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Abstract—Dynamic topic modeling is an increasingly im-
portant component of Big Data analytics, enabling the sense-
making of highly dynamic and diverse streams of text data.
Traditional methods such as Dynamic Topic Modeling (DTM),
while mathematically elegant, do not lend themselves well to
direct parallelization because of dependencies from one time
step to another. Data decomposition approaches that partition
data across time segments and then combine results in a global
view of the dynamic change of topics enable execution of
topic models on much larger datasets than is possibly without
data decomposition. However, these methods are difficult to
analyze mathematically and are relatively untested for quality
of topics and performance on parallel systems. In this pa-
per, we introduce and empirically analyze Clustered Latent
Dirichlet Allocation (CLDA), a method for extracting dynamic
latent topics from a collection of documents. CLDA uses a
data decomposition strategy to partition data. CLDA takes
advantage of parallelism, enabling fast execution for even
very large datasets and a large number of topics. A large
corpus is split into local segments to extract textual information
from different time steps. Latent Dirichlet Allocation (LDA)
is applied to infer topics at local segments. The results are
merged, and clustering is used to combine topics from different
segments into global topics. Results show that the perplexity
is comparable and that topics generated by this algorithm are
similar to those generated by DTM. In addition, CLDA is two
orders of magnitude faster than existing approaches and allows
for more freedom of experiment design. CLDA provides insight
into how the composition of topics changes over time and can
also be applied using other data partitioning strategies over
any discrete features of the data, include geographic features,
classes of users, and so on. In this paper CLDA is applied
successfully to seventeen years of NIPS conference papers
(2,484 documents and 3,280,697 words), seventeen years of
computer science journal abstracts (533,560 documents and
32,551,540 words), and to forty years of the PubMed corpus
(4,025,978 documents and 273,853,980 words).

I. INTRODUCTION

Topic modeling is a method for extracting the underlying
themes from a collection of documents. One of the most
common models used in practice is Latent Dirichlet Allo-
cation (LDA) [1]. With LDA, documents are assumed to
be randomly generated from one or more topics, each of
which is a distribution of words. The topics are viewed as

latent variables, and LDA executes by inferring the topics
from the documents via a Dirichlet process. The algorithm
repeatedly samples the documents and modifies the topics to
better fit them until reaching a specified convergence. LDA
has a number of assumptions, including that both words
and documents are unordered and that all documents are
generated in the same timeframe.

Of interest in streaming Big Data analytics is the modeling
of topics found in a dynamic stream of data, for example, a
social media data stream that changes quickly in time, or a
massive collection of publications that have been produced
over long time steps. Dynamic Topic Modeling (DTM)
[2] relaxes the assumption of LDA that all documents are
generated simultaneously. The corpus is divided into a set of
time steps, each of which has its own topics. These topics
represent the same theme in each time step, but the set
of the most important words extracted by LDA is allowed
to change through time. The mathematical foundation of
DTM is well established by the authors. DTM enables
observation of how the language of a topic changes over
time, and also how well represented a topic is at any
given point in time. However, DTM’s update process is
dependent on the results of the the previous time step and
is much slower than that of LDA, requiring many more
iterations for convergence. Because of the dependencies, the
DTM algorithm and implementation developed by Blei and
Gerrish [3], is not easily parallelizable for model generation,
and its application is limited to modest-sized datasets.

Typically, data decomposition approaches that partition
data, say, across time segments, and then combine results
in a global view enable execution on much larger datasets
than is possibly without data decomposition. However, in the
case of dynamic topics models this approach is difficult to
analyze mathematically. Data decomposition approaches for
dynamic topic modeling are relatively untested for quality of
topics and performance on parallel systems. In this paper, we
introduce and empirically analyze Clustered Latent Dirichlet
Allocation (CLDA), a method for extracting dynamic latent
topics from a collection of documents. CLDA uses a combi-
nation of LDA and clustering (in our experiments, k-means)



to estimate topics that can be divided into discrete topic
segments. The method has application to data streaming and
can be compared to dynamic topic modeling approaches.
The method can also be applied to data that can be divided
according to criteria other than time such as data divided
into geographic areas or with other discrete features.

