Epidemics on Networks Anderson MeKendrick

1876-1943
Pioneered mathematical

methods in epidemiolo
Analysis of infection spread: P gy

* Intheory we should consider all biological processes

e In practice we can only model them because of the
complexity of the problem

S(usceptible)-I(nfected) Model

Someone who doesn’t have the Someone who has the disease

disease but potentially could and can potentially pass it to
catch one if comes into contact susceptible individual if they

with infected individual come into contact

Susceptible Infected
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Model 1: mass-action approximation (any individual has equal
chances to come into contact with every other)

Model 2: network-based (limited possible number of contacts)
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n number of individuals in the system

S(t) number of susceptible individuals at time ¢
X(t) number of infected individuals at time ¢
s=2S/n, x=X/n
S, X expectations of S(t) and X (¢) if we run the same process many times
15 contact rate per-individual number of susceptible =1
people got infected from
/ one person
S dX S dx
average rate of new infections is Xf— = — =Xf—or — =((1—x)x

"y dt n dt
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SIR Assumption
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SIR Model

Susceptible Infected

n number of individuals in the system

S(t) number of susceptible individuals at time ¢
X(t) number of infected individuals at time ¢
R(t) number of recovered individuals at time ¢

S,X,R  expectations of S(t), X(t), R(t)
5= /TL, L= X/n’ m= R/.TL . eliminate x and
o] contact rate per-individual integrate both
y recovery rate per-individual parts
number of susceptible
/ decreases

ds 1ds B dr Br
— = —fsx —— =——— = s=5p 7
dt sdt  ~dl ’
dx d

_ T _ Br
ar Bsr —yw mzl—s—riazv(l—r—soe v)
dr .
—_— p— T . . — =
dit " r=1-spe Remember the size of giant

/ T component in Poisson graph?

Note: s+x+r=1 in the limit of n G —1_ecS
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SIR Model

Susceptible Infected
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Figure 17.2: Time evolution of the SIR model. The three curves in this figure show
the fractions of the population in the susceptible, infected, and recovered states as a
function of time. The parameters are p = 1, v = 0.4, 59 = 0.99, xo = 0.01, and ry = 0. demo in matlab
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SIR Model

Susceptible Infected

The transition between epidemic and non-epidemic regimes happens when

b=
Basic reproduction number is the number of cases one case generates on average
over the course of its infectious period

Ry = B/~
SIS Model
Susceptible Infected Susceptible

ds 3

— = ~x — Bsx

dt ! \ transmission (6 B 7) e(,@—fyﬁ
dx rate L (t) — o (B—)t
—_— = ﬁsgj—f)/gj B—’}/—F,B.CEOG

dt S~__ recovery

rate
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Networks (not full mixing), SIR

Transmission/infection rates have the same meaning but they will work via edges only

Probability (in full mixing) that the individual is still infected after time 7 is

lim (1 — ~9 T[0T _ =T
(L= or)T =

In the same way the probability that the disease is transmitted

Assumption for networks: every infected individual remains infected for the same length of

time, i.e., ¢ is constant.
Consider edge percolation with occupation probability ¢, i.e., leave edges for disease
transmission.
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(a) ¢ = 0.2 (b) ¢ =05 © ¢=1

Figure 17.4: Bond percolation. In bond percolation, a fraction ¢ of the edges in a network are filled in or “occupied” at
random to create connected clusters of vertices. (a) For small occupation probability ¢ the clusters are small. (b) Above
the percolation threshold a large cluster forms, though there are usually still some small clusters as well. (c) When¢ =1
all edges are occupied but the large cluster may still not fill the whole network: at ¢ = 1 the largest cluster corresponds
to the largest component of the network, which is often just a subset of the whole network.
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Consider SIR on network with degree distribution py

e u - average prob that ¢ € V' is not connected to gc via one particular edge
ij, i.e., either ij is unoccupied (1 — ¢) or j € gc (u¥ is j has k neighbors)

u:1—¢+¢zq;ﬂuk:1—¢+¢91(u)
k=0

gen function of excess
deg distribution

e Thus, gc fraction is S =1— " ppuf =1 — 90(“)@ b = (k2<)k—><k)

in node percolation it was S = ¢(1 — go(u))

_ _Br _ (R —(R)
db=1—e"" = BT——ln(l—qbc)—ln<k2>_2<k>

Epidemic threshold if >= then possible epidemic
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Epidemic Thresholds in Real Networks
see paper by Chakrabarti, Wang, Wang, Leskovec, Faloutsos (will follow their notation)

Q: How to model viral propagation on arbitrary network? Which node is best to immunize?
When is the outbreak?

