

 Name, address, occupation of the target were known; no sending was allowed

- 18 packages returned back to Boston
- mean path result was just 5.9 steps
- small-world effect was confirmed in many other experiments

Bonus observations in the experiment

- most of the packages were received through 3 target's friends
- people are good in finding short paths (later was shown that it is hard to find shortest path without knowing full information)

Similar experiments

- emails: only 384 out of 24K were received/ results confirmed, 4 steps
- Microsoft .NET Messenger Service: 6.6 people

Introduction to Network Science

Degree Distributions

Degree Distributions

$$p_0 = \frac{1}{9}, \ p_1 = \frac{2}{9}, \ p_2 = \frac{1}{9}, \ p_3 = \frac{2}{9}, \ p_4 = \frac{3}{9}$$

The probability that randomly

chosen node has degree k

Solution I: different sizes of bins

Power Laws: Logarithmic Binning

- Bin 1 covers degrees in [1,2)
- Bin 2 covers degrees in [2, 4)
- Bin 3 covers degrees in [4, 8)

• ...

Width of bins can vary

Figure 8.6: Histogram of the degree distribution if the Internet, created using logarithmic binning. In this histogram the widths of the bins are constant on a logarithmic scale, meaning that on a linear scale each bin is wider by a constant factor than the one to its left. The counts in the bins are normalized by dividing by bin width to make counts in different bins comparable.

Cumulative Distribution

Probability at a random vertex has degree k or greater $P_k = \sum_{k'=k}^{\infty} p_{k'}$

Let p_k follows a power law in its tail, i.e., $p_k = Ck^{-\alpha}$ for $k \ge k_{\min}$. Then

Advantages:

- no bins
- easy calculation
- can be plotted as normal function at log-log scale
- binning loses the information; cumulative distribution preserves everything Disadvantages
- less easy to interpret than histograms
- successive points are correlated

Figure 8.7: Cumulative distribution function for the degrees of vertices on the Inter-net. For a distribution with a power-law tail, as is approximately the case for the degree distribution of the Internet, the cumulative distribution function, Eq. (8.4), also follows a power law, but with a slope 1 less than that of the original distribution.

Newman "Networks, an Introduction"

Cumulative Distribution

Figure 8.8: Cumulative distribution functions for in- and out-degrees in directed networks. (a) The in-degree distribution of the World Wide Web, from the data of Broder *et al.* [56]. (b) The out-degree distribution for the same Web data set. (c) The in-degree distribution of a citation network, from the data of Redner [280]. The distributions follow approximate power-law forms in each case.

From Newman "Networks, an Introduction"

Homework:

- Download network "as-22july06" from UFL matrix collection
- Plot degree distribution histogram
- Plot cumulative degree distribution function
- Compute power law parameters C, and α

(submit by 2/20/2014)

Power Laws

More examples: city populations, moon craters, solar flares, computer files, words frequencies in human languages, hits on web pages, publications per scientist, book sales, ...

Normalization: we have to find C such that $\sum_{k=0}^{\infty} p_k = 1$ After eliminating k = 0

$$C = \frac{1}{\sum_{k=1}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha)}, \text{ i.e., } p_k = \frac{k^{-\alpha}}{\zeta(\alpha)}, \text{ where } p_0 = 0$$

Riemann zeta function

However, pure power-law behavior is not perfect for real-world networks Normalization over the tail:

incomplete Riemann zeta function

$$p_k = \frac{k^{\alpha}}{\sum_{k=k_{\min}}^{\infty} k^{-\alpha}} = \frac{k^{-\alpha}}{\zeta(\alpha, k_{\min})} \checkmark$$

or if we approximate it then $C \approx 1/\left(\int_{k_{\min}}^{\infty} k^{-\alpha} dk\right) = (\alpha - 1)k_{\min}^{\alpha - 1}$

Moments: The mth moment of the distribution is defined as

$$\langle k^m \rangle = \sum_{k=0}^{\infty} k^m p_k = \sum_{k=0}^{k_{\min}-1} k^m p_k + C \sum_{k=k_{\min}}^{\infty} k^m k^{-\alpha}$$

if power law begins with some k_{min}

mth moment exists (finite) when $\alpha > m + 1$ (integrate the second term)

Remark: This estimate works for arbitrarily large network with the same power law distribution. For finite network $\langle k^m \rangle = \frac{1}{n} \sum_{i \in V} d(i)^m$

Top-heavy distributions or 80/20 rule: how many edges are connected to the highest degree vertices? A fraction of edges attached to

the highest degree vertices

 $\overset{\checkmark}{W} = P^{(\alpha-2)/(\alpha-1)}$

A fraction of highest

degree vertices

$$\int_{x_{1/2}}^{\infty} p(x) \, \mathrm{d}x = \frac{1}{2} \int_{x_{\min}}^{\infty} p(x) \, \mathrm{d}x,$$

Point that divides distribution in two halves

$$x_{1/2} = 2^{1/(\alpha - 1)} x_{\min}.$$

Further reading: Newman "Power laws, Pareto distributions and Zipf's law"

Cumulative distributions for Internet nodes

Noncumulative histogram for Internet nodes

Introduction to Network Science

Homework: review of Newman "Power laws, Pareto distributions and Zipf's law" (submit by 2/20/2014)

Introduction to Network Science