CLDA executes as follows. First, the data are discretized
into disjoint segments, using time steps or other criteria.
Each of these segments is a sub-corpus that is used as the
input to a separate run of LDA. We use PLDA+ [4], a highly
parallelized implementation of LDA. Since the segments are
disjoint, the runs of PLDA+ on these several segments can
also be performed in parallel. The output for this step is
a set of topics for every segment. The full list of these
topics is passed to a parallelized implementation of k-means
clustering, producing a set of topics representative of the full
set. Because each step of the method uses highly parallelized
code, and because the estimation of local topics can be
further independently parallelized, CLDA is highly scalable
and fast on even very large datasets. As a result of clustering,
each original topic is a member of a particular global topic
cluster, which is represented by its centroid.

CLDA has a number of promising characteristics. We
show that CLDA is two orders of magnitude faster than the
original implementation of DTM for data that is segmented
by time steps. In addition, analysis can be performed on the
composition of each global topic in each segment, allowing
a better fit at the local level than DTM. Matching the original
topic mixtures to their representative centroids also enables
comparison across time of global topics and analysis of how
the global topics change over time. Unlike DTM, which
requires that all time steps have the same number of topics,
CLDA allows the number of topics to change from one
timestep to another. CLDA supports analysis of data in
which new topics may emerge or old topics may disappear
during a time step.

In this paper, CLDA is compared empirically to the
original DTM implementation with respect to the quality
and similarity of the topics that are produced by the original
DTM code. We choose to compare to DTM because of its
strong mathematical foundations. Other methods exist, as
described in Section II, but each of these varies in some
way from the original DTM method. We apply CLDA
successfully to seventeen years of NIPS conference papers
(2,484 documents and 3,280,697 words), seventeen years of
computer science journal abstracts (533,560 documents and
32,551,540 words), and to forty years of the PubMed corpus
(4,025,978 documents and 273,853,980 words).

This paper has the following main contributions:
1) We introduce a new algorithm termed CLDA and

demonstrate the scalability of the method. CLDA
scales favorably with the number of processors, the
size of the document corpus, and the number of topics
across even very large datasets.

2) CLDA is analyzed with respect to the quality of the
topics that are generated. CLDA is shown to compare
favorably with DTM with respect to perplexity, which
is the standard measurement in topic modeling for how
well the model fits the data.

3) Topics produced by CLDA are compared directly to
topics produced by DTM on the same corpus and
number of topics. Using set-based comparison ap-
proaches we show that the topics generated by CLDA
are broadly similar to those generated by DTM.

4) Implementation of CLDA is available at [5].
The remainder of this paper is structured as follows.

Section II provides background information on LDA, DTM,
and related approaches. Section III provides the details of
the CLDA method. Section IV describes our experimental
validation methodology and results. In this section, CLDA is
evaluated with respect to scalability, perplexity as compared
to DTM, and the similarity of the topics produced as
compared to DTM. Section V discusses some of the open
questions around CLDA and future work, and finally, Section
VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Topic Modeling

Topic modeling is the process of automating the task of
identifying key themes in a collection of documents. This
information can be used to examine the themes in a large
corpus or to classify new documents in predictive analytics.
LDA [1] and is probably the most commonly used method
for topic modeling. LDA assumes that words are unordered,
topics are distributions of words, and multiple topics can
contribute to a document that is a mixture of topics. It also
assumes that the prior distribution of each topic is a Dirichlet
distribution, which distinguishes it from more generalized
methods. Only the output of the model (i.e., documents)
can be observed directly. The topics and topic mixtures are
latent variables that must be inferred.

