Homophily and Assortative Mixing

- the tendency of individuals to associate and bond Newman “Networks: An Introduction

with similar others.
Examples: social networks, citation networks, web .
pages languages, animals "

Disassortative Mixing — opposite to assortative
Example: sexual contact networks g

c; - type of vertex 7, d(i, j) - Kronecker delta

_ 1 Sl o) — 1 d()d(d) s( . .. & NG i
4= 3 Zij Am5(czvcj) ) Zz’j <m 5(Cza Cj) il ° Eiag
/ expected number of edges Friendship network at a US high
total number of edges between similar vertices in school. 470 students, 14-18 yo

between similar vertices random model Q=0.305

Q = q/m is called modularity.

Modularity is a measure of the extent to which like is
connected to like in a network.
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Homophily and Assortative Mixing

c; - type of vertex 7, §(i, j) - Kronecker delta

q = % Zij Aijé(cia Cj) - % Zij d(?é)i(J)d(Cia cj)

/ expected number of edges
total number of edges

o : between similar vertices in
between similar vertices random model

or assortativity coefficient

Q=q/m is called modularity.

d(i)d(j) -
Qmax = 7= (2m — >, i —am - 0(ci, ¢j)), normalized modularity is Q/Qmax
1 1
LofEdges representation: e,s = 5, ., 0(c;,7)(cy,8), ar = 5>, d(i)d(ci,7)
_ 2

:>TQ =2_(erp —a7). \ T

LofEdges: nodes may fraction of edges fraction of ends of edges

have types but no info between classes rand s attached to vertices of

about degrees classr

Maximization of the modularity is a well-known clustering approach
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Homophily and Assortative Mixing

Homework (submit by 2/18/2014)

7.8 In asurvey of couples in the US city of San Francisco, Catania et al. [65] recorded, .
among other things, the ethnicity of their interviewees and calculated the fraction of
couples whose members were from each possible pairing of ethnic groups. The frac- |
tions were as follows:

Women

Black Hispanic White Other | Total
Black | 0.258 0.016 0035 0013 | 0.323
Hispanic | 0.012 0.157 0058 0019 | 0.247
White | 0013 0.023 0.306  0.035 | 0.377
Other | 0.005 0.007 0024 0016 | 0.053
Total | 0.289 0.204 0423  0.084

Men

Assuming the couples interviewed to be a representative sample of the edges in the
undirected network of relationships for the community studied, and treating the ver-
tices as being of four types—black, Hispanic, white, and other—calculate the numbers
ey and 2. that appear in Eq. (7.76) for each type. Hence calculate the modularity of the
network with respect to ethnicity.
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Assortative Mixing and Scalar Characteristics

Newman “Networks: An Introduction

”

values come |n a particular order

In practice, the number of classes will be limited . Reasons:
complexity, bins, etc.
Example: high school friends, age x age

Problem: vertices falling in different bins are
different when in fact they may be similar
(10.9yo=11yo0)

If x; and z; are scalars (instead of ¢; and c; then define
Zw Ajj(zi—p)(z;—p)

cov(x;, x;) = S, :
where mean p = EZ ;f;cz =1/2m >, d(i)x;
— ... = cov(z;, 1) = 5= 05 (Aij — %)miasj.

Assortative Coefficient '
(A — d@)d()2m)zi; <
Zzg(d(z)(sw - d(z)d(])/Qm)xsz <—— variance

