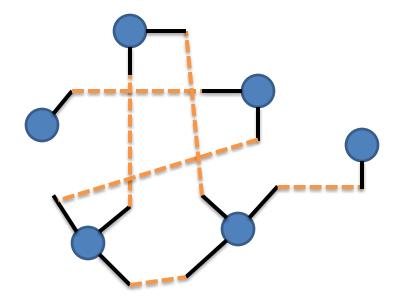
Random Graphs and Configuration Model

Degrees: 1, 1, 2, 2, 3, 3



1. Add *n* nodes

- 2. Add initial d(i) stubs to each i
- 3. Connect stubs iteratively

Problems? Total degree is even; Can create self-loops, multi-edges

Configuration Model

Multi-edges: Probability of adding an edge between i and j with degrees k_i , and k_j is

$$p_{ij} = \frac{k_i k_j}{2m - 1} \not \sim$$

in the limit we can omit -1

Probability of second edge is $(k_i - 1)(k_j - 1)/2m$

Expected number of multiedges in conf model

$$\frac{1}{2(2m)^2} \sum_{ij} k_i k_j (k_i - 1)(k_j - 1) = \frac{1}{2\langle k \rangle^2 n^2} \sum_i k_i (k_i - 1) \sum_j k_j (k_j - 1) = \frac{1}{2} \left[\frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \right]^2$$

Similar result for self-edges

$$\sum_{i} p_{ii} = \sum_{i} \frac{k_i(k_i - 1)}{4m} = \frac{\langle k^2 \rangle - \langle k \rangle}{2\langle k \rangle}$$

Conclusion? Expected number of multi-edges remains constant as network grows. Expected number of common neighbors

$$n_{ij} = \sum_{l} \frac{k_i k_l}{2m} \frac{k_j (k_l - 1)}{2m} = \frac{k_i k_j}{2m} \frac{\sum_{l} k_l (k_l - 1)}{n \langle k \rangle} = p_{ij} \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle}$$
i is connected to *I i j* is connected to *I* given *iI*

Random graphs with given expected degree

 $\forall i \in V$ define parameter c_i . Then edge probability

$$p_{ij} = \begin{cases} c_i c_j / 2m & i \neq j \\ c_i^2 / 4m & i = j \end{cases}, \text{ where } \sum_i c_i = 2m$$

average number of edges in network

$$\sum_{i \le j} p_{ij} = \sum_{i < j} \frac{c_i c_j}{2m} + \sum_i \frac{c_i^2}{4m} = m$$

average degree

$$\langle k_i \rangle = 2p_{ii} + \sum_{j \neq i} p_{ij} = \frac{c_i^2}{2m} + \sum_{j \neq i} \frac{c_i c_j}{2m} = \sum_j \frac{c_i c_j}{2m} = c_i$$

More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an edge, of the number of other edges attached to that vertex.

$$q_k = \frac{(k+1)p_{k+1}}{\langle k \rangle}$$

Two academic collaboration networks, in which scientists are connected together by edges if they have coauthored scientific papers, and a snapshot of the structure of the Internet at the autonomous system level.

Network	п	Average degree	Average neighbor degree	$\frac{\langle k^2 \rangle}{\langle k \rangle}$
Biologists	1 520 252	15.5	68.4	130.2
Mathematicians	253 339	3.9	9.5	13.2
Internet	22963	4.2	224.3	261.5

According to these results a biologist's collaborators have, on average, more than four times as many collaborators as they do themselves. On the Internet, a node's neighbors have more than 50 times the average degree! Note that in each of the cases in the table the configuration model value of $\langle k^2 \rangle / \langle k \rangle$ overestimates the real average neighbor degree.

