Small-world Phenomena

Name, address, occupation of the target
were known; no sending was allowed

e 18 packages returned back to Boston

* mean path result was just 5.9 steps

* small-world effect was confirmed in

many other experiments Omaha, NE

<
<. 96packagesto
random recipients

Bonus observations in the experiment

* mostof the packages werereceived
through 3 target’s friends

e people aregood in finding short paths
(later was shown thatit is hard to find
shortest path without knowing full ) 4

information)

Similar experiments

e emails: only 384 out of 24K were received/
results confirmed, 4 steps

*  Microsoft .NET Messenger Service: 6.6
people
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Degree Distributions
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Classical undirected random graph models G, ;,

choose k neigh prob of being connected
among n-1 \/ to exactly k neigh b2
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when graphs arelarge (n is assumed to be large, mean degree is

/ approximately constant as the network grows)
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Degree Distributions
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Internet at the level of World Wide Web
autonomous systems Newman “Networks, an Introduction”
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Newman “Networks, an Introduction’
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logarithmicscales; bigger range of bins

Inp, = —alnk +cor p. = Ck™, where C' = e°
typical a € [2, 3] (see handout Table 8.1)

Problem of histograms: statisticsis poor at the tail of the distribution
Solution I: different sizes of bins

DitrodunidionTo PAworl Science
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Power Laws: Logarithmic Binning

e Bin 1 coversdegreesin [1,2)
e Bin 2 covers degreesin [2, 4)
* Bin 3 covers degreesin [4, 8)

Width of bins can vary

Fraction p, of vertices having degree &

! 10 100 1000
Degree k

Figure 8.6: Histogram of the degree disiribution if the Internet, created using loga-
rithmic binning. In this histogram the widths of the bins are constant on a logarithmic
scale, meaning that on a linear scale each bin is wider by a constant factor than the one
to its left. The counts in the bins are normalized by dividing by bin width to make
counts in different bins comparable.
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Cumulative Distribution

Probability at a random vertex has degree k or greater

o0 -
Pk:zka’:kpk’ g e R L T e R e LR L
. . . . ﬁ 0.1 & ';
Let py follows a power law in its tail, i.e., § :
pr = Ck™¢ for k > kiin. Then Bonsaver 3
a.:"f
Pk; = (C E k £ 0001 &
K =k Z :
C g
~ /I —cx I —(a—1 £ 0.0001 b g
~ O ]{: (1k — 7]{: ( ) E o i s St ang | (a1 g e L ]| e T L.._E
Jk a— 1 | 10 100 1000
—1 Degree £

3 d(i)
Q@ — 1 _I_ N ln 1 /2 Figure 8.7: Cumulative distribution function for the degrees of vertices on the Inter-
. min

net. For a distribution with a power-law tail, as is approximately the case for the degree

distribution of the Internet, the cumulative distribution function, Eq. (8.4), also follows
Advantages: ; s R T L Tha
a power law, but with a slope 1 less than that of the original distribution.

* nobins

e easy calculation

* can be plotted as normal function at log-log scale
* binning loses the information; cumulative distribution preserves everything
Disadvantages

* less easy to interpretthan histograms

* successive points are correlated

Newman “Networks, an Introduction”
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Cumulative Distribution
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Figure 8.8: Cumulative distribution functions for in- and out-degrees in directed networks. (a) The in-degree dis-
tribution of the World Wide Web, from the data of Broder et al. [56]. (b) The out-degree distribution for the same Web
data set. (c) The in-degree distribution of a citation network, from the data of Redner [280]. The distributions follow
approximate power-law forms in each case.

From Newman “Networks, an Introduction”
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Homework:
e Download network “as-22july06” from UFL matrix collection

* Plot degree distribution histogram
* Plot cumulative degree distribution function

e Compute power law parameters C, and o

(submit by 2/20/2014)
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Power Laws

More examples: city populations, moon craters, solar flares, computer files, words
frequencies in human languages, hits on web pages, publicationsper scientist, book sales, ...

Normalization: we have to find C such that >~ pp =1
After eliminating £ = 0

1 1

k
C = —== = ——, i.e., pp = ——, where pg =0
Do ko ((a) ¢(a)

\ Riemann zeta function

However, pure power-law behavior is not perfect for real-world networks
Normalization over the talil:

—

incomplete Riemann
zeta function
L fo— @

Pr — — /
Zzozkmm k= C((J{? kmin)

or if we approximate it then C ~ 1/ (foo k_adk) = (o — 1)k}

Emin min
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Moments: The mth moment of the distribution is defined as

111111

kapk— Z k™pr, + C Z ko

l‘-’ i‘-’l'ﬂ in

if power law begins with some k

min

mth moment exists (finite) when o > m + 1 (integrate the second term)

Remark: This estimate works for arbitrarily large network with the same power
law distribution. For finite network (k™) =+ >\ d(i)™

Top-heavy distributions or 80/20 rule: how many edges are connected to

1 1ces? 1
the hlgheSt degree vertices! A fraction of edges attached to

o0 o0 the highest degree vertices __ 05 - o
AN e — 1 RN = o
/ pla) de = 5/ p(r) dur, l s ] \3_2:
T4 Timi z ] R
1/2 min W — P(Q—Q)/(O{—l) “2 o a:;‘q
Point that divides distribution in two halves T 2
A fraction of highest 027
. _ ol/(a=-1) . degree vertices 3
1"1{2—2A JI'Jf*min- 8 P —
0 0.2 0.4 0.6 0.8

Further reading: Newman “Power laws, Pareto distributions and Zipf’s law”

fraction of population P
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Cumulative distributions for Internet nodes
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Homework: review of Newman “Power laws, Pareto
distributions and Zipf's law”
(submit by 2/20/2014)
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