1 — perfectly assortative network; -1 - perfectly disassortative network

T =
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Example: Assortative Mixing by Degree

cou(d(i), d(j)) = 5 325 (Aiy — 2920 ) d(i)(j)
iy (Ay—d()d()/2m)d()d()
22 (d(2)di—d(2)d(y)/2m)d(i)d(j)

network n r TABLE I: Size n and assortativity coefficient » for a num-

physics coauthorship® 52009 0.363 ber of different networks: collaboration networks of (a) sci-
) . . horahin® =9(0) O, 9= entists in physics and biology [16], (b) mathematicians [17],
-éﬁ blOlog} CO{_IUthOlShlp b 1 ;Jfo %Jl 012( (c) film actors [4], and (d) businesspeople [18]; (e) connections
=} mathematics CoaUt'h?r:"hlp 253 339 0.120 between autonomous systems on the Internet [19]; (f) undi-
% film actor collaborations® 449913 0.208 rected hyperlinks between Web pages in a single domain [6]:
A | company directors? 7673 0.276 (g) lJl‘f)t-E?in—Fl‘Ot-ein_ illlter?jct-ion net}vork in yeast [20] ( i]l) undi-
= =3 07 — : rected (and unwelghted) synaptic connections i the neu-
= In_,t'erHEt' . - __ IUEDI 0'18? ral network of the nematode C. Elegans [4]; (i) undirected
"$ World-Wide Web 269 504 —0.065 trophic relations in the food web of Little Rock Lake, Wis-
— | protein interactions® 2115 —0.156 consin [21]. The last three lines give analytic results for model
& | neural network® 307 —0.163 networks in the limit of large network size: (u) the random

i . e graph of Erdds and Rényi [22]; (v) the grown graph model of

food web _ 92 —0.276 Callaway et al. [15]; (w) the preferential attachment model of
- random graph 0 Barabasi and Albert [6].
K Callaway et al.” d/(1+ 24)
g | Barabasi and Albert U Newman “Assortative mixing in networks”

Homework: review of “Assortative mixing in networks” by Newman (submit by 2/18/2014)
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Example: Assortative IVIIXIng by Degree Estrada et al. “Clumpiness” mixing in complex networks

The network illustrated in Figure (a) corresponds to the inmates in a
prison and that in Figure (b) to the food web. Both networks are
almost of the same size, and both display uniform degree distributions
and have almost identical assortativity coefficient, r = 0.103 and 0.118,
respectively. However, while in the prison network the high-degree
nodes are spread across the network, they are clumped together in
the food web. This difference can have dramatic implications for the
structure and functioning of these two systems.
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Disassortative networks. We can also find that the high-degree nodes
can be separated by only two links with a low-degree node acting as a
bridge or by very long paths. This situation is illustrated in sexual
network in Colorado Springs (a) and the transcription interaction
network of E. coli (b), which have almost equal negative assortative
coefficients. In the former case the high-degree nodes are separated
by very long chains while in the latter case most of the high-degree
nodes are clumped together separated by only two or three links.




Simple Modularity Maximization

Iterative Algorithm (inspired by Kernighan-Lin algorithm for partitioning problem)

1. Choose initial division of a network into (equally sized) groups

2. Main sweep: repeatedly move the vertices that most increase or least decrease Q
3. Return to step 2 until Q no longer improves

Complexity of Step 2: O(mn)
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Newman “Networks: An Introduction”
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Spectral Modularity Maximization

d(i)d(j
Q= ﬁ Zij (Aij - %) 0(ci, ¢5) = ﬁ Zij B;j6(cq, cj)
Note that B;; has the property

e
D Bij=) Aij- 2(72 > d(j)=0
J J J
5;8;+1

Denote by s; the indicator variable 4-1/-1 for cluster number, i.e., 6(c;, ¢;) = =3
| modularity matrix

1
0% 2o = g B

m

Method: relax integer constraint for s with reals and s’s =n
Solve maximization problem by using Lagrange multiplier eigenproblem

0 /
e, ZBjk5j3k+/6(n_ZS?) :0:>ZB7;3'83':58¢ or Bs = f3s

Jjk J J

Note: In practice we cannot assign s with eigenvector corresponding to the largest eval (s is +1/-1 vector)
We choose s to be close to u; by maximizing » . s;(u1),, i.e.,
s; = +1 (—1) if (ul)z > (<) 0
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Homework: review Newman “Assortative mixing in networks”
(submit by 2/18/2014)
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