can be implemented by using the most
suitable (parallel) matrix-vector multiplication method. However, in cases of strong
configurations and/or large irregular instances, the difference in the running time
becomes less influential, as it is not comparable to the amount of work in the refinement
phase. For example, for the largest graph in Benchmark I (auto, |V | = 448695, |E| =
3314611), the ECO coarsening is approximately 10 times faster than that in the ECO-
ALG; however, for both configurations when k = 64, it takes less than 3% of the total
time. Note that for irregular instances from Benchmark II, already starting k = 4, the
total running time for ECO becomes bigger than for ECO-ALG (see Table III). More
examples of trade-off between changes in the objectives and those in the running times
on Benchmark III are presented in Figure 7.

Does AMG coarsening help? The positive answer to this question is given mostly by
Benchmarks II and III, which contain relatively complex instances (Tables III and IV).
On Benchmark III, we have demonstrated that the AMG configuration is superior to
F-CYCLE, which runs significantly longer. This result is in contrast to Benchmark I,
in which we did not observe any particular class of graphs that corresponded to stable
significant difference in favor of one of the methods in pairs ECO-ALG versus AMG-
ECO and STRONG versus AMG. However, we note that in both Benchmarks I and II,
several graphs exhibited that AMG versions yield to the respective matching for large
k. The problem is eliminated when we stabilize ρ by using more relaxations according
to Theorem 4.2 in Ron et al. [2011]. We cannot present here the exact comparison of
coarsening running times because their underlying implementations are very differ-
ent. Theoretically, however, if in both matching and AMG configurations the algebraic
distance is used and when the order of interpolation in AMG is limited by 2 (and usu-
ally it is 1, meaning that the coarse graphs are not dense like in Chevalier and Safro
[2009]), the exact complexity of AMG coarsening is not supposed to be bigger than that
of matching.

5. CONCLUSIONS

We introduced a new coarsening scheme for multilevel graph partitioning based on
AMG coarsening. One of its most important components—namely, the algebraic dis-
tance connectivity measure—has been incorporated into the matching coarsening
schemes. Both coarsening schemes have been compared under fast and strong con-
figurations of refinement. In addition to known benchmarks, we introduced new po-
tentially hard graphs for large-scale graph partitioning solvers (available at Bader

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:16 I. Safro et al.

Fig. 7. Benchmark III. Trade-off between changes in the objectives (horizontal axis) and those in the running
times (vertical axis) on Benchmark III. Data points for k = 2, 4, and 8 are represented by circles, squares,
and triangles, respectively. Average ratios (of both time and final cuts) are calculated each over 10 runs,
similarly to previous figures. The top and bottom figures describe the comparison for ECO versus ECO-ALG
and ECO-ALG versus STRONG configurations, respectively.

et al. [2013]). As the main conclusion of this work, we emphasize the success of the pro-
posed AMG coarsening and the algebraic distance connectivity measure between nodes
demonstrated on highly irregular instances. One has to take into account the trade-off
between increased running time when using algebraic distance and improved quality
of the partitions. The increasing running time becomes less tangible with growth of
graph size compared with the complexity of the refinement phase.

Many opportunities remain to improve the coarsening schemes for graph partition-
ing. We demonstrated the crucial importance of the connectivity strength metrics (es-
pecially for fast versions of the algorithm), which raises the question of how one can use
these metrics at the uncoarsening phase. Preliminary experiments show that this has
the potential to improve fast versions even more. Another issue that requires more in-
sight is related to the balancing of AMG aggregates. We observed a number of examples
for which the unbalanced coarsening produces noticeably better results.

APPENDIX A: BRIEF BACKGROUND ON AMG

For comprehensive surveys on multigrid methods and stationary iterative relaxations,
we refer the reader to Brandt and Ron [2003] and Heath [2002], respectively. AMG
methods were originally developed for solving linear systems of equations that describe

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:17

the discretization of partial differential equations; up to now, these methods represent
the most effective class of numerical algorithms for them. The common approach of all
multigrid algorithms (not only AMG) is to construct a sequence of representations of the
original problem at increasingly larger (coarser) scales and to combine local processing
(relaxation) at each scale with various interscale interactions. Coarse-scale equations
are typically dictated by the fine equations, whereas large-scale corrections for the
solutions of fine scales are supplied by coarse-scale solutions. Large-scale changes
are effectively calculated on coarse grids, based on information previously gathered
from finer discretizations. During the past three decades, multigrid methods were
adapted and generalized for many computational tasks in various disciplines. Multi-
grid methods are known to be scalable and efficient because they can solve a system
with only linear time and space complexity. Moreover, the nature of these algorithms
allows relatively easy distribution of the main parts of the task among parallel ma-
chines, which is what makes these methods ideal for solving large-scale computational
problems.

