Bisection

> V-S
bé%ﬂ% ) si-w-s
)
cut

bw(G) = min cut(S,V — S)
SCV,|S|=|V|/2

e hw(G)> %AQ(L)

Algorithm for finding sparse cuts: compute Fiedler vector, sort the vertices according to
its values, and find the best cut .

Partitioning problem, Walshaw’s partitioning archive, DIMACS competition
[BMSSS] “Recent advances in graph partitioning”, 2013
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p-discrepancy
We define p — discrepancy 0,(G, 1) of labeling v as
1/p
op(G, ) = Z wij|Y(i) — ¥ (5)[" and 0. (G, 1) = maxw;;|i(i) — ¥(j)]

1jel

Finding minimum p — discrepancy (such as minimum linear arrangement, 2-

sum, bandwidth) is NP-hard.
Basic facts:

n(n? —1 n(n? — 1
)\2 ( 192 ) S JQ(G:@D)Q S /\n ( 192 )
2 1 2 1
)\2 (n ) Ol(G: ’d)) < )\n, (n )

Homework: Juvan, Mohar “Optimal linear labelings and eigenvalues of graphs” (submit by 3/13)
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Random Walks
Let p;(t) be the probability that the walk is at ¢ at time ¢

Z e ” i(t—1) or p(t) = AD 'p(t — 1)
Another useful form of this relation is
DY2p(1) = (D—WAD—W) (D_1/2p(t _ 1))
As t — oo the probablity distribution is represented by p = AD!p or

(I —AD Yp=(D—-A)D 'p=LD 'p=0,

i.e., D7 'pis an eigenvector of L with eval 0.
Example: G is connected = there is only one eval 0 = D~ !p = al, i.e..

= d(i)/zd(j) =5

Intuition: high degree nodes are more likely to be visited.
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First Passage Time
Q: what is the mean first passage time the random walk started at j reaches ?
Absorbing random walk = random walk with one or more nodes we can move to but not leave

We consider an absorbing random walk with single absorbing vertex v.
Probability that rw has fpt exactly ¢ is p,(t) — p,(t — 1), i.e., the mean is

ZZL pu o 1))

t=0
For any i # v pi(t) = >, %pj(t —1) =2 %pj(t — 1), i.e.,
p'(t)y=AD"p(t—1)=(AD"") p'(0) (" means v is removed)
Since ) . pi(t) =1 at all times

po(t) =1 — Zp, =1 —17p/(t) and
1FV

m.
-1

r=> t1"(p,(t-1)—p,(t-1)) =17 (I - A'D'"")

t=0

p(0)=..=1"D'L' 19 (0)

15
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Random Models

e Model G(n,m) is a probability distribution P(G) over all graphs with n nodes
and m edges.

Properties of model = properties of ensemble

Examples:

e graph diameter [(G) means (I) =) - P(G)I(G) = %ZC I(G)

e degree (d(-)) =2m/n
e Model G(n, p) - graphs with n nodes and independent probability p for placing
an cdge between two vertices (aka Erdos-Rényi model).
Properties of model = properties of ensemble where G appears with prob
P(G) _ p'n'z,(l o p) (S’)—’m
and probablity of drawing a graph with m edges from the ensemble is
(%)

pm) = (® )01 0 an ) = 3 ot = ()

7ﬂfw0£wﬂ'1}0w7'o W Aworke ﬂwﬂé;}w 1



(2) 2m 2 (n
e mcan degree Z —P(m) = — 5 )P = (n—1)p=c

n n
m= 0 \

mean degree in a graph with exactly m edges

e degree distribution

e node is connected to a particular k others g = p*(1 — p)*— 1=K
e node is connected to exacly k others p. = (”‘gl)qk
e in large-scale networks p = ¢/(n — 1) can be very small, i.e.,

In((1 —p)”’_l_k") =n—1—-k)In(l—c/(n—1)) ~ —(n{k) ¢

N —cC

n—1
Tayl i ind 'ln(l—l—l)—Q Ay ias iy e A
aylor series reminder: )= 3 5 ), w = 51
e e (=1 (n—1)! - (n—1)F
also if ( k ) — (n—1-k)k! k! then
D = (n o 1)kpk‘(3—c . (n o 1)k( C )k(o—c . P—cc_k
k! k! n—1 k!

7ﬂfw0£wﬂ'1}0w7'o W Aworke ﬂwﬂé;}w 2



In contrast to the degree distribution in random model ...
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In contrast to the degree distribution in random model ...
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e clustering coefficient C' = ¢/(n — 1) = prob that any two nodes are neighbors

clustering coeflicient C'
network n z | measured random graph
Internet (autonomous systems)? 6374 3.8 | 0.24 0.00060
World-Wide Web (sites)P 153127 352 | 0.11 0.00023
power grid® 4941 2.7 | 0.080 0.00054
biology collaborations? 1520 251 15.5 | 0.081 0.000010
mathematics collaborations® 253 339 3.9 1 0.15 0.000015
film actor collaborations’ 449913 1134 | 0.20 0.00025
company directors! 7673 144 | 0.59 0.0019
word co-occurrence® 460902  70.1 | 0.44 0.00015
neural network® 282 14.0 | 0.28 0.049
metabolic network” 315  28.3 | 0.59 0.090
food web! 134 8.7 022 0.065

Newman, “Random graphs as models of networks”
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