Homogeneous model — everybody has equal contact to others (rate of infection depends on the
density of population). Nonhomogeneous model — otherwise.

Kephart-White model: directed graph; ¢« — 57 € E if ¢ can infect j; 3 is rate
of infection (virus birth rate); d is virus death rate (node-curing).

1¢ - size of infected population at time ¢

d 0
% = B(k)n, ( — %) —0n,  ( its steady state n = N(1 — W))
Intuition: epidemic threshold 7 is a value such that a viral outbreak dies out

quickly
1/(k)

,6/(5<T, TKW

good approximation for
homogeneous networks
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Consider small time steps At — 0; the system is a Markov chain with 2%V con-
figurations of nodes S/I.

pit - probability ¢ is infected at time ¢
(it - probability that ¢ will not receive infections from N (i) in the next step

Ci.t =

-

JENI(7)

Non-linear dynamical system

Oregon: This is a real network
graph collected from the Oregon

router views.

32, 730 links/11, 461 AS peers.

| (1 =8)+ (1 —pji1)) =

F .

JENI(3)

1 —pit =1 —=pit-1)Ct+ pit—1Git

Fraction of Infected Nodes

OREGON dataset ( p/6 = 1.75)
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Fig. 2. Experiments on the real-world Oregon graph. The plots show the time evolution of infection
in the Oregon network. Both simulations were performed with fixed g, but varying §. In both cases,
our model conforms more precisely to the simulation results than the MFA model.
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Definition (NLDS Epidemic Threshold). The epidemic threshold 7 for NLDS is
a value such that

B/§ < T = infection dies out over time
B/d > 7T = infection survives and becomes an epidemic

Theorem 1. In NLDS, the epidemic threshold 7 for an undirected graph is
T = 1//\1’14,

where \j 4 is the largest eigenvalue of the adjacency matrix A.
s =[3/6- A1 4 is a score of infection.

Theorem 2. When an epidemic is diminishing, i.e., 3/d < 1/A; 4, the proba-
bility of infection decays at least exponentially over time.
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s>1 - infection survives

Enron database graph (email exchanges)
33K nodes, 361K edges
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Immunization

Q: We have a budget of k nodes that can be immunized. How to choose these nodes?
Theorem 1 - We need to decrease the maximal eigenvalue of the adjacency matrix.

Observation: Popular “targeted” immunization strategy (immunization of high-degree nodes)
does not agree with maximum eigenvalue decrease! Example:

Fig. 8. The “bar-bell” graph. Two cliques of the same =ize connected with a bridge.

Matlab immunization demo
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Example of a Model: Response to Epidemics and Cyber Attacks
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Open Science Grid: collaboration network example

Multiscale Methods for Networks

[lya Safro, Clemson University



Example of a Model: Response to Epidemics and Cyber Attacks
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Example of a Model: Response to Epidemics and Cyber Attacks
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Example of a Model: Response to Epidemics and Cyber Attacks
Goldberg, Leyffer, S “Optimal Response to Epidemics and Cyber Attacks in Networks”, 2011

20

site ¢ closed /open z; € {0,1}
infection probability at ¢,

number of shared users W;

0" probability of j — i spread  p;;

1
AN connections between

Model open sites, i.e., the utility
/ of network

maximize E Wi Ti X

T
el

subject to r; — H (1 —pz-jgbja:j) § t@ VieV

JEN ()

infection at node i is less .
than some constant T € {Oa 1}

Multiscale Methods for Networks

[lya Safro, Clemson University
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