In AMG, the goal is to solve a system of equations

Ax = b
(

or equivalently to minimize
1
2

xT Ax − bT x
)

, (4)

where A ∈ R
n×n is symmetric positive definite2 and x, b ∈ R

n. One way to solve such a
system is by using iterative methods that begin with an initial guess and successively
improve it until the solution is accurate enough. Examples of such methods (called
relaxations) include Jacobi, Gauss-Seidel, and successive overrelaxation methods that
can be written as

x̃(k+1) = T x̃(k) + v, (5)

where x̃(k) is an approximate solution at the kth iteration and T is an iterator usually
obtained by splitting A. The splitting will be different for different types of relaxations.
The relaxation is of interest if it converges to the optimal solution of (4). However, for
most of the existing relaxations and linear systems that can be solved by them, the
convergence is typically slow. A common feature of such relaxations is that at each
step, corrections to x̃(k) are calculated based on a small number of unknowns—in other
words, the relaxation is a local process that after a small number of iterations smooths
the remaining error.

The main idea of the multigrid is to exploit the fact that a smooth (relaxed) error can
be approximated by using fewer variables than the original error. Following a small
number of relaxation iterations, the remaining smooth error e and also the solution x̃
can be approximated by a coarser system with fewer new variables. The main issue in
any coarsening scheme is how to define the coarse variables, the operator of restriction
that describes a problem by using fewer variables, and the operator of interpolation
that projects the solution of the coarse problem onto fine scale. In AMG, the set of coarse
variables C is chosen as a subset of the set of fine variables F, or, more generally, each
coarse variable is compounded of fractions of a small number of fine variables. This
aggregation process is performed around each fine variable (which entirely contributes
itself to the respective aggregate) chosen into the set C. This set must be constructed so
that all other fine variables in F \ C will be strongly coupled to C. The notion of strong
coupling varies in different AMG methods. The main idea of a strong coupling is to
ensure that the variable xi need not be in C if it is already connected to those variables

2We consider symmetric positive definite for simplicity. In general, the approach can be extended for other
types of matrices.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:18 I. Safro et al.

whose solution can be interpolated well enough to xi. The classical criterion for this is
Equation (6). During the past two decades, many advanced methods to measure the
strength of coupling were proposed. Algebraic distance also belongs to this class of
measures. In fact, for current x̃, the problem in (4) will be solved by reformulating it
as a residual problem Ae = r, where e = x − x̃ is an error and r = b − Ax̃ is a residual.
One of the classical multigrid algorithms, called correction scheme, is presented in
Algorithm 2.

ALGORITHM 2: Correction scheme algorithm MG
input: A, x̃, b

1 if A is small enough then
2 Solve Ax̃ = b;

3 else
4 Apply error smoothing (relaxation) sweeps (5);
5 Define Ac, ec = 0 and rc =↑c

f r ;
6 MG(Ac, ec, rc);
7 Correct x̃ = x̃+ ↑ f

c ec ;
8 Apply error smoothing (relaxation) sweeps (5);

In this algorithm, Ac, ec, and rc are the coarse matrix, the coarse error, and the
coarse residual, respectively. In AMG, the main part of the procedure for choosing the
set of coarse variables C contains a sweep through all fine variables transferring to C
those that are still not strongly connected to already chosen variables. The strength of
the connection between a currently visited variable in F and its seeds (those that are
already in C) is controlled by the parameter Q ∈ (0, 1]. In particular, i ∈ F is strongly
connected to C if ∑

j∈C aij∑
j∈F aij

≥ Q. (6)

One of the most traditional approaches for derivation of the coarse equations Ac in
AMG is the Galerkin operator

