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How to model a connectivity between graph vertices?

i

j
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v

Possible problems in (hyper)graph models:
unweighted edges;
edges with almost identical weights: 0.999 ≈? 1.001;
incomplete set of edges.
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How to model a connectivity between graph vertices?

i

j

u

v

Possible problems in (hyper)graph models open questions like
how to break ties?
should we choose a heaviest edge?
should we match a disconnected pair?
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How can one measure a connectivity?

Some existing approaches
Shortest path
All/some (weighted) indirect paths
Spectral approaches
Flow network capacity based approaches
Random-walk approaches: commute time, first-passage
time, etc. (Fouss, Pirotte, Renders, Saerens, ...)
Speed of convergence of the compatible relaxation from
AMG (Brandt, Ron, Livne, ...)
Probabilistic interpretation of a diffusion (Nadler, Lafon,
Coifman, Kevrekidis, ...)
Minimization of effective resistance of a graph (Ghosh,
Boyd, Saberi, ...)
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Stationary iterative relaxation

Simulation process that shows which pair of vertices tends to
be ‘more connected’ than other.

1 ∀ i ∈ V define xi = rand()
2 Do k times step 3
3 ∀ i ∈ V xk

i = (1− ω)xk−1
i + ω

∑
j wijxk−1

j /
∑

ij wij

Conjecture
If |xi − xj | > |xu − xv | then the local connectivity between u and
v is stronger than that between i and j.

We will call s(k)
ij = |xi − xj | the algebraic distance between i and

j after k iterations.
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Toy example: graph mesh 20x40+diagonal

20

40

edge weights: red=2, black=1
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Mesh 20x40+diagonal, random 2D initialization
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Mesh 20x40+diagonal, after 15 iterations of JOR
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Stationary iterative relaxation

Rewrite the iterative process as x (k+1) = Hx (k), where H:

HGS = (D − L)−1U, HSOR = (D/ω − L)−1 ((1/ω − 1)D + U) ,

HJAC = D−1(L + U), HJOR = (D/ω)−1 ((1/ω − 1)D + L + U) .

Definition
Extended p-normed algebraic distance between i and j after
k iterations x (k+1) = Hx (k) on R random initializations

ρ
(k)
ij :=

(
R∑

r=1

|x (k ,r)
i − x (k ,r)

j |p
)1/p

Algebraic distance is inspired by Bootstrap Algebraic
Multigrid

I. Safro (Clemson) Algebraic Distance Network Science, Spring14 8 / 34



Example: airfoil - finite element graph, |E | ≈ 13000

For every edge ij there exist a path i − k − j
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Input: airfoil + 1500 random edges

• Add 1500 edges such that for every new edge ij , the second
shortest path between i and j , p2, has length 2 < |p2| < 11
• Calculate ρ(k)ij , R = 5, k = 15, p = 2
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Shortest paths after edge deletion

0 1500 3000 4500 6000 7500 9000 10500 12000
edges ordered from weakest algebraic distance to strongest
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Analysis and Model
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Chen, S, ”Algebraic Distance on Graphs”, 2011

convergence properties of H
how to choose x (0)

properties of early iterations
special focus on JOR
define ”Mutually Reinforcing Model” of
graph vertices and their neighborhoods
describe this model using JOR
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Theorem
Given a connected graph, let (µi , v̂i) be the eigen-pairs of (L,D),
labeled in nondecreasing order of the eigenvalues, and assume that
µ2 6= µ3 6= µn−1 6= µn. Unless ω = 2/(µ2 + µn), ŝ(k)

ij will always
converge to a limit |(ei − ej)

T ξ| in the order O(θk ), for some ξ and
0 < θ < 1.

(i) If 0 < ω < 2
(µ3+µn)

, then ξ ∈ span{v̂2} and θ = 1−ωµ3
1−ωµ2

;

(ii) If 2
(µ3+µn)

≤ ω < 2
(µ2+µn)

, then ξ ∈ span{v̂2} and θ = − 1−ωµn
1−ωµ2

;

(iii) If 2
(µ2+µn)

< ω < min{ 2
(µ2+µn−1)

, 2
µn
}, then ξ ∈ span{v̂n} and

θ = − 1−ωµ2
1−ωµn

;

(iv) If 2
(µ2+µn−1

) ≤ ω < 2
µn

, then ξ ∈ span{v̂n} and θ = 1−ωµn−1
1−ωµn

.

I. Safro (Clemson) Algebraic Distance Network Science, Spring14 14 / 34



Theorem
Given a graph, let (µi , v̂i) be the eigen-pairs of (L,D), labeled in
nondecreasing order of the eigenvalues. Denote V̂ = [v̂1, . . . , v̂n]. Let
x (0) be the initial vector of the JOR process, and let a = V̂−1x (0) with
a1 6= 0. If the following two conditions are satisfied:

1− ωµn ≥ 0 and fk :=
αrk

2k (1− rk )
2

1 + αrk
2k (1 + rk )2 ≤

1
κ
,

where α =
(∑

i 6=1 a2
i

)
/
(
4a2

1

)
, rk is the unique root at [0,1] of

2αr2k+2 + 2αr2k+1 + (k + 1)r − k = 0 ,

then 1−

〈
x (k)∥∥x (k)

∥∥ , x (k+1)∥∥x (k+1)
∥∥
〉2

≤ 4cond(D)fk
(1 + cond(D)fk )2 .
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Analysis

Sketch of Theorems
We cannot use HJAC for bipartite components. Other
iteration matrices are convergent with particular ω.
JOR: Given a connected graph, let (µi , v̂i) be the
eigen-pairs of the matrix pencil (L,D). The normalized
algebraic distance will converge either to span{v̂2} or
span{v̂n}.
JOR: Usually, the convergence will be slow. For example,

in many cases it will be O
(∣∣∣σ3

σ2

∣∣∣k), where σi is an

eigenvalue of HJOR.
JOR: However, after small number of iterations (k), x (k)

will be very close to x (k+1).
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Interpretation

A mutually reinforcing environment:
Everybody is influenced by its neighbors:

xi = µxi +
∑

j

(
wij∑
k wik

)
xj .