With the LDA method, documents are assumed to be
generated by sampling a topic from their topic mixture
to generate all the words in each document. Topics are
randomly seeded, and then iteration proceeds using Bayesian
inference. During each iteration, LDA compares each doc-
ument with the topic and updates the topics for the next
iteration, which continues until a stopping criteria is met.
Convergence can be measured either by change in the
inferred parameters, or by another objective metric of the
model such as the likelihood of producing the input set [1].
Formally, for a mixture of K latent topics, where topic k is
a multinonomial distribution φk over a W -word vocabulary,
for any document Dj , its topic mixture θj is a probability
distribution drawn from a Dirichlet prior with parameter α.
For each ith word xij in dj , a topic zij = k is drawn from
θj , and xij is drawn from θk. The generating process for



LDA is

θj ∼ Dir(α), φk ∼ Dir(β), zij = k ∼ φk. (1)

LDA has several implementations in a variety of pro-
gramming languages. There are two standard formulations,
depending on how the Dirichlet priors are updated for
the next iteration. The version used in the original paper
and implementation uses variational Bayes, while many
later works rely on Gibbs sampling [6], [7], [8], [9], [10],
[11], [12]. The implementation of Gibbs sampling is less
complicated and comparatively straightforward to derive.

Serial implementations of LDA do not scale well to
processing of even moderately large corpora. PLDA was
developed by Google Beijing Research and CMU to address
the processing of very large datasets [12]. PLDA builds on
a method called Approximate Distributed LDA (AD-LDA)
[13]. Instead of a probability mass function, topics are stored
as the count of each word assigned to them. For example,
if a word is generated by a topic fifteen times and there
are sixty words generated by that topic in total, AD-LDA
will record fifteen whereas LDA would record 0.25. This
method utilizes data parallelism by dividing up the set of
documents across processes, and iterates over the corpus
using Gibbs sampling. Each process has a copy of the word
counts, and communicates any changes it makes to word
assignment in its documents (and thus the resulting topic
matrix) at the end of every iteration. During each iteration,
processes do not communicate, and thus are working with
stale results that are not globally accurate. As such, this
is an approximation to serial Gibbs sampling. Experiments
show this approximation converges in practice, and PLDA
demonstrates substantial speedup on large corpora.

PLDA+ extends the implementation of PLDA and goes
further by optimizing the algorithm using the four strategies
of data placement, pipeline processing, word bundling, and
priority-based scheduling [4]. Data placement enables the
pipeline to mask communication delays with further com-
putation, working on one word bundle while communicating
the results of another. These word bundles are chosen
such that the computation time is long enough to mask
communication, and arranged in a circular queue rather than
statically assigned to processes. The queue and word bundles
are managed by one set of processors while another set per-
forms the Gibbs sampling, thus taking advantage of model
parallelism. PLDA+ succeeds in masking communication
with computation, and as a result has high scalability and
performance to even PLDA, which is already fast. PLDA+
nears the theoretical maximum speedup for hundreds of
processes and remains very high for all process counts
tested.

B. Dynamic Topic Modeling

One of the assumptions of LDA is that every document
is equally important, but when evaluating documents over

a long span of time this is problematic. For example, since
language changes over time, the classification of a document
written in 2000 should be based more on how it compares
with documents written in the 1990s than in the 1900s. This
problem can be partially sidestepped by considering blocks
of time as separate collections, and performing LDA on each
of them independently. This has the advantage of reducing
the size of the corpus being used on any given task, which
makes the method faster. But, without further processing, it
has the disadvantage that it loses the information about how
a topic evolves over time. CLDA addresses this weakness
directly.

DTM is one approach to the time dependency problem
[2]. Documents are sorted into discrete time steps, each
containing a sizable corpus of its own. Each time step has its
own topics, multiplying the size of the output by the number
of time steps. We refer to the set of topics linked to each
other over time as a global topic, where its representation
at a given time step is a local topic. During each iteration,
topics are updated by repeated inference on documents in
their own time step, and also by consideration of the topic’s
form in the preceding time step.

DTM is effective in capturing the transformation of a
global topic over time. It maintains the core strength of
LDA while also allowing for variance across time periods
to account for slowly changing language. However, there
are some weaknesses. In DTM there is not a mechanism
to capture the birth or death of topics. Also, the evolution
model for the topics assumes the topics are recognizable
from one year to the next. While a topic might gradually
evolve to be unrecognizable from its original form, each
individual jump must be smaller than the distance from that
topic to the others in that time.