Ac =↑c
f A ↑ f

c , (7)

which projects the fine system of equations to the coarser scale. Usually, for symmetric
and positive definite matrices A, the restriction mapping is ↑c

f = (↑ f
c)T . The (i, J)th

entry of ↑ f
c represents the strength of the connection between fine variable i and coarse

variable J and e =↑ f
c ec. The entries of ↑ f

c are referred to as interpolation weights, and
they describe both the coarse-to-fine and fine-to-coarse variable relations. To control
the complexity of the coarse-scale system (the number of nonzero elements in Ac), the
number of fractions into which a fine variable can be divided (and thus attached to
the coarse variables) is bounded by the order of interpolation. If a row in ↑c

f contains
too many nonzero elements, then it is likely to increase the number of nonzeros in
Ac. Thus, this number is usually controlled by different approaches that measure
the strength of connectivity (or importance) between fine and coarse variables. The
algebraic distance that we use in the coarsening (see Section 3.1) belongs to this class of
approaches.

In our context, the error smoothing relaxation is represented by the algebraic
distance and the graph Laplacian is coarsened in the spirit of the presented AMG
scheme.

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:19

APPENDIX B: BASIC PROPERTIES AND BASELINE RESULTS OF BENCHMARK INSTANCES
USED

In Tables VII, IX, and X we present computational results for Benchmarks 2, 3, and 1,
respectively.

Table V. Basic Properties of Walshaw Benchmark Graphs

Graph n m
add20 2395 7462
data 2851 15093
3elt 4720 13722
uk 4824 6837
add32 4960 9462
bcsstk33 8738 291583
whitaker3 9800 28989
crack 10240 30380
wing_nodal 10937 75488
fe_4elt2 11143 32818
vibrobox 12328 165250
bcsstk29 13992 302748
4elt 15606 45878
fe_sphere 16386 49152
cti 16840 48232
memplus 17758 54196
cs4 22499 43858
bcsstk30 28924 1007284
bcsstk31 35588 572914
fe_pwt 36519 144794
bcsstk32 44609 985046
fe_body 45087 163734
t60k 60005 89440
wing 62032 121544
brack2 62631 366559
finan512 74752 261120
fe_tooth 78136 452591
fe_rotor 99617 662431
598a 110971 741934
fe_ocean 143437 409593
144 144649 1074393
wave 156317 1059331
m14b 214765 1679018
auto 448695 3314611

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:20 I. Safro et al.

Table VI. Basic Properties of Scale-Free Graphs

Graph n m
as-22july06 22963 48436
as-skitter 554930 5797663
citationCiteseer 268495 1156647
coAuthorsCiteseer 227320 814134
coAuthorsDBLP 299067 977676
coPapersDBLP 540486 15245729
email-EuAll 16805 60260
web-Google 356648 2093324
wiki-Talk 232314 1458806
coPapersCiteseer 434102 16036720
loc-brightkite 56739 212945
loc-gowalla 196591 950327
p2p-Gnutella04 6405 29215
PGPgiantcompo 10680 24316
soc-Slashdot0902 28550 379445

Table VII. Basic Properties of Potentially Hard Graphs

Graph n m
barth5_1Ksep_50in_5Kout 32212 101805
bcsstk30_500sep_10in_1Kout 58348 2016578
befref_fxm_2_4_air02 14109 98224
bump2_e18_aa01_model1_crew1 56438 300801
c-30_data_data 11023 2184
c-60_data_cti_cs4 85830 241080
data_and_seymourl 9167 55866
finan512_scagr7-2c_rlfddd 139752 552020
mod2_pgp2_slptsk 101364 389368
msc10848_300sep_100in_1Kout 21996 1221028
sctap1-2b_and_seymourl 40174 140831
south31_slptsk 39668 189914
vibrobox_scagr7-2c_rlfddd 77328 435586
p0291_seymourl_iiasa 10498 53868
model1_crew1_cr42_south31 45101 189976