0 ≤ µ ≤ 1:
When µ is close to zero, the environment plays a major role.
When µ is close to one, the entities are stubborn.

µ is a property of the entire environment.
Two entities xi and xj are close/similar if∣∣xi − xj

∣∣ is small.
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Interpretation

Matrix form of the model

x = µx + D−1Wx ,

or

Lx = µDx (0 ≤ µ ≤ 1).

Possibilities:
µ = 0, x = 1. A strong reinforcing environment, but no
discriminating power.
µ = µ2, x = v̂2. Good. (µ2 usually close to zero.)

The limit of the scaled algebraic distance ŝ(k)
ij exactly meets the

second possibility.

ŝ(k)
ij →

∣∣∣(ei − ej)
T v̂2

∣∣∣ .
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Interpretation

At an early stage of the iterations (assuming that the iterates
are normalized):

x (k) ≈ x (k+1) =
HJOR x (k)

normalization
≈ (I − ωD−1L)x (k)

1− ωµ2
.

Simplified to
x (k) ≈ µ2x (k) + D−1Wx (k).

This means that x (k) approximately satisfies the model.

Conclusion: v̂2 is good. x (k) is also good. They both fit the
mutually reinforcing model.

I. Safro (Clemson) Algebraic Distance Network Science, Spring14 19 / 34



Applications
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Maximum weighted matching problem

Graph G = (V ,E)

Weighting function on edges
w : E → R+

Matching: M ⊆ E with no
incident edges.
w(M) =

∑
ij∈M wij

Maximum weighted matching:
M ′, ∀M w(M ′) ≥ w(M)

Methods: textbook greedy al-
gorithm; path growing algorithm
[DrakeHougardy03]
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Heuristic for weighted matching problem: GREEDY+

Preprocessing:
Input: Graph G
Output: edge weights s′ij
For all edges ij ∈ E calculate ρ(k)ij for some k , R and p

For all nodes i ∈ V define ai =
∑

ij∈E 1/ρ(k)ij
For all edges ij ∈ E define s′ij = ai/δi + aj/δj

GREEDY algorithm:
Input: Graph G with new edge weights s′ij
Output: weight of matching M with original edge weights
M ← ∅
while E 6= ∅ do

add the lightest edge e ∈ E to M
remove e and all its incident edges from E

end
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Experimental results: weighted matching problem
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Preprocessing for maximum independent set problem

Preprocessing:

Input: Graph G
Output: node weights ai

For all edges ij ∈ E calculate ρ(k)ij for some k , R and p

For all nodes i ∈ V define ai =
∑

ij∈E 1/ρ(k)ij
For all edges ij ∈ E define ρ′ij = ρ′ij/(ai + aj)

For all nodes i ∈ V redefine ai =
∑

ij∈E ρ
′
ij

Sort V by ai and output its increasing order
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Experimental results: maximum independent set
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(Hyper)graph k -partitioning

Given a hypergraph H = (V, E)

minimize
∑

h∈E s.t. ∃i,j∈h and
i∈πp⇒j 6∈πp

wh

such that ∀p ∈ {1, . . . , k}, |πp| ≤ (1 + α) · |V |
k
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(Hyper)graph partitioning

with original edge weights

fast refinement

hMetis2

Input graph

cost of k−partitioning

1 V−cycle with

with original edge weights

fast refinement

hMetis2

Input graph

calculate algebraic distances

substitute edge weights with

algebraic distances

cost of k−partitioning

1 V−cycle with
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Experimental results: 2-partitioning
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graph ordered by ratios
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Algebraic distance for hypergraphs

Preprocessing:
Input: Hypergraph H, k = 20,R = 10
Output: weights s(k)

h
G = (V ,E) ← bipartite graph model of H
Create R initial vectors x (0,r)

for r = 1, . . . ,R do
for m=1,. . . ,k do

x (m,r)
i ←

∑
j wijx

(m−1,r)
j /

∑
j wij , ∀i

end
end
s(k)

h ←
∑

r maxi,j∈h |x
(k ,r)
i − x (k ,r)

j |, ∀h ∈ E

Algebraic distance on hypergraph := s(k)
h
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Experimental results: 2-partitioning of hypergraphs
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Recommendation systems: Netflix problem

movies

all users

j

i

x

rating r

Missing entry! Predict it!

x
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Recommendation systems: hypergraph model

person

movie with rating rk

Bipartite

graph model
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Algebraic distance for recommendation systems

Preprocessing:
Input: Hypergraph H
Output: weights s(k)

h
G = (V ,E) ← bipartite graph model of H
Calculate algebraic distances for movies
Introduce them as new weights for hyperedges (for
example, scale the matrix columns)
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Algebraic distance for recommendation systems

Measure of success is the root mean square error
(More or less) all SVD-based methods perform similarly on the
Netflix database, RMSE≈0.90-0.92

Remove 85% of the data
SVD-based methods with linear combination of latent
factors, RMSE>1.00
SVD-based methods with high-order polynomial
combination of latent factors, RMSE≈0.92-0.94
Roderick, S, ”High-order Polynomial Interpolation for
Predicting Decisions”, 2009
Algebraic distance + SVD-based methods with
high-order polynomial combination of latent factors,
RMSE≈0.90-0.92
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