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Analysis of infection spread: P gy

* In theory we should consider all biological processes

* In practice we can only model some of them because of
the complexity of the problem

S(usceptible)-I(nfected) Model

Someone who doesn’t have the Someone who has the disease
disease but potentially could and can potentially pass it to
catch one if comes into contact susceptible individual if they
with infected individual come into contact

Susceptible Infected

Model 1: mass-action approximation (any individual has equal
chances to come into contact with every other)

Model 2: network-based (limited possible number of contacts)



n number of individuals in the system

S(t) number of susceptible individuals at time ¢
X (1) number of infected individuals at time ¢
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SIR Model

Susceptible Infected

n number of individuals in the system

S(t) number of susceptible individuals at time ¢
X(t) number of infected individuals at time ¢
R(t) number of recovered individuals at time ¢

S, X,R  expectations of S(t), X(t), R(t)
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SIR Model
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Figure 16.2: Time evolution of the SIR model. A numerical solution of the SIR
equations (16.9). The three curves show the fractions of the population in the susceptible,
infected, and recovered states as a function of time. The parameters are p =1, y = 0.4,
sgp=0.99, xyp =0.01,and rg = 0.



SIR Model

Susceptible Infected

£ contact rate per-individual
v recovery rate per-individual

Epidemic threshold: the transition between epidemic and non-epidemic regimes
happens when

B =

Basic reproduction number is the number of cases one case generates on average
over the course of its infectious period

Ro = B/~



SIS Model

Susceptible Infected Susceptible

n number of individuals in the system

S(t) number of susceptible individuals at time ¢

X(t) number of infected individuals at time ¢

R(t) number of recovered individuals at time ¢

S, X,R  expectations of S(t), X(t), R(t)

s=8S/n, x=X/n,r=R/n | . .
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Figure 16.3: Fraction of infected individuals in the SIS model. The fraction of infected

( 6 _,.Y) t individuals in the SIS model grows with time following a logistic curve, as in the SI

(B - ’Y) (& model. Unlike the SI model, however, the fraction infected never reaches unity, tending
instead to an intermediate value (dashed line) at which the rates of infection and recovery

r(t) ==
( ) 0 6 - ry _|_ ,8 T 0 e ( B - "Y) t are balanced. (Compare this figure with Fig. 16.1 for the SI model.)




Networks (not full mixing), SIR

Transmission/infection rates have the same meaning but they will work via edges only

B transmission or infection rate (similar to the contact rate per-individual
in full mixing model)
v recovery rate per-individual

Probability (in full mixing) that the individual is still infected after time 7 is

lim (1 —~407)7/%T =7

oT—0

In the same way the probability that the disease is transmitted
p=1—ePT

Assumption for networks: every infected individual remains infected for the same length of
time, i.e., ¢ is constant.

Consider edge percolation with occupation probability ¢, i.e., leave edges for disease
transmission.



Fdges do not necessarily transmit the disease. They can only potentially transmit
it with some probability.

e Edge (or bond) percolation starts at randomly chosen node

e Let us take our network “occupy” each edge with probability ¢, or not with
probability 1 — ¢. The occupied edges represent those along which disease may
be transmitted if it reaches either of the nodes at the ends of the edge.

For small values of ¢ the cluster to which the initial carrier of a disease belongs must
be small, since all clusters are small. Thus, in this regime we will have only a small
disease outbreak. Once we reach the percolation transition, however, and a giant
cluster forms, then a large outbreak becomes possible, although not guaranteed.

(@) ¢ =02 (b) ¢ =05 © ¢=1

Figure 17.4: Bond percolation. In bond percolation, a fraction ¢ of the edges in a network are filled in or “occupied” at
random to create connected clusters of vertices. (a) For small occupation probability ¢ the clusters are small. (b) Above
the percolation threshold a large cluster forms, though there are usually still some small clusters as well. (c) When ¢ =1
21l 2dges 2re occupied but the large cluster may still not fill the whole network: at ¢ = 1 the largest cluster corresponds
to the largest component of the network, which is often just a subset of the whole network.



Consider SIR on network with degree distribution py

e u - average prob that ¢ € V' is not connected to gc via one particular edge
ij, i.e., either ij is unoccupied (1 — ¢) or j € gc (u¥ is j has k neighbors)

u:1—¢+¢ZQkuk:1—¢+¢91(U)
k=0

gen function of excess
deg distribution

e Thus, gc fraction is S =1— " ppuf =1 — 90(“)@ b = (k2<)k—><k)

in node percolation it was S = ¢(1 — go(u))

L] e BT _ o (k%) = (k)
p=1—e"" = 67——ln(1—¢c)—ln<k2>_2<k>

Epidemic threshold if >= then possible epidemic



Epidemic Thresholds in Real Networks
see paper by Chakrabarti, Wang, Wang, Leskovec, Faloutsos (will follow their notation)

Q: How to model viral propagation on arbitrary network? Which node is best to immunize?
When is the outbreak?

