Small Worlds and High Clustering Coefficient

Network n Z C C for
measured | random graph
Internet [153] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 | 35.2 0.11 0.00023
power grid [192] 4,941 2.7 0.080 0.00054
biology collaborations [140] 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 3.9 0.15 0.000015
film actor collaborations [149] 449913 | 1134 0.20 0.00025
company directors [149] 7,673 14.4 0.59 0.0019
word co-occurrence [90)] 460,902 | 70.1 0.44 0.00015
neural network [192] 282 14.0 0.28 0.049
metabolic network [69] 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065

N. Przulj. Graph theory analysis of protein-protein interactions
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Simple Models with High Clustering Coefficient

¢; = triangles/triples = 6/15 = 0.4
¢ —04

Triangular lattice

W Clustering coefficient depends on the number

of connected 1d line neighbors
One-dimensional line
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Small-World Model
High C, High Diam High C, Low Diam Low C, Low Diam

Randomly rerouted (or added) edges
with probability p (for each of the edges in circle)

_____________________________________________________________________________________>
Circle models Random models
are not “small-world” have small clustering

coefficients

Watts-Strogatz Model (1998)

- Given circle models with n nodes

- Go through all edges, remove each with probability p
and then add new edge uniformly at random
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Small-World Model (without edge removal)

If ¢ is a degree in circle model and p is a prob of an edge then

1

e 5ncp short-cuts in new graph

e cp ends of new short-cuts at each node on the average

e s number of short-cuts is Poisson distributed over all nodes

~ep(€P)°

S.

e node degree kK = s + ¢, then degree distribution of small-world models is

where pp. = 01if k < c.
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Small-World Model (without edge removal)
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Figure 15.5: Clustering coefficient and average path length in the small-world model.
The solid line shows the clustering coefficient, Eq. (15.7), for a small-world model with
¢ = 6 and n = 600, as a fraction of its maximum value Cpmax = 3(c —2)/(c — 1) = 0.6,
plotted as a function of the parameter p. The dashed line shows the average geodesic
distance between vertices for the same model as a fraction of its maximum value £y =
n/2c = 50, calculated from the mean-field solution, Eq. (15.14). Note that the horizontal
axis is logarithmic.
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Homework (review by 4/29/2014): Watts and Strogatz “Collective
dynamics of ‘small-world’ networks”, 1998

Additional material: Kleinberg “Small-world phenomenon: an
algorithmic perspective”, 2000
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Exponential Random Graphs Model

Instead of analyzing one network with fixed parameters, it is useful to consider ensembles of
networks that are similar to the original.

Let us fix average values of some network properties (such as clustering and
modularity). Possible property of an ensemble: values closer to the averages
have higher probability. Define

Y Pr(G) =1

Geg graphs with n nodes

For network measure z;, 1 <i < M(«K 2”(”_1)/2)

(i) = ) Pr(G)zi(G)

Geg

i.e., if Pr(G) are variables then such systems do not describle the system com-
pletely.

How to choose Pr(G)?
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Best choice of probability distribution given a small number of
constraints maximizes Gibbs entropy

Z Pr(G)InPr(G)

Geg

J. Willard Gibbs

Maximization of entropy with Lagrange multipliers 1839-1903

max — » Pr(G)InPr(G)—a(l—) Pr(G)=> Bi({x:)— >  Pr(G)z(G

Geg Geg ( Geg

Differentiate wrt P(G) of a particular G

~InPr(G) —1+a+» Bixi(G)=0

or
JH(G)

Z ?

Pr(G) = exp(a — 1 + Z Biz;(G)) = Pr(G) =

where Z = ¢!~ and H(G) = Y_, B;iz;(G) is the graph Hamiltonian.
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Z 1is solved by normalization

Z Pr(G) = % Z et = 1

GEg Geg

H(G)

B; are solved by substituting Pr(G) = £<—— into ZGeg Pr(G)z;(G) = (z;)

In general 3; can play a role of importance coefficients.

Practice

If we have Pr(G) over graphs let us estimate useful quantities. For property y

W)= 3" Pr@W(E) = o 3 M Oy(c)

Geg Geg

Example: Fix the expected number of edges only. Then H = #m and individual
graphs appear with prob

Bm
Pr(G) = 67, where Z = Z e”’™ = higher 8 correspond to denser networks

G
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R-Mat Generator
by Chakrabarti, Zhang, Faloutsos

Choose a

________________

a=0.4 b=o0.15 quadranib T

c=015 | d=03
Initially Choose
guadrant c

and so on

. -

Final cell chosen,
“drop” an edge

here taken from presentation by C. Faloutsos at SIAM DMO04
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R-Mat Generator

by Chakrabarti, Zhang, Faloutsos

Linux

guys

Windows

guys

ITIes

Commun

PR
e

ty

RedHat

Mandrake

Communities
within

communities

-communi
links

Cross

taken from presentation by C. Faloutsos at SIAM DM04
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Kronecker Graphs

Definition 1 (Kronecker product of matrices) Given two matrices A = |a; ;| and B of sizes n x
m and n' x m' respectively, the Kronecker product matrix C of dimensions (n-n') x (m -m') is
given by

a1B a1pB ... a1,B

. a21B a20B ... ay,,B
C=A=B= _ | _ 3

an1B anoB ... apmB

We then define the Kronecker product of two graphs simply as the Kronecker product of their
corresponding adjacency matrices.

Definition 2 (Kronecker product of graphs (Weichsel, 1962)) If' G and H are graphs with adja-
cency matrices A(G) and A(H ) respectively, then the Kronecker product G & H is defined as the
graph with adjacency matrix A(G) @ A(H).

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani
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http://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf

X i X

X . - 1] 1,2 13
s L R W Y, T U
! P '-\Xs .- = [ In :'. ™y 2 ¢ ‘ .- .-':.:' [ l"‘.':‘-.. [
O——0 O,
X4 X2 S
Central node is X .
(a) Graph Ky (b) Intermediate stage (c) Graph Ko = K| & K4

1[1]0 K, |K o
11]1 I
01]1 0K K,
(d) Adjacency matrix (e) Adjacency matrix
of Ky of Ko = K1 & Ky

Example of Kronecker multiplication: Top: a “3-chain™ initiator graph and its Kronecker
product with itself. Each of the X; nodes gets expanded into 3 nodes. which are then
linked using Observation 1. Bottom row: the corresponding adjacency matrices. See
figure 2 for adjacency matrices of /g3 and K.

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani
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http://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf

(a) K5 adjacency matrix (27 x 27) (b) K4 adjacency matrix (81 x 81)

Figure 2: Adjacency matrices of K3 and K. the 3" and 4® Kronecker power of K matrix as
defined in Figure 1. Dots represent non-zero matrix entries, and white space represents
zeros. Notice the recursive self-similar structure of the adjacency matrix.

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani
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Figure 3: Two examples of Kronecker initiators on 4 nodes and the self-similar adjacency matrices
they produce.

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani
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