Random Graphs and Configuration Model

Degrees: 1,1, 2,2,3,3

‘ 1. Add n nodes
i T 2. Add initial d(i) stubs to each i

? 3. Connect stubs iteratively

¢

Problems? Total degree is even; Can create self-loops, multi-edges
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Configuration Model
Multi-edges: Probability of adding an edge between ¢ and j with degrees k;,

and kj 1s Ik / in the limit we can omit -1
oy
P = om =1
Probability of second edge is (k; — 1)(k; — 1)/2m

Expected number of multiedges in conf model

171)2 %:kikj(ki—l)(kj—l) = 2<k)12n2 ;kz(kz—l) ;kj(kj_l) _ %[(k ><k) <k)]2

Similar result for self-edges

ki —1 k%) — (k
Y-y k1) _ ) 0

Conclusion? Expected number of muIt| edges remains constant as network grows.
Expected number of common neighbors

o kb k(= 1) kiky Yo k(1) (k%) — (k)
=D S e e am n(k)y P (g
l \
jis connected to | jis connected to / given il
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Random graphs with given expected degree
Vi € V define parameter ¢;. Then edge probability

cicij/2m 1 F#j
Pij =9 o] "7, where E c; = 2m
c;/dm 1= -

average number of edges in network

:E::Z%J

1<y 1<

CjCj

2m — 4Am
1

average degree

CiC CiC;
ki) = 2pii + E Dii = E = E —= = ¢
Zf» 1 -1
(ki) J Qm, 2m —~ 2m
j

JFi JF#
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More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an
edge, of the number of other edges attached to that vertex.

e = Uﬁ = 1)pk+1
()

Two academic collaboration networks, in which scientists are connected together by edges if

they have coauthored scientific papers, and a snapshot of the structure of the Internet at
the autonomous system level.

Average Average (k=)
Network n degree neighbor degree (k)
Biologists 1520252 15.5 684 130.2
Mathematicians 253339 3.9 9.5 13.2
Internet 22963 4.2 224.3 261.5

According to these results a biologist’s collaborators have, on average, more than four times
as many collaborators as they do themselves. On the Internet, a node’s neighbors have more
than 50 times the average degree! Note that in each of the cases in the table the
configuration model value of (k?)/(k) overestimates the real average neighbor degree.

M. Newman “Networks”
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More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an
edge, of the number of other edges attached to that vertex.

e = (lﬁ -+ 1)pk+1
()

Clustering coefficient for configuration model

3 kik; _ 1 z ()2~ (k))’
C= > arax 2?7; = Qm(qu‘“) === t

o0
ki, k;j=0 ' k=
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Generating Functions and Degree Distributions

For degree and excess degree distributions we define generating functions

o0 oo
= Zpkzk and g1(z) = Z q2", respectively

k=0
They are not independent we add zero term because of infinity
1 & y > / 1 dgo  go(2)
g1(2) = — ) (k+ Dpry12” = Pz’
P> WL =

Example (Poisson): pr = e“”fﬂ—ﬁ = go(2) = ec(z_l) and ¢, (z) = ec(z—1)

Example (power-law): pp = Ck™® = g (2) = C( ()z) Thus,

Lig-1(2) _ Lias (2)
z2Lig 1(1) 2z (a—1)

g1 (z) =
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Number of second neighbors of a vertex
Probability that ¢ has exactly k second neighbors

0N P’ = pmP? (km

N . m=0 \ \ Probability of having k second

first neighbors neighbors given m first neighbors

/S

T degree distribution
- ~ (O 7O “sécond neighbors -, Prob excess degrees of m first

e = - T T T T T T / neighbors take values j;, j,, .., j,

PO (k) = 3= 3 8 kzﬁ Hqﬁ

J1=0 )\ Jm=0

all sets of values j,, j,, ..., j,, that sum to k

4@ (» Zp(m Z mez Z(S ngr Hqgr— =

J1=0 jm—O
o0

Z Pm - ij = go (91 (2))

generating function of p,/? .
J=0
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Conclusion: Once we know generating functions of g, and g, the generating function of second
neighbor distribution is straightforward to caIcuIate Moreover, this can be extended to

j{: jij_p(Q-F“ (k|m) 2" jizz%n g1 ()™ =9 (91 (2)) = 90(91(91(2)))

k=0 m=0 n=0

— ¢\ (2) = g"" V(g1(2)) = go(g1 (... 1(2) ...))

Problem: Sometimes it is difficult to extract explicit probabilities for numbers of second
neighbors and it is hard to evaluate n derivatives (in order to recover the probabilities).
Solution: calculate the average number of neighbors at distance d. At z=1 of the first derivative

we can evaluate the average of a distribution (see Slide 16).

dg? 2=1,g1(1)=1 ' (1)=(k) >
= (@) T E - gh(Mgi(1) = gk =Y kg =
k=0
mean number of 1 « 1 2
second ﬁeighbors <T> Z k(k + 1)pk+1 — ﬁ((k > - <k>)

Conclusion: c; = (k?) — (k) and more general

d—1 Condition of giant component’s existance
Cq = (Cz) ¢; —> in configuration model is (k%) — 2(k) > 0

€1 [MR] A critical point for random graphs with given degree sequence
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Let’s use theory for more practical results ...

Given a network with power-law distribution p, = Ck™@, a >0, k£ > 0
Reminder: C' is calculated from normalization condition, i.e., C = 1/((«)

(o0 k=0
PE= k=2/¢(a) k>0

This network will have a giant component iff (k%) — 2(k) > 0

- 1 1 Cla—1)
Ky =) kpy=—=)» k=
;0 o (a>; ¢ ()
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Figure 13.8: Graphical solution of Eq. (13.138). The
configuration model with a pure power-law degree
distribution (Eq. (13.133)) has a giant component if
(e —2) > 2f(a — 1). This happens for values of
below the crossing point of the two curves. Newman “Networks: An Introduction”
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Happy families are all alike, every

Models of Network Formation iy family is anhapoy. i its

own way.
Fundamental theoretical and Leo Tolstoy
practical questions
e What are the fundamental
processes that form a network?

icti ifici Artificial network
 How to predict its future Artificial network _

structure?
e Why should network have
property X? RINET
* Will my algorithm/heuristic work ~// AT
on networks created by similar /ﬂ
processes? ’

Artificial network

\

Is it similar to the original network?
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Rich-get-richer effect

Herbert Simon
1916-2001

Analyzed the power laws in economic data, suggested explanation of
B o wealth distribution: return of investment is proportional to the amount
i % invested, i.e., wealthy people will get more and more.

Simon (1976). “On a class of skew distribution functions"

Derek Price
1922-1983

Studied information science; in particular, citation networks; his main
assumption was about newly appearing papers that cite old papers with
probability proportional to the number of citations those old papers have
- the model is similar to Simon’s model.

Price (1976). "A general theory of bibliometric and other cumulative advantage processes"
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Price’s model
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