Percolation and Network Resilience

Percolation is a process of removing some fraction of network’s nodes with adjacent edges.
(more precisely node/link/cluster percolation)

models real-life phenomena such as router failure, immunization of people, and disasters
- the process is parameterized by occupation probability ¢

- Percolation transition: when ¢ s large there is a giant component but as ¢ is decreased
then giant component breaks into many small components or clusters (similar to phase

transition in Poisson random graphs when giant component appears)

- Percolation can be defined on both nodes and edges. Here is an example of percolation on

nodes:
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Percolation and Configuration Model

Consider a configuration model with G
- degree distribution py
- occupation probability ¢

component

Consider node 7 which

_
&

e can belong to giant component, i.e., connected to it through some j € N(7)

e is not in giant component (i.e., not connected to it via any of N (7))

— if deg(i) = k then the total probability that it is not connected to a
giant component is u”*, where

— w is the probability that a vertex is not connected to giant component
via a particular neighbor

Giant
component




Percolation and Configuration Model G

Consider a configuration model with
- degree distribution py

- occupation probability ¢
- u 18 the probability that a vertex is not connected to

giant component via particular neighbor

component

For node 1

e Avgerage probability of not being in giant component

(©.¢]
Zpkuk = go(u), where go(2) = Zpkz
k ST ~ k

~~~~~~~ ) -2>-.__ generating function for
or the degree distribution

Pr[i € giant component| = 1 — go(u)
e Total fraction of nodes in giant component when percolation is running

S =¢(1 - go(u))
“=--.___So, the question is how
to calculate u?



Let us calculate u, the probability that ¢ is not connected to giant component
via a particular neighbor. There are two cases

e | is connected to 5 which is removed with prob 1 — ¢

e or j is not removed with prob ¢ but it is not in giant component

jisonandits k
Prli & gc via j| =1 — ¢ + ¢u

<---- neighbors are not
in giant component
Node j is reached by following an edge, so average probability

U_qu 1— ¢+ du )—1—¢+¢quu —1—¢+¢gl( )

This equation is

not easy to solve
Reminder: excess degree is the number of edges attached to a vertex other than the edge we arrived along

k+1
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Let us calculate u, the probability that ¢ is not connected to giant component
via a particular neighbor.

Node j is reached by following an edge, so average probability

u=) a(l=¢+ou")=1-6+6) qu’=1-¢+0¢g(u
k=0 k=0

This equation is
1 | ' not easy to solve

The exact form of the curve will depend
on the degree distribution, but we know
0.5 — the general shape: g, is a polynomial with
all coefficients non-negative (because
they are probabilities), so for u>0 it must
have a non-negative value and all
derivatives non-negative. Thus in general
- | it is an increasing function of u and curves
upward as shown in the figure.
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To get the full right-hand side,
we first multiply ¢1(u) by ¢
and then add 1 — ¢. Graphi-
cally, this is equivalent to com-
pressing the unit square along
with the curve it contains, un-
til it has height ¢.

The shift it upward a distance
1 — ¢. The point or points
at which the resulting curve
crosses the line y = u are then
the solutions.

£,(1)

Figure 15.2: Graphical solution of Eq. (15.4). The
generating function gy () for the excess degree dis-
tribution, shown in (a), is compressed by a fac-
tor of ¢ and shifted upward to give the curve
y = 1- ¢ +¢ g1 (u), shown for three different values
of ¢ in (b), (c), and (d). In (b), ¢ is sufficiently large
that there is a non-trivial solution where the curve - L7 E
crosses the dotted line y = u. In (d), ¢ is smaller I 1124
and there is only a trivial solution at u = 1. Finally, g
(c) shows the borderline case where the curve is s
tangent to the dotted lineat u = 1. e
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Let us calculate u, the probability that ¢ is not connected to gc via a particular

neighbor. Two cases:

e | is connected to 5 which is removed with prob 1 — ¢

e or j is not removed with prob ¢ but it is not in gc

Pr[i & gc via j] =1 — ¢ + pu”

jisonandits k

/ neighbors are not
in gc

Node j is reached by following an edge, so average probability

u=> ql-¢+uf)=1-¢+0d+ ) qu"=1-0¢+ g (u)
k=0

|Cohen, Erez, Ben-Avraham, Halvin|:

RN
P =W T 0

Minimum fraction of nodes
that must be occupied in
configuration model for a
giant component to exist