DTM also retains the weakness of LDA to require as input
the number of topics that are present. DTM adds further
complication to this requirement, as the optimal number of
topics may vary by time, which is not supported by the
model. The time series over the data segments enables the
use of Gaussian models for the time dynamics. However,
the multinomial model of LDA and the Gaussian model
for the time dynamics are non-conjugate, making posterior
inference intractable, and an approximation must be used.
Using approximations at each iteration slows the rate of
convergence, causing a process already slowed by splitting
the time steps to slow further so that the convergence time
of DTM can be very long.

Investigation of dynamic topic modeling approaches that
improves these weaknesses and increases performance is an
active area of research [14], [15], [16], [17], [18], [19], [20],
[21]. Table I provides an overview of some of the most
important developments and how they compare to CLDA.
Topics over time (TOT) [6] is a dynamic topic model that
assumes continuous rather than discrete timestamps. iDTM
[14] is an extension of DTM that relaxes the assumption



that the number of topics is fixed over time, therefore
allowing for the birth and death of topics. This is achieved
by combining the over-time updating from DTM with a
hierarchical Dirichlet process (HDP) [22], which is a model
build for nested data and which has been parallelized by
[23].

CLDA, described in the next section, utilizes parallel
computing by applying LDA to independent data segments
and combining the results using clustering. Bhadury et
al. [24] devise a parallel method to address the normal
complications with DTM’s inference algorithm. Previous
work relies on mean field approximations, which are costly
to calculate. Their work instead utilizes developments in
stochastic Markov Chain Monte Carlo methods, a category
which also includes Gibbs sampling. This allows them to uti-
lize the more easily parallelized Gibbs sampling framework
to estimate posterior likelihood, but is also faster in serial
operation. Their results show dramatic speedup over the
original DTM implementation, but the code is not available
as of this writing for comparison to CLDA.

CLDA utilizes clustering in the final step of the method.
Because of its speed and available code, a parallel imple-
mentation of k-means developed in [25] was used for this
project. Inputs to the k-means method include the number
of clusters, K, and an initial set of points. The data are
classified to the nearest point using cosine similarity. There
are weaknesses to this method. There is an assumption that
clusters should be roughly equally sized and that data in
different clusters will be separated by considerable distance.
The selection of K can be problematic, and the algorithm is
known to be sensitive to the initial starting points. Because of
these weaknesses, exploration of other clustering approaches
is a topic of future work.

III. METHOD DESCRIPTION

CLDA uses a data decomposition parallelization strategy.
The data are split into multiple segments and LDA is applied
to estimate local topics in each segment in parallel. Then,
local topics are merged and clustering is used to calculate
global topics on the merged local topics. Figure 1 provides
the pseudocode and Figure 2 provides the flowchart for
CLDA. The Apply LDA step in Figure 2 uses a plate
notation [1] to illustrate the LDA method. We describe the
steps of CLDA in detail.

STEP 1: SPLIT text corpus into S segments

First the corpus is divided into S disjoint segments on
which LDA will be applied. In our application we divide the
data according to naturally occurring time steps (i.e., yearly
data). Other applications might divide data by geographical
location or data source. The division of the overall corpus
into individual segments can be performed as a serial task or
in parallel. The vocabulary is distributed to all tasks prior to
the LDA computation, and the remaining data manipulation

1: procedure CLDA
2: SPLIT text corpus into S segments
3: L ← number of local topics

. Lines 4-6 run independently in parallel
4: for all segments s ∈ {1, ..., S} do
5: APPLY LDA to estimate local topics {tis}Li=1

6: end for
. Line 7 run in parallel

7: U ← MERGE({tis}Li=1 for s ∈ {1, ..., S})
8: K ← number of global topics
9: CLUSTER U into K global topics

10: end procedure

Figure 1. Pseudocode for clustered Latent Dirichlet Allocation (CLDA)
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Figure 2. Flowchart of the algorithm

before each LDA executes independently on the individual,
smaller, segments.

