Models of Network Formation

Fundamental theoretical and

practical questions

 What are the fundamental
processes that form a network?

* How to predict its future
structure?

*  Why should networks have
property X? P

*  Will my algorithm/heuristic work /%
on networks created by similar 7/
processes? ’

Artificial network Artificial network

e Artificial netwbork
Artificial network ) 0

Original network

\

Is it similar to the original network?



Rich-get-richer effect

Herbert Simon
1916-2001

Analyzed the power laws in economic data, suggested explanation of
wealth distribution: return of investment is proportional to the amount
invested, i.e., wealthy people will get more and more.

Simon (1976). “On a class of skew distribution functions"

Derek Price
1922-1983

Studied information science; in particular, citation networks; his main
assumption was about newly appearing papers that cite old papers with
probability proportional to the number of citations those old papers have
= the model is similar to Simon’s model.

Price (1976). "A general theory of bibliometric and other cumulative advantage processes"



Price’s model

The crucial central
assumption of Price’s
model is that a newly
appearing paper cites
previous ones chosen at
random with probability
proportional to the
number of citations those
previous papers already
have.
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Consider adding a single vertex v in Price’s model, where p,(n) is the fraction
of vertices in the network with in-degree q.

Probability of v — 7 citation is constant to get some citations for “free”
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Consider adding a single vertex v in Price’s model, where p,(n) is the fraction
of vertices in the network with in-degree gq.

Probability of v v 4 citation is constant to get some citations for “free”

degree of node i — Q'—l—a Q'—I—CL Q'—|—CL
Zi(qi—ka):n(q)—i—na:n(c—l—a e.w//
O,_.-\—\>
C

Expected number of new citations to all nodes with degree q is



Consider adding a single vertex v in Price’s model, where p,(n) is the fraction
of vertices in the network with in-degree gq.

Probability of v v 4 citation is constant to get some citations for “free”
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Expected number of new citations to all nodes with degree q is
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Thus, the number of vertices with in-deg ¢ after adding v is




Consider adding a single vertex v in Price’s model, where p,(n) 18 the fraction
of vertices in the network with in-degree q.

Probablhty of v » ¢ citation 1s constant to get some citations for “free”
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Expected number of new citations to all nodes with degree ¢ is

oL

nodes with in-deg g q +a c (q + OL)

\npq(n)'c'n(c+a) = cta Pq (1

Thus, the number of vertices with in-deg ¢ after adding v is

(9

c(g—1+a) c(q+a)
1 1) = np.
(n+1)pg (n+ ) ?p%gﬁ)d+ cta Pg—1(n) — cla pq (1)
Guan _;_n e 1 were with in-deg g-1 were with in-deg g and left that set
q a — —Q
— = _ —
Pa q+a+1+a/cpq ! A Pq (¢ +0)

Use properties of gamma
and beta functions
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Figure 14.2: Degree distribution in Price’s model of a growing network. (a) A histogram of the in-degree distribution
for a computer-generated network with ¢ = 3 and @ = 1.5 which was grown until it had n = 10° vertices. The
simulation took about 80 seconds on the author’s computer using the fast algorithm described in the text. (b) The
cumulative distribution function for the same network. The points are the results from the simulation and the solid line
is the analytic solution, Eq. (14.34).

Newman “Networks, An Introduction”



Preferential Attachment (Barabasi-Albert)

e Initialize network with mg nodes (mg > 2, d(i) > 1)

e Add node 7, connect it to exactly ¢ out of m existing nodes with probability
kj

> ki

Prli —j] =

e Repeat previous step or stop if |V| =n

http://probaperception.blogspot.com

—

pp ~ k3






Non-linear Preferential Attachment
Q: What if the probability of attachment is not linear in the degree of node?
ap - attachment kernel, i.e., functional form of the attachment probability

In B-A model ap = k

In non-linear model aj, = k7 < not a probability! normalized form ax/ ). ax,
pr(n) - fraction of vertices with degree k when |V | =n

Expected number of £-deg nodes with a new connection when one node is added

ap C

npg (n> C — QrPk (n) (see Slide 3 for a, = k)
dges added at eachstep ~ 2. 0%, u(n)\ (n) li > akpi (n)
t t = — =
edges added at each step wn n 2 Ak, k agpr (n
Master equation for p,(n) new vertices of deg k

C

= (n+1)pr(n+1) =npg (n) + (ak—1pk—1 (n) — agpr (n))

( ) were with deg k-1  were with deg k and left
/in 00
p/c } Ak—1
= Pc = Pk —
ac + p/c ai + p/c

Pk—1

Krapivsky, P. L., Redner, S., and Leyvraz, F., Connectivity of growing random networks, Phys. Rev. Lett.
Jeong, H., Néda, Z., and Barabasi, A.-L., Measuring preferential attachment in evolving networks, Europhys. Lett.



If ap, = k7

k
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If v < 1 pk_cmg(u
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Figure 14.8: Degree distribution for sublinear
preferential attachment. This plot shows the
fraction py of vertices with degree k in a growing
network with attachment kernel k7 as described
in the text. In this case v = 0.8 and ¢ = 3.
The points are results from computer simula-
tions, averaged over 100 networks of (final) size
107 vertices each. The solid line is the exact so-
lution, Eq. (14.112), evaluated numerically. The
dashed line is the asymptotic form, Eq. (14.119),
with the overall constant of proportionality cho-
sen to coincide with the exact solution for large
values of k.

No power-law tail!
(see handout with Taylor ser exp)

Homework (10/27/20):Jeong, Néda, Barabasi Measuring preferential attachment in evolving
networks, Europhys. Lett.



Vertex Copying Models
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Algorithm:

e Initialize network with ng > ¢ nodes (d(-) random )

e Choose uniformly at random existing vertex ¢ with prob %
e Add new node j with out-degree c

e Go through all bibliographic entries of ¢ and either (a) copy it to j with
prob v or (b) add new random entry to j with prob 1 —~

e Repeat previous step or stop if |V| =n

When new node j is added ... 1/n is a probability to

choose a node with
connections to i
e it will have vc copied entries on the average.

e probability new edge is copied Pri|j — i] = vq;/n, where ¢; = d~ (i)
e probability new edge is randomly created Pry|j — i] = (1 — v)c/n

o if p,(n) - fraction of nodes with in-deg ¢ then total expected number
of nodes of in-deg ¢ receiving new edge

i gets a new link Pr; + Pr, —
g+ (1 —-9)c
npg (n) x -

= (vqg+ (1 =7)c)pg (n)



e if p,(n) - fraction of nodes with in-deg ¢ then total expected number of
nodes of in-deg ¢ receiving new edge

) x g+ (1 —7)c

npg (n - = (v¢+ (1 =) c)pq (n)
Define .
a:c(§—1> — 7= et a
then
(va+ (1= 7)€ pg () = S9E D ()

c+ a

\ Same as in Price’s model!

Conclusion: Vertex copying behaves as the Price’s model with a = ¢(1/y—1).
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Figure 14.9: Distribution of in-degrees in the metabolic networks of various organisms. Jeong et al. [166] examined
the degree distributions of the known portions of the metabolic networks of 43 organisms, finding some of them to
lollow power laws, at least approximately. Show here are the in-degree distributions for (a) the archaeon A. fulgidus,
(h) the bacterium E. coli, (c) the worm C. elegans (a eukaryote), and (d) the aggregated in-degree distribution for all 43
Organisms. After Jeong et al. [166].

Newman “Networks, An Introduction”
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Simplified model of operating the network

m - number of edges.

[ - mean shortest path between all pairs of nodes.
Assumption:

e (m) cost of running the network is proportional to the number of routes
it operates;

e (/) customer dissatisfaction measure.

We are interested in minimizing both m and [ but minimizing [ maximizes m.

Consider a model with
E(m,l) =m+ (1 — )l

Given |V| = n what if we minimize F(m,1[)?
large A = tree, m = n — 1 = search over all possible trees to minimize [

small A = non-star-graph solutions appear when A < 2/(n? + 2)



A

Fig. 7.4. Average (over 50 replhcas) degree entropy as a function of A with n = 100,
T = (3), v = 2/(3) and p(0) = 0.2. Optimal networks for selected values of A are
plotted. The entropy of a star network, H.ur = logn — [(n — 1) /n]log(n — 1) = 0.056
15 provided as reference (dashed hne). A: an exponential-hike network with A = 0.01.
B: A scale-free network with A = 0.05. Hubs ivolving multiple connections and a
dominance of nodes with one connection can be seen. C: a star network with A = 0.5,
B’: a intermediate graph between B and C in which many hubs can be 1dentified
Ferrer i Cancho, Sole “Optimization in Complex Networks”



Small Worlds and High Clustering Coefficient

Network n z C C for
measured | random graph
Internet [153] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 | 35.2 0.11 0.00023
power grid [192] 4,941 2.7 0.080 0.00054
biology collaborations [140] 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 | 3.9 0.15 0.000015
film actor collaborations [149] 449913 (1134 0.20 0.00025
company directors [149] 7,673 14.4 0.59 0.0019
word co-occurrence [90] 460,902 | 70.1 0.44 0.00015
neural network [192] 282 14.0 0.28 0.049
metabolic network [69] 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065

N. Przulj. Graph theory analysis of protein-protein interactions




Simple Models with High Clustering Coefficient

¢; = triangles/triples = 6/15 = 0.4
C — 04

Triangular lattice

W Clustering coefficient depends on the number

of connected 1d line neighbors
One-dimensional line



Small-World Model
High C, High Diam High C, Low Diam Low C, Low