M. Newman "Networks"

More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an edge, of the number of other edges attached to that vertex.

$$q_k = \frac{(k+1)p_{k+1}}{\langle k \rangle}$$

Clustering coefficient for configuration model

Generating Functions and Degree Distributions

For degree and excess degree distributions we define generating functions

$$g_0(z) = \sum_{k=0}^{\infty} p_k z^k$$
 and $g_1(z) = \sum_{k=0}^{\infty} q_k z^k$, respectively

They are not independent

we add zero term because of infinity

$$g_1(z) = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} (k+1) p_{k+1} z^k = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k p_k z^{k-1} = \frac{1}{\langle k \rangle} \frac{\mathrm{d}g_0}{\mathrm{d}z} = \frac{g_0'(z)}{g_0'(1)}$$

Example (Poisson): $p_k = e^{-c} \frac{c^k}{k!} \Rightarrow g_0(z) = e^{c(z-1)}$ and $g_1(z) = e^{c(z-1)}$ Example (power-law): $p_k = Ck^{-\alpha} \Rightarrow g_0(z) = \frac{Li_{\alpha}(z)}{\zeta(\alpha)}$. Thus,

$$g_{1}(z) = \frac{Li_{\alpha-1}(z)}{zLi_{\alpha-1}(1)} = \frac{Li_{\alpha-1}(z)}{z\zeta(\alpha-1)}$$

Number of second neighbors of a vertex

Probability that i has exactly k second neighbors

$$p_{k}^{(2)} = \sum_{m=0}^{\infty} p_{m} P^{(2)}(k|m)$$
Probability of having k second neighbors given m first neighbors given m first neighbors degree distribution
$$Probability of having k second neighbors given m first neighbors degree of m first neighbors take values j_{1}, j_{2}, ..., j_{m}$$

$$P^{(2)}(k|m) = \sum_{j_{1}=0}^{\infty} \cdots \sum_{j_{m}=0}^{\infty} \delta\left(k, \sum_{r=1}^{m} j_{r}\right) \prod_{r=1}^{\infty} q_{j_{r}}$$
all sets of values $j_{1}, j_{2}, ..., j_{m}$ that sum to k
$$g^{(2)}(z) = \sum_{k=0}^{\infty} p_{k}^{(2)} z^{k} = \sum_{k=0}^{\infty} z^{k} \cdot \sum_{m=0}^{\infty} p_{m} \sum_{j_{1}=0}^{\infty} \cdots \sum_{j_{m}=0}^{\infty} \delta\left(k, \sum_{r=1}^{m} j_{r}\right) \prod_{r=1}^{m} q_{j_{r}} = \cdots = \sum_{m=0}^{\infty} p_{m} \cdot \left(\sum_{j=0}^{\infty} q_{j} z^{j}\right) = g_{0}(g_{1}(z))$$

Conclusion: Once we know generating functions of g_0 and g_1 the generating function of second neighbor distribution is straightforward to calculate. Moreover, this can be extended to

$$g^{(3)}(z) = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} p_m^{(2)} P^{(3)}(k|m) z^k = \sum_{n=0}^{\infty} p_m^{(2)}(g_1(z))^m = g^{(2)}(g_1(z)) = g_0(g_1(g_1(z)))$$
$$\implies g^{(d)}(z) = g^{(d-1)}(g_1(z)) = g_0(g_1(\dots g_1(z) \dots))$$

Problem: Sometimes it is difficult to extract explicit probabilities for numbers of second neighbors and it is hard to evaluate *n* derivatives (in order to recover the probabilities). **Solution**: calculate the average number of neighbors at distance *d*. At z=1 of the first derivative we can evaluate the average of a distribution (see Slide 16).

$$\frac{\mathrm{d}g^{(2)}}{\mathrm{d}z} = g_0'(g_1(z))g_1'(z) \xrightarrow{z=1,g_1(1)=1} c_2 = g_0'(1)g_1'(1) \xrightarrow{g_0'(1)=\langle k \rangle} g_1'(k) = \sum_{k=0}^{\infty} kq_k = 1$$

$$\underset{\text{mean number of second neighbors}}{\mathrm{mean number of}} \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} k(k+1)p_{k+1} = \frac{1}{\langle k \rangle}(\langle k^2 \rangle - \langle k \rangle)$$

Conclusion: $c_2 = \langle k^2 \rangle - \langle k \rangle$ and more general

$$c_d = \left(\frac{c_2}{c_1}\right)^{d-1} c_1 \implies$$

Condition of giant component's existance in configuration model is $\langle k^2 \rangle - 2 \langle k \rangle > 0$

[MR] A critical point for random graphs with given degree sequence

Let's use theory for more practical results ...