LDA requires that the number of estimated topics is
selected a priori, which we denote as L. The number of
local topics L can be larger or smaller than the number
of global topics K. We have found that better results are
typically obtained when the number of local topics L is
larger than what may be expected for global topics. The



Table I
COMPARISON OF EXISTING TOPIC MODELING APPROACHES AND CLDA

CLDA LDA PLDA+ TOT HDP parallel HDP DTM iDTM parallel DTM
Reference [this paper] [1] [4] [6] [22] [23] [2] [14] [24]
Parallelized X - X - - X - - X
Includes time component X - - X (X)† (X)† X X X
Evolution of topics X - - X - - X X X
Allows for birth/death of topics X - - X - - - X -
Unlimited number of segments X - - X X X X X X
Multiple segmentation options X - - - X X - - -
Notes:† HDP was built for nested data. Similar to the modeling approach presented in this paper, HDP could be applied to time-
segmented data to estimate changes in topics over time.

larger number of topics at the local level allows for small
topics to be discovered, and for greater breadth of a topic
that is unusually well represented. If many topics represent
the same subject at any given segment, these are clustered
together. Using more topics in the local segments avoids
overfitting of the local data across the entire set of global
clusters.

In this paper we describe the case where L is identical for
each segment. Extensions are possible where a different L
is set for each segment, either for domain-specific reasons
or after determining the locally optimal number of topics
through cross-validation.

STEP 2: APPLY LDA to estimate local topics
In the second step the documents in each segment are

analyzed with LDA. LDA can run concurrently on separate
processors (or groups of processors, if using parallel imple-
mentations of LDA such as PLDA+ in our experiments) for
nearly perfect parallelism. This step results in a collection
of topics {tis}Li=1 at each segment s ∈ {1, ..., S}, for a total
of S · L local topics (whose merged union is denoted by U
in Algorithm 1) that are clustered in the next stage.

STEP 3: MERGE local topics
The third step is to merge the emitted topics into U to

obtain global topic clustering. At the conceptual level this
requires concatenating the emitted topics into a single list,
but in practice the step is more involved. The individual
outputs {tis}Li=1 have indexing entries that must be removed
before they can be concatenated. The entries are then re-
indexed to match the input requirements of the chosen
implementation of k-means. It is also necessary to ensure
that the generated topics are comparable. LDA acts on
a vocabulary consisting of everything that appears in its
source documents, and produces topics with a value for
each element in the vocabulary. If a word appears in one
document collection but not another, these topics are not
directly comparable. As such, if any of the segments does
not contain the full vocabulary, it is necessary at this stage to
add the missing entries to the topics, as shown in Figure 3.
The entries are added with zero contribution to the topic.

In addition to ensuring the local topics are comparable
in dimension, they must be comparable in scale. Some

1: procedure MERGE
. Lines 2-11 run independently in parallel

2: for all segments s ∈ {1, ..., S} do
3: for all words w ∈W do

. W denotes full vocabulary
4: if w /∈Ws then

. Ws denotes vocabulary of s
5: add w to Ws

6: for all local topic sets {tis}Li=1 do
7: tis(w)← 0
8: end for
9: end if

10: end for
11: end for
12: U ←

⋃S
s=1{tis}Li=1

13: end procedure

Figure 3. Pseudocode for merging stage

LDA implementations, including PLDA+, provide varying
magnitudes for topic vectors based on their occurrence in
the data. The goal of CLDA is to cluster the local topics
based on the meaning, and we assume that all local topics are
equally weighted. As such, the topics are normalized before
clustering them. This operation is straightforward and has
no dependence on other topics or other segments, and can
thus be done independently before the merge, or all at once
afterwards. Our implementation performs this normalization
after the merge, but there is no difference in the results either
way.

STEP 4: CLUSTER local topics

The fourth step is to combine local topics into global
topics. The k-means clustering requires that the number of
global topics, which we denote as K, is set a priori. In the
extreme cases, K = 1 defines a single cluster containing all
local topics, and K = (S · L) defines a cluster for every
topic individually. If K > L, not every global topic will
have a representation at each segment, which means global
topics will disappear and/or reappear. If K ≤ L, topics
may disappear and reappear at individual segments, which
depends on the results of the clustering in the next stage.



We consider this to be an advantage of the method over
alternative implementations, such as DTM, which assumes
that topics are universally represented over the entire time
period.

