Percolation and Network Resilience

Percolation is a process of removing some fraction of network’s nodes with adjacent edges.
(more precisely site/link/cluster percolation)

- models real-life phenomena such as router failure, immunization of people, and disasters

- the process is parameterized by occupation probability ¢
- Percolation transition: when ¢ is large there is a giant component but as ¢ is decreased
then gc breaks into many small components or clusters (similar to phase transition in

Poisson random graphs with gc—2>sc)
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Percolation and Configuration Model

Consider a configuration model with

- degree distribution py

- occupation probability ¢ j C a
consider node ¢ which

e can belong to gc, i.e., connected to it through some j € N(i)

e is not in gc (i.e., not connected to it via any of N(z)) - define the avg
probability of it u¥, where k = deg(i) and u is the same prob for one

particular neighbor

generating function for
the degree distribution

e avg probability of not being in gc
ko e k : _
Zpku = go(u), where go(z) = Zpkz or Prli € gc] =1 — go(u)
k k

e total fraction of nodes in gc when percolation is running

S = ¢(1—go(u))
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Let us calculate u, the probability that 7 is not connected to gc via a particular
neighbor. Two cases:

e 7 is connected to 7 which is removed with prob 1 — ¢

jisonand its k

/ neighbors are not
in gc

e or j is not removed with prob ¢ but it is not in gc
Pr[i & gc via j] =1 — ¢ + pu”

Node j is reached by following an edge, so average probability

u=>Y g(l—o+ouf)=1-0+0d+ > qu'=1-0+dg(u)
k=0

(see handout for graphical solution of the equation) o _
minimum fraction of nodes

that must be occupied in

|Cohen, Erez, Ben-Avraham, Halvin|: ¢. = ,() (k2<>k> 3 configuration model for a
gc to exist

Reminder: excess degree is the number of edges attached to a vertex other than the edge we arrived along.

Qr = (k+<1k)>pk+l Zq =1, 51(z Z%Z

Ditroduwition To PlAwork Science 3




05 - . - 05 F i R

8,(u)

generating function gi(u) for the excess degree Dé<é el

distribution, panel (a), is compressed by a factor Y .

of ¢ and shifted upward to give the functional ¥ i l
form y = 1—¢ 4+ ¢g1{u). The resulting curve I i
is shown for three different values of ¢ in pan- 05 - e -
els (b), (¢), and (d). In panel (b) ¢ is sufficiently g P
large that there is a nontrivial solution where the L 1-¢
curve crosses the dotted line y = u. In panel (d) .
¢ is smaller and there is only a trivial solution at .
it = 1. Panel (c) shows the borderline case where P

1 — — :
Figure 16.2: Graphical solution of Eq. (16.4). The , il I
¢

the curve is tangent to the dotted line at u = 1. % : 05
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|Cohen, Erez, Ben-Avraham, Halvin|: ¢. = gi%l) = (k2<>’“_><k>

e In configuration model fixing low ¢, leads to ge, for example (k?) > (k)

e Example: given Poisson degree distribution with ¢ - mean degree
" 1
_C )
o= = K =c () =cct1) = go=-

i.e., c = 4 means that % vertices will fail before gc disappears.
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[Cohen, Erez, Ben-Avraham, Halvin]: ¢, = g’ll(l) _ (k2<)k—>(k)

e Example: Exponential degree distribution pr = (1 — e *)e ™, A >0

e — 1 er — 1 °
QO(Z)ZeA Z,gl(z):( ) =

o 6)‘ < u=1is alwa
= ys a
2 2 2 solution and
u(e)\ o u) - (1 o qb) (6)\ - u) - @(GA o 1) =0 = (u-1) is always
1 1 factor
u=e"— —gb—\/—ngJrqb(e)‘—l) =
2 4
g _ 3 1 0 A1
size of gc _ §¢)_ Zgb +oler —1) =
1
percolation threshold O = 5(6)\ —1)
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ligure 16.4: Size of the giant cluster for site percolation in the configuration model.
Ihe curve indicates the size of the giant cluster for a configuration model with an expo-
nential degree distribution of the form (16.12) with A = 3, as given by Eq. (16.18). The
(otted line indicates the position of the percolation transition, Eq. (16.20).
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Figure 16.5: Size of the giant cluster for a network with power-law degree distribu-
tion. The size of the giant cluster for a scale-free configuration model network with
exponent a = 2.5, a typical value for real-world networks. Note the non-linear form of
the curve near ¢ = 0, which means that S, while technically non-zero, becomes very
small in this regime. Contrast this figure with Fig. 16.4 for the giant cluster size in a
network with an exponential degree distribution.
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Geometric graph: percolation example
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Non-uniform Removal of Vertices
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Figure 16.7: Removal of the highest-degree vertices in a scale-free network. (a) The size of the giant cluster in a
vonfiguration model network with a power-law degree distribution as vertices are removed in order of their degree,
slarting with the highest-degree vertices. Only a small fraction of the vertices need be removed to destroy the giant
tluster completely. (b) The fraction of vertices that must be removed to destroy the giant cluster as a function of the
exponent a of the power-law distribution. For no value of a does the fraction required exceed 3%.
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Figure 16.6: Size of the giant percolation cluster as the highest degree vertices in a

network are removed. (a) The size of the giant cluster in a network with an exponential
degree distribution py ~ e ** with A = 1 as vertices are removed in order of degree,
starting from those with the highest degree. The curve is shown as a function of the
degree ko of the highest-degree vertex remaining in the network. Technically, since ko
must be an integer, the plot is only valid at the integer points marked by the circles; the
curves are just an aid to the eye. (b) The same data plotted now as a function of the

fraction ¢ of vertices remaining in the network.
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