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:21

Table VIII. Best Baseline Results (Final Cuts, AMG-ECO) for Scale-Free Graphs

Graph k = 2 k = 4 k = 8 k = 16 k = 32 k = 64
as-22july06 3525 7793 11816 14417 18846 21187
as-skitter 233880 426555 631860 922479 1275580 1723340
citationCiteseer 33019 69441 105597 143682 190887 231361
coAuthorsCiteseer 19119 35488 49720 58317 67397 74770
coAuthorsDBLP 49268 82139 105319 124426 145250 161705
coPapersDBLP 486768 844223 1184020 1505970 1821300 2058860
email-EuAll 682 5606 13725 22457 27140 35176
loc-brightkite_edges 20451 36086 47454 55500 65742 75531
loc-gowalla_edges 56119 132232 191548 253907 317408 352958
p2p-Gnutella04 7516 12335 15288 17515 20191 19543
PGPgiantcompo 378 742 1159 1842 2667 3123
soc-Slashdot0902 98953 169422 248887 286205 314022 330046
web-Google 12578 20243 24031 26934 30826 48136
wiki-Talk 76890 253898 497122 835821 982291 1092920
coPapersCiteseer 266289 507025 712150 877103 1041120 1166210

Table IX. Best Baseline Results (Final Cuts) for Potentially Hard Graphs

k = 2 k = 2 k = 4 k = 4 k = 8 k = 8
Graph AMG AMG-ECO AMG AMG-ECO AMG AMG-ECO
barth5_1Ksep_50in_5Kout 3735 3735 6102 6104 7765 7760
bcsstk30_500sep_10in_1Kout 617 617 13562 13572 35335 35778
befref_fxm_2_4_air02 3638 3638 28948 29027 45856 46145
bump2_e18_aa01_model1_crew1 29701 29658 63472 64374 85619 86947
c-30_data_data 1512 1673 5520 5199 12086 15264
c-60_data_cti_cs4 4405 4425 7332 7420 9960 10153
data_and_seymourl 7185 7180 14931 14675 19299 19714
finan512_scagr7-2c_rlfddd 13573 13603 43597 43877 61776 63678
mod2_pgp2_slptsk 29625 32122 60061 65451 84268 89613
model1_crew1_cr42_south31 24907 27359 47397 48893 68135 70165
msc10848_300sep_100in_1Kout 737 737 32485 32791 72497 74941
p0291_seymourl_iiasa 6708 6688 15779 15925 21527 21707
sctap1-2b_and_seymourl 16036 20466 26367 26882 37045 38057
south31_slptsk 24425 29005 43724 44129 54376 55303
vibrobox_scagr7-2c_rlfddd 35450 35834 54662 54905 78637 79762