K-means clustering is sensitive to its initialization. In
CLDA, this may result in different topics. There are ways
to evaluate the output of k-means across different initial
values, including inter-class sum of squares, but generating
initial values that are sufficiently different from each other is
still a data-dependent challenge. Running LDA on the entire
corpus provides a set of topics that make an intuitive set of
initial values for clustering, regardless of data properties.
While this can be done concurrently with running LDA
on individual segments, it takes longer to complete than
individual segments due to the larger corpus. To avoid the
performance impact, we can use fewer iterations on the full
corpus than we do on the local segments. Alternatively,
instead of running LDA on the entire corpus, choose K
random topics from U as the initial values. In our imple-
mentation, we run k-means on several different samplings
of random initial topics, and choose the output with the
best squared error. We used cosine similarity as the distance
metric in our implementation. Future work will explore other
metrics.

STEP 5: OUTPUT local topics and global topic assignments

Once clustering is complete there are two important
outputs. The first is the centroids themselves, each usable
as a topic, and the second is the assignment of the original
topics to their corresponding global clusters. The clustering
outputs are useful on their own, but they provide entirely
different information from the outputs of DTM. DTM does
not provide a general vision of a given dynamic topic, only
its local topics at each time step. CLDA provides both a
segment-agnostic version of a topic and a varying number
of local topics at each segment, including potentially none at
all, which would indicate that the topic was not meaningfully
present in that segment.

IV. EXPERIMENTAL VALIDATION

We evaluate our method on three different data sets, which
are summarized in Table II. Our first data set is a collection
of all NIPS papers from 1987 to 2003 [26], which we se-
lected because it is a widely used data source for evaluating
the quality and performance of topic models. The NIPS data
contains 2,484 documents (about 150 documents per time
segment), 14,036 unique words, and 3,280,697 tokens. Our
second data source is a collection of abstracts from published
articles in computer science provided by Elsevier and pre-
processed using the open source HPCC Systems platform
by LexisNexis. This data set covers the same number of
time segments as the NIPS data, but includes a much larger
number of documents (N = 533, 560) with about 31,000
documents per time step. The computer science abstracts

Table II
OVERVIEW OF DATA USED FOR EVALUATION

NIPS Computer Science PubMed
Abstracts

Time period 1987–2003 1996–2012 1976–2015
No. of segments 17 17 40
No. of documents 2,484 533,560 4,025,978
Vocabulary size 14,036 22,410 84,331
Total word tokens 3,280,697 32,551,540 273,853,980

Table III
RUNTIME RESULTS ON COMPUTER SCIENCE ABSTRACTS

# of Iterations Walltime Walltime
Processors Iterations (minutes) (hours)

DTM 1 100 3497 58.3
CLDA 12 1,000 12 0.2
CLDA 24 1,000 6 0.1
CLDA 48 1,000 2 0.03
CLDA 48 10,000 18 0.3

data contains 22,410 unique words and 32,551,540 tokens
after removing stop words, the bottom 0.01% frequency
words, and words that appeared in fewer than 0.01% of
the documents. This corpus is much broader in scope and
hence requires a greater number of topics to describe the
documents. Our third corpus is a forty year collection of
article abstracts from PubMed for the time period from
1976–2015, which contains 4,025,978 documents after we
removed non-English abstracts and all articles published
in journals with less than 10,000 total number of articles.
The PubMed corpus contains 4,025,978 documents, 84,331
unique words and 273,853,980 tokens after removing stop
words, and words that appeared less than 100 times or in
fewer than 10 documents. We use this dataset to demonstrate
the scalability of the approach.

A. Performance

We first compare CLDA’s runtime with the DTM imple-
mentation by Blei and Gerrish [3] on the computer science
abstract data. These experiments use a reduced vocabulary
of 1253 words, representing only words that appear in at
least 1% of the documents. We execute the DTM model
on 20 topics, and the CLDA model using 20 global topics
and 50 local topics per segment. Blei and Gerrish’s DTM
implementation is not parallelized, and PLDA+ does not
run in serial, so we are unable to perfectly match the
resources used. All timing experiments were run on the same
hardware, only varying processor count.