[Cohen, Erez, Ben-Avraham, Halvin]: ¢, = -+~ = (k)

91(1) — (k2)—(k)

In configuration model fixing low ¢, leads to gc, for example (k?) > (k)

Example: given Poisson degree distribution with ¢ - mean degree

k
1
=t = W= W) =det1) = b=

i.e., ¢ = 4 means that % vertices will fail before giant component disap-

pears.

Example: power laws with 2 < o < 3 (Internet, etc)
(k) is final, (k*) diverges = ¢, — 0

i.e., remove many vertices form the network = giant component will be
there

Opposite Example: Epidemiological networks. Small ¢. are bad! The
fewer individuals we need to vaccinate to destroy giant component the
better.




[Cohen, Erez, Ben-Avraham, Halvin]: ¢. = g’ll(l) _ (k2<)k—>(k)

e Example: Exponential degree distribution pr = (1 —e™*)e™*, A >0

ed — 1 er — 1 °
g0 (2) = —; zagl(z):()\ ) =

e_

u=1is always a

u(e>‘ — u)2 — (1 —9) (e)‘ — u)2 — @(6)\ — 1)2 =0 = ff.lifiiinafvr;:ys

1 1 factor
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ligure 16.4: Size of the giant cluster for site percolation in the configuration model.
I'he curve indicates the size of the giant cluster for a configuration model with an ¢
nential degree distribution of the form (16.12) with A = 1, as given by Eq. (16.18). The
dotted line indicates the position of the percolation transition, Eq. (16.20).
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Figure 16.5: Size of the giant cluster for a network with power-law degree distribu-
tion. The size of the giant cluster for a scale-free configuration model network with
exponent & = 2.5, a typical value for real-world networks. Note the non-linear form of
the curve near ¢ = 0, which means that S, while technically non-zero, becomes very
small in this regime. Contrast this figure with Fig. 16.4 for the giant cluster size in a
network with an exponential degree distribution.



Geometric graph: percolation example



Non-uniform Removal of Vertices
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Figure 16.7: Removal of the highest-degree vertices in a scale-free network. (a) The size of the giant cluster in a
conhiguration model network with a power-law degree distributio: vertices removed in order of their degree,
starting with the highest-degree vertices. Only a small fraction of the vertices need be removed to destroy the giant
cluster completely. (b) The fraction of vertices that must be removed to destroy the giant cluster as a function of the
exponent a of the power-law distribution. For no value of a does the fraction required exceed 3%.
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Figure 16.6: Siz the giant percolation cluster as the highest degree vertices in &

network are removed. (a) The size of the giant cluster in a network with an exponential
degree distribution py ~ e with A = 1 as vertices are removed in order of degree,
starting from those with the highest degree. The curve is shown as a function of
degree ky of the highest-degree vertex remaining in the network. Technically, since
must be an integer, the plot is only valid at the integer points marked by the circles;
curves are just an aid to the eye. (b) The same data plotted now as a function of t

fraction ¢ of vertices remaining in the network. '



Network resilience to targeted attacks

Scale-free graphs are resilient to random attacks, but sensitive to targeted
attacks. For random networks there is smaller difference between the two
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Figure 15.10: Size of the largest cluster as a function of occupation probability for
percolation on four networks. The four frames of this figure show the size of the
largest percolation cluster, measured as a fraction of network size, for random removal
of nodes from four real-world networks: the western United States power grid, the
network formed by the US interstate highways, the Internet at the level of autonomous
systems, and a social network of professional collaborations between physicists. Each
curve is averaged over 1000 random repetitions of the calculation, which is why the
curves appear smooth.
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Figure 15.11: Size of the largest percolation cluster as a function of occupation prob-
ability for targeted attacks on four networks. The four frames in this figure show the
size of the largest cluster, as a fraction of network size, when nodes are removed in
degree order, highest degrees first, from the same four networks as Fig. 15.10. Since
this is mostly a deterministic process and not a random one (except for random choices
between nodes of the same degree) the curves cannot be averaged as in Fig. 15.10 and
so are relatively jagged.
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