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

2.2:22 I. Safro et al.
Ta

bl
e

X
.B

es
tB

es
tli

ne
R

es
ul

ts
(F

in
al

C
ut

s)
fo

r
W

al
sh

aw
’s

B
en

ch
m

ar
k

k
=

2
k

=
4

k
=

8
k

=
16

k
=

32
k

=
64

gr
ap

h
A

M
G

A
M

G
-E

C
O

A
M

G
A

M
G

-E
C

O
A

M
G

A
M

G
-E

C
O

A
M

G
A

M
G

-E
C

O
A

M
G

A
M

G
-E

C
O

A
M

G
A

M
G

-E
C

O
3e

lt
87

87
20

1
20

3
34

3
34

8
57

0
58

5
98

6
10

09
16

06
16

40
4e

lt
13

7
13

8
31

9
32

1
52

5
53

7
95

4
96

4
15

74
16

09
26

10
26

74
59

8a
23

67
23

67
78

85
79

30
16

17
3

16
50

7
25

59
9

26
20

6
39

19
5

40
69

6
57

43
8

58
69

6
ad

d2
0

67
5

66
8

12
40

12
38

17
52

17
61

21
47

22
08

26
32

28
07

31
49

31
49

ad
d3

2
10

10
33

33
66

66
11

7
11

7
21

2
21

2
51

2
51

5
bc

ss
tk

29
28

18
28

18
80

31
81

44
14

11
3

14
26

2
22

89
0

23
41

2
35

64
0

35
95

9
57

19
5

58
07

6
bc

ss
tk

30
62

51
62

51
16

49
7

16
68

5
34

30
2

34
37

1
70

99
8

72
00

6
11

62
43

11
80

39
17

50
79

17
73

95
bc

ss
tk

31
26

76
26

76
73

14
74

18
13

28
4

13
33

5
23

92
2

24
13

5
38

26
7

38
89

5
59

65
0

61
03

7
bc

ss
tk

32
49

38
49

38
87

49
90

21
20

84
6

21
71

3
36

30
9

37
02

0
60

33
6

62
17

7
93

65
4

94
93

2
bc

ss
tk

33
10

06
4

10
06

4
21

35
5

21
55

5
34

99
0

35
43

3
55

51
3

55
77

5
79

61
0

81
41

6
11

05
98

11
15

52
br

ac
k2

68
4

70
6

28
36

28
56

69
61

73
17

11
54

8
11

95
9

17
60

0
18

17
8

26
21

8
26

98
3

cr
ac

k
18

3
18

6
36

0
37

4
68

8
69

9
11

21
11

38
17

21
17

56
26

06
26

76
cs

4
36

5
37

7
95

4
98

3
14

87
15

43
21

46
22

21
29

75
31

02
41

12
42

89
ct

i
35

2
35

2
92

8
94

5
17

16
17

88
27

76
29

46
41

20
43

46
59

88
63

18
da

ta
19

3
19

6
39

0
39

0
67

7
68

4
11

62
11

56
18

82
19

24
29

49
29

44
fe

4e
lt

2
13

0
13

0
34

9
34

9
60

9
61

6
10

03
10

22
16

36
16

68
25

57
25

93
fe

bo
dy

26
2

26
2

60
8

60
9

10
64

10
83

17
91

18
05

29
01

30
08

48
88

50
37

fe
oc

ea
n

31
1

31
1

17
20

18
00

39
63

41
02

79
51

83
75

12
75

3
13

85
2

20
36

8
21

50
8

fe
pw

t
34

0
34

5
70

2
70

0
14

42
14

45
28

05
28

15
55

72
55

87
83

22
85

03
fe

ro
to

r
19

59
19

59
74

71
75

91
12

97
5

13
05

7
20

53
3

20
98

8
31

78
5

32
31

0
46

90
3

47
88

8
fe

sp
h

er
e

38
4

38
4

78
6

80
6

11
81

12
34

17
47

18
44

25
40

26
88

36
38

39
08

fe
to

ot
h

37
95

39
06

68
71

70
64

11
48

4
11

70
2

17
59

9
18

35
2

25
61

2
26

11
3

35
28

6
36

29
6

fi
n

an
51

2
16

2
16

2
32

4
32

4
64

8
64

8
12

96
12

96
25

92
25

92
10

65
2

10
83

9
m

14
b

38
23

38
23

13
01

6
13

10
2

25
50

5
26

05
3

43
11

0
44

23
6

66
21

1
67

76
7

97
83

1
10

04
71

m
em

pl
u

s
57

14
57

01
10

29
0

10
54

0
12

29
3

12
43

6
14

05
4

14
22

5
15

32
0

15
97

2
16

68
9

17
64

3
t6

0k
73

77
20

7
20

8
46

4
47

1
87

0
88

5
13

85
14

18
21

75
22

47
u

k
18

19
40

42
83

84
15

1
15

7
26

5
26

7
43

1
43

5
w

av
e

86
41

86
76

16
78

7
16

86
0

28
60

6
29

40
1

41
62

8
44

04
3

61
90

3
62

90
9

84
76

3
87

20
0

w
h

it
ak

er
3

12
6

12
8

37
8

38
4

66
3

66
1

11
18

11
41

17
02

17
35

26
00

27
12

w
in

g
77

6
80

0
16

98
17

39
25

31
26

11
39

92
42

83
57

01
59

69
79

08
86

03
w

in
g

n
od

al
16

94
17

23
35

97
36

10
55

11
55

77
83

12
82

51
11

99
3

12
19

7
16

33
5

16
71

6
14

4
64

72
65

29
15

59
2

15
83

6
25

63
9

25
92

8
38

97
3

40
10

3
56

58
2

57
74

8
79

89
5

83
00

5
au

to
96

85
96

85
25

96
1

26
10

7
44

97
7

45
45

4
76

30
3

78
19

0
12

07
34

12
29

69
17

37
52

18
16

09

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

Advanced Coarsening Schemes for Graph Partitioning 2.2:23

REFERENCES

D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. 2013. 10th DIMACS Implementation Challenge—
Graph Partitioning and Graph Clustering. Retrieved October 20, 2014, from http://www.cc.gatech.edu/
dimacs10/.

G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel. 2010. An experimental evaluation of multilevel layout
methods. In Graph Drawing. Lecture Notes in Computer Science, Vol. 6502. Springer, 80–91.