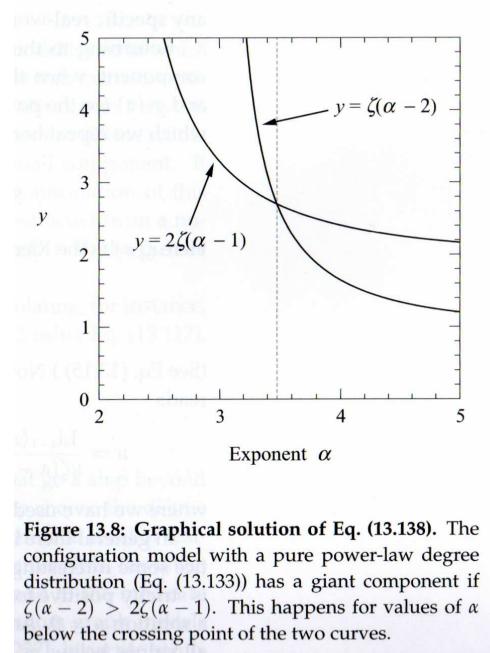
Given a network with **power-law distribution** $p_k = Ck^{-\alpha}$, $\alpha > 0$, k > 0Reminder: C is calculated from normalization condition, i.e., $C = 1/\zeta(\alpha)$

$$p_k = \begin{cases} 0 & k = 0\\ k^{-\alpha}/\zeta(\alpha) & k > 0 \end{cases}$$

This network will have a giant component iff $\langle k^2 \rangle - 2 \langle k \rangle > 0$

$$\langle k \rangle = \sum_{k=0}^{\infty} k p_k = \frac{1}{\zeta(\alpha)} \sum_{k=1}^{\infty} k^{-\alpha+1} = \frac{\zeta(\alpha-1)}{\zeta(\alpha)}$$

$$\langle k^2 \rangle = \sum_{k=0}^{\infty} k^2 p_k = \frac{1}{\zeta(\alpha)} \sum_{k=1}^{\infty} k^{-\alpha+2} = \frac{\zeta(\alpha-2)}{\zeta(\alpha)}$$
$$\implies \zeta(\alpha-2) > 2\zeta(\alpha-1)$$



Newman "Networks: An Introduction"

Models of Network Formation

Fundamental theoretical and practical questions

- What are the fundamental processes that form a network?
- How to predict its future structure?
- Why should network have property X?
- Will my algorithm/heuristic work on networks created by similar processes?

Artificial network

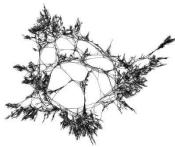
Artificial network

Artificial network

Happy families are all alike, every unhappy family is unhappy in its own way.

Leo Tolstoy

Artificial network



Artificial network

Is it similar to the original network?

Rich-get-richer effect

Herbert Simon 1916-2001

Analyzed the power laws in economic data, suggested explanation of wealth distribution: return of investment is proportional to the amount invested, i.e., wealthy people will get more and more.

Simon (1976). "On a class of skew distribution functions"

Derek Price 1922-1983

Studied information science; in particular, citation networks; his main assumption was about newly appearing papers that cite old papers with probability proportional to the number of citations those old papers have \rightarrow the model is similar to Simon's model.

Price (1976). "A general theory of bibliometric and other cumulative advantage processes"

Price's model