The results shown in Table III demonstrate that the
algorithm is orders of magnitude faster than the original
implementation of DTM. This is unsurprising; the primary
operation of consequence is the LDA phase of the algorithm,
where our implementation utilizes the highly optimized
PLDA+. The other operations largely consist of data manip-
ulation to normalize or rotate files, and the clustering step.
However, the clustering input is small compared to the size



of the input data, so in our experiments k-means converged
in seconds.

We next evaluate CLDA on the PubMed data, which is
an order of magnitude larger than the computer science
abstracts data. The LDA phase of the algorithm concluded
in 22 minutes on this dataset using 1,000 iterations and
12 cores per segment. This performance takes advantage
of multiple levels of parallelism, as CLDA is able to pro-
cess each segment simultaneously and PLDA+ can leverage
distributed computing within a segment. DTM applied to
the same data with the same number of iterations would
take approximately 29 weeks to complete given our earlier
findings.

B. Quality

In order to be useful, the topics produced by the algorithm
must be either very similar to those produced by DTM, or
superior to them. Measuring the quality of a topic model
is an open question, but a standard approximation is the
perplexity metric. This metric evaluates how likely the topic
model is to generate a set of provided documents. A lower
perplexity indicates a model more closely fits the documents.
As perplexity is a function of probabilities rather than direct
model parameters, it can be used to compare different
models over the same input.

Perplexity is calculated using

perplexity = exp

−
∑
d∈D

∑
w∈d

logP (w)∑
d∈D

Nd

 (2)

where d denotes a document in the corpus D, w denotes
a word, and Nd denotes the number of tokens. We use a
heldout set to evaluate perplexity, executing the model on
80% of the data and testing it on the remaining 20%. To
evaluate the probability of generating a word P (w), it is
necessary to generate topic mixtures for heldout documents.
We use the code provided with PLDA+ for this task [12],
but a more thorough study of this problem can be found in
Wallach et al.[27]

A direct comparison to DTM can be found in Table IV.
These experiments use the computer science abstract data.
The DTM model was executed for 58 hours using 20 topics,
while the CLDA models were executed in less than an hour
using K = 20 global topics and L = 20 local topics. CLDA
has a comparable perplexity to Blei and Gerrish’s DTM
implementation for this data set, indicating our method does
not substantially degrade quality.

C. Similarity

The previous results indicate that our system is both very
fast and has low perplexity. We wish to know how similar
the generated topics are to those generated by DTM.

Topics are probability mass functions represented by
vectors, but this is not how humans interpret them.[28]

Table IV
PERPLEXITY RESULTS ON COMPUTER SCIENCE ABSTRACTS

Vocab. Total Log- # of Tokens Perplexity
Size Likelihood

DTM 22,410 -303,049,954 40,002,197 1,950
CLDA 22,410 -305,775,271 40,002,197 2,088

Rather than look holistically at the entire vector, a human
will examine the most heavily weighted words in a topic;
for example, the top five. These words will provide insight
as to the conceptual meaning of a topic. In order to compare
the insights gleaned from a set of topics, we thus need to
compare what a human compares; the words most strongly
tied to a topic. For a word-wise comparison of topics as sets
of important words we will use the Sørensen-Dice coefficient

S(A,B) =
2 ∗ |A ∩B|
|A|+ |B|

(3)

and the Jaccard index

J(A,B) =
|A ∩B|
|A ∪B|

(4)

In order to transform our data into a form where it can
be evaluated with these metrics, we use the top 20 values
in a topic as its representative set. Chang et al. [28] used
the top 5 values as the core of a topic for their intruder
experiment, but they were using humans to detect outliers
instead of searching for broad similarity. We chose this
value as it is low enough to be human-readable, but high
enough to dampen the impact of minor value differences on
ordering. However, this value is still arbitrary. Future work
will explore other means of transforming topics into sets.