Homogeneous model — everybody has equal contact to others (rate of infection depends on the
density of population). Nonhomogeneous model — otherwise.

Kephart-White model: directed graph; : — 57 € F if ¢ can infect j; (8 is rate
of infection (virus birth rate); ¢ is virus death rate (node-curing).

1 - size of infected population at time ¢

<k> - average degree Solution when value
change over time
e _ B(k)n: ( — E) —on,  ( its steady state n = N(1 — L))
dt N B{k)

Intuition: epidemic threshold 7 is a value such that a viral outbreak dies out

quickly
5/5 < T, TKW — 1/<k>

\ good approximation for

homogeneous networks



Consider small time steps At — 0; the system is a Markov chain with 2"V con-
figurations of nodes S/I.

pit - probability ¢ is infected at time ¢
Ci.+ - probability that ¢ will not receive infections from N (i) in the next step

Git = l (pjt—1(1 = B) + (L = pji-1)) = l (1 = Bpji—1)

JEN(7) JEN(7)

F .

Non-linear dynamical system

1 —pit =0 —=pi1-1)Ct +pit—1Ci

Resisted infection

G Infected by neighbor Not cured
\ 1-9
Susceptible

Cured

Fig. 1. The SIS model, as seen from a single node. Each node, at each time-step ¢, is either sus-
ceptible (S) or infective (I). A susceptible node i is currently healthy, but can be infected (with
probability 1 — ¢;¢) by receiving the virus from a neighbor. An infective node can be cured with
probability §; it then goes back to being susceptible. Note that ¢;; depends on the both the virus
birth rate g and the network topology around node i.



OREGON dataset ( B/5 = 1.75) OREGON dataset ( B/3 = 0.58333)
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Fig. 2. Experiments on the real-world Oregon graph. The plots show the time evolution of infection
in the Oregon network. Both simulations were performed with fixed g, but varying é. In both cases,
our model conforms more precisely to the simulation results than the MFA model.
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Fig. 3. Experiments on BA power-law topology. We compare our model and the MFA model to
the simulation results for several choices of 8, keeping é fixed. The plots show time evolution of
infected population in a 1000-node BA power-law network. Our model outperforms the other model
in steady state predictions by a slight margin.



Definition (NLDS Epidemic Threshold). The epidemic threshold 7 for NLDS is
a value such that

B/§ < T = infection dies out over time
B/d > 7T = infection survives and becomes an epidemic

Theorem 1. In NLDS, the epidemic threshold 7 for an undirected graph is
T = 1//\1’14,

where \; 4 is the largest eigenvalue of the adjacency matrix A.
s = [3/6 - A1, 4 is a score of infection.

Theorem 2. When an epidemic is diminishing, i.e., 3/d < 1/A; 4, the proba-
bility of infection decays at least exponentially over time.



Enron database graph (email exchanges)
33K nodes, 361K edges

s>1 - infection survives
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Immunization

Q: We have a budget of k nodes that can be immunized. How to choose these nodes?
Theorem 1 - We need to decrease the maximal eigenvalue of the adjacency matrix.

Observation: Popular “targeted” immunization strategy (immunization of high-degree nodes)
does not agree with maximum eigenvalue decrease! Example:

Fig. 8. The “bar-bell” graph. Two cliques of the same gize connected with a bridge.

Matlab immunization demo



Three attacks on power grid
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Example of a Model: Response to Epidemics and Cyber Attacks
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Example of a Model: Response to Epidemics and Cyber Attacks
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Example of a Model: Response to Epidemics and Cyber Attacks
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Example of a Model: Response to Epidemics and Cyber Attacks
Goldberg, Leyffer, S “Optimal Response to Epidemics and Cyber Attacks in Networks”, 2011

site ¢ closed /open z; € {0,1}
infection probability at ¢ ¢;

40

number of shared users Wi

70

) probability of 7 — ¢ spread p;;
connections between
Model open sites, i.e., the utility

of network

maximize E Wi LT
T

1€l

subject to Li — H (1 —pz-jquajj) < tz VieV
o . JEN (1)
infection at node i is less n
than some constant S {Oa 1}



Large-scale networks
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