A. Brandt. 2001. Multiscale scientific computation: Review 2001. In Multiscale and Multiresolution Methods.
Lecture Notes in Computational Science and Engineering, Vol. 20. Springer, 3–95.

A. Brandt and D. Ron. 2003. Multigrid solvers and multilevel optimization strategies. In Multilevel Opti-
mization in VLSICAD. Combinatorial Optimization, Vol. 14. Springer, 1–69.

T. N. Bui and C. Jones. 1992. Finding good approximate vertex and edge partitions is NP-hard. Information
Processing Letters 42, 3, 153–159.

T. N. Bui and B. R. Moon. 1996. Genetic algorithm and graph partitioning. IEEE Transactions on Computers
45, 7, 841–855. DOI:http://dx.doi.org/10.1109/12.508322

J. Chen and I. Safro. 2011. Algebraic distance on graphs. SIAM Journal on Scientific Computing 33, 6,
3468–3490.

C. Chevalier and I. Safro. 2009. Comparison of coarsening schemes for multilevel graph partitioning. In
LION. Lecture Notes in Computer Science, Vol. 5851. Springer, 191–205.

I. Dhillon. 2005. A fast kernel-based multilevel algorithm for graph clustering. In Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 629–634.

D. Drake and S. Hougardy. 2003. A simple approximation algorithm for the weighted matching problem.
Information Processing Letters 85, 211–213.

N. Fan and P. M. Pardalos. 2010. Linear and quadratic programming approaches for the general graph
partitioning problem. Journal of Global Optimization 48, 1, 57–71. DOI:http://dx.doi.org/10.1007/
s10898-009-9520-1

C. M. Fiduccia and R. M. Mattheyses. 1982. A linear-time heuristic for improving network partitions. In
Proceedings of the 19th Conference on Design Automation. 175–181.

P. O. Fjallstrom. 1998. Algorithms for graph partitioning: A survey. Linkoping Electronic Articles in Computer
and Information Science 3, 10.

W. W. Hager and Y. Krylyuk. 1999. Graph partitioning and continuous quadratic programming. SIAM
Journal on Discrete Mathematics 12, 4, 500–523.

W. W. Hager, D. T. Phan, and H. Zhang. 2013. An exact algorithm for graph partitioning. Mathematical
Programming 137, 1–2, 531–556.

M. T. Heath. 2002. Scientific Computing: An Introductory Survey. McGraw-Hill. http://books.google.com/
books?id=DPkYAQAAIAAJ.

M. Holtgrewe, P. Sanders, and C. Schulz. 2010. Engineering a scalable high quality graph partitioner. In
Proceedings of the 24th IEEE International Symposium on Parallel and Distributed Processing. 1–10.

Y. F. Hu and J. A. Scott. 2001. A multilevel algorithm for wavefront reduction. SIAM Journal on Scientific
Computing 23, 4, 1352–1375. DOI:http://dx.doi.org/10.1137/S1064827500377733

S. E. Karisch, F. Rendl, and J. Clausen. 2000. Solving graph bisection problems with semidefinite pro-
gramming. INFORMS Journal on Computing 12, 3, 177–191. DOI:http://dx.doi.org/10.1287/ijoc.12.3.
177.12637

G. Karypis and V. Kumar. 1995. Analysis of multilevel graph partitioning. In Proceedings of the 1995
ACM/IEEE Conference on Supercomputing (Supercomputing’95). Article No. 29.

J. Lescovec. n.d. Stanford Network Analysis Package (SNAP). Retrieved October 20, 2014, from http://snap.
stanford.edu/index.html.

J. Maue and P. Sanders. 2007. Engineering algorithms for approximate weighted matching. In Experi-
mental Algorithms. Lecture Notes in Computer Science, Vol. 4525. Springer, 242–255. http://dx.doi.
org/10.1007/978-3-540-72845-0_19

H. Meyerhenke, B. Monien, and T. Sauerwald. 2008. A new diffusion-based multilevel algorithm for com-
puting graph partitions of very high quality. In Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing (IPDPS’08). 1–13.

F. Pellegrini. Scotch Home Page. n.d. Retrieved October 20, 2014, from http://www.labri/fr/perso/pelegrin/
scotch/.

A. Pothen, H. D. Simon, and K.-P. Liou. 1990. Partitioning sparse matrices with eigenvectors of graphs. SIAM
Journal on Matrix Analalysis and Applications 11, 3, 430–452. DOI:http://dx.doi.org/10.1137/0611030

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

http://www.cc.gatech.edu/dimacs10/
http://www.cc.gatech.edu/dimacs10/
http://dx.doi.org/10.1109/12.508322
http://dx.doi.org/10.1007/s10898-009-9520-1
http://dx.doi.org/10.1007/s10898-009-9520-1
http://books.google.com/books?id=DPkYAQAAIAAJ
http://books.google.com/books?id=DPkYAQAAIAAJ
http://dx.doi.org/10.1137/S1064827500377733
http://dx.doi.org/10.1287/ijoc.12.3.177.12637
http://dx.doi.org/10.1287/ijoc.12.3.177.12637
http://snap.stanford.edu/index.html.
http://snap.stanford.edu/index.html.
http://dx.doi.org/10.1007/978-3-540-72845-019
http://dx.doi.org/10.1007/978-3-540-72845-019
http://dx.doi.org/10.1137/0611030

2.2:24 I. Safro et al.

D. Ron, I. Safro, and A. Brandt. 2011. Relaxation-based coarsening and multiscale graph organization.
Multiscale Modeling & Simulation 9, 1, 407–423.

D. Ron, S. Wishko-Stern, and A. Brandt. 2005. An Algebraic Multigrid Based Algorithm for Bisectioning Gen-
eral Graphs. Technical Report MCS05-01. Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science.

I. Safro, D. Ron, and A. Brandt. 2006. Graph minimum linear arrangement by multilevel weighted edge
contractions. Journal of Algorithms 60, 1, 24–41.

I. Safro, D. Ron, and A. Brandt. 2008. Multilevel algorithms for linear ordering problems. Journal of Exper-
imental Algorithmics 13, 1.4–1.20.

I. Safro, P. Sanders, and C. Schulz. n.d. Benchmark with Potentially Hard Graphs for Partitioning Problem.
Retrieved October 20, 2014, from http://www.cs.clemson.edu/∼isafro/hardpart.html.

P. Sanders and C. Schulz. 2011. Engineering multilevel graph partitioning algorithms. In Algorithms—ESA
2011. Lecture Notes in Computer Science, Vol. 6942. Springer, 469–480.

P. Sanders and C. Schulz. 2012. Distributed evolutionary graph partitioning. In Proceedings of the 12th
Workshop on Algorithm Engineering and Experimentation (ALENEX’12). 16–29.

K. Schloegel, G. Karypis, V. Kumar, J. Dongarra, I. Foster, G. Fox, K. Kennedy, and A. White. 2000. Graph
Partitioning for High Performance Scientific Simulations. Morgan Kaufmann.

E. Sharon, A. Brandt, and R. Basri. 2000. Fast multiscale image segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 70–77. citeseer.nj.nec.com/sharon99fast.html.

A. J. Soper, C. Walshaw, and M. Cross. 2004. A combined evolutionary search and multilevel optimisation
approach to graph-partitioning. Journal of Global Optimization 29, 2, 225–241.

L. E. Stock. 2006. Strategic Logistics Management. Lightning Source, La Vergne, TN. http://books.google.
com/books?id=1LyCAQAACAAJ.

L. Tang, H. Liu, J. Zhang, and Z. Nazeri. 2008. Community evolution in dynamic multi-mode networks.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’08). 677–685.

U. Trottenberg and A. Schuller. 2001. Multigrid. Academic Press, Orlando, FL.
C. Walshaw. 2004. Multilevel refinement for combinatorial optimisation problems. Annals of Operations

Research 131, 1, 325–372.
C. Walshaw and M. Cross. 2007. JOSTLE: Parallel multilevel graph-partitioning software—an overview. In

Mesh Partitioning Techniques and Domain Decomposition Techniques, F. Magoules (Ed.). Civil-Comp
Ltd., 27–58.

Received October 2012; revised May 2013; accepted September 2014

ACM Journal of Experimental Algorithmics, Vol. 19, No. 2, Article 2.2, Publication date: December 2014.

http://www.cs.clemson.edu/protect $elax sim $isafro/hardpart.html.
file:citeseer.nj.nec.com/sharon99fast.html.
http://books.google.com/books?id=1LyCAQAACAAJ
http://books.google.com/books?id=1LyCAQAACAAJ