We compared the systems on two levels using both
measures. We compared the global topics to each other by
comparing their means. For our system, these are emitted
by clustering, but for DTM we averaged the local topics
together. Both the Sørensen-Dice coefficient and the Jaccard
index compare single sets to each other. Comparing the
outputs of DTM and CLDA requires assigning a one-to-one
matching between the two collections. This is an example
of the “Stable Marriage Problem” and is well studied in
matching. While the general problem is NP-hard, a specific
solution is possible in this case. If the topics generated by
DTM and CLDA both include a topic describing the same
concepts, these two topics will match more closely than they
match other topics. If this is not the case, then the topics
are not similar and a low value will be obtained regardless
of the optimality of matching. Our experiment utilizes this
assumption by greedily matching the pair of unassigned
topics that are closest to each other under the Jaccard index
out of all possible pairings, repeating the process until all
topics are assigned. The Jaccard index and Sørensen-Dice
coefficient are calculated for each match.

The values of the global matches are shown in Fig-
ure 4 sorted from best to worst. The figure shows that
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Figure 4. Similarity of global topic centroids between DTM (estimated
with 20 topics) and CLDA (estimated with 20 global topics and 50 local
topics) applied to the computer science abstracts data as measured by
Sørensen-Dice Coefficient and Jaccard Index.

the closest matching topic has a 90% similarity according
to the Sørensen-Dice coefficient and an 80% according to
the Jaccard index. The top four to nine topics match at
better than 50%. We estimate the expected value of these
measures for randomly generated topics at 0.016 and 0.014,
respectively, and thus conclude that CLDA and DTM are
producing similar topics.

D. Global and local topic dynamics

LDA can be used to capture change in topic proportions
over time, by executing the model over a whole corpus and
then evaluating segments of it. This does not capture any
change in topic language over time, forcing each segment
to use the same topics. DTM relaxes this constraint by
allowing the topics to vary over time. DTM produces both a
version of each topic at each segment, as well as the relative
proportion of each topic at each segment, demonstrating
how both language and representation change over time.[2]
However, DTM fixes the number of topics across time, with
each overall topic having one representative per segment.
CLDA relaxes this further, allowing a global topic to have
any number of local representatives at each segment. In
addition to allowing for topics to branch out, better fitting
their local data, this also allows for global topics to appear
and disappear entirely.

The strength of DTM is the variation of topics over
time, taking on forms better suited to their local data while
remaining tied together by a common theme. Blei et al. [2]
demonstrate this by examining the changing form of a topic
at several time steps, as well as their changing proportions
over time. CLDA produces output to provide this same type

of insight into a corpus.
We show the changing topic proportions for selected

topics in both the NIPS data and computer science abstract
data in Figure 5. Like DTM, CLDA provides insight into the
rising and falling predominance of various topics in a corpus.
Unlike DTM, CLDA global topics need not be composed of
exactly one topic at each segment. Figure 6 shows how a
changing number of local topics represent a global topic we
identify as “Computer Networks” for six selected time seg-
ments from the computer science abstract data. While these
topics are all clustered together, they represent distinct ideas
within the overall concept of “Computer Networks”. One
may focus on software defined networking, while another
may focus on the communication between remote sensors.
While this distinction is useful to examine, treating these as
fully separate topics does not produce an accurate picture of
how prevalent computer networks research is in the corpus
as a whole. Clustering these topics together provides both
the global insight of overall representation and local insight
into a research area’s subdomains.

V. CONCLUSION

We have constructed and evaluated CLDA, an alterna-
tive algorithm to Dynamic Topic Modeling. This algorithm
leverages existing parallel components to increase speed and
facilitate the use of large corpora. It begins by discretizing
the data into disjoint segments, and applying Latent Dirichlet
Allocation on each segment in parallel. The resulting local
topics are merged and then k-means clustering is applied,
producing a number of global topics. Each global topic is
composed of a number of local topics in each segment, and
provides a summary of the cohesive theme across segments.
Our system is built using PLDA+ and parallel k-means
clustering.

We find that our system performs faster than the original
implementation of DTM by two orders of magnitude. CLDA
also comparable perplexity to that of DTM. The topics
generated by CLDA are similar to those generated by DTM.
CLDA shows a more detailed composition of local topics
than is possible with DTM, and enables global topics to
emerge and disappear over the time span. Taken together,
these results show that CLDA is a promising approach for
modeling dynamics in topics estimated from textual data.
The implementation of CLDA is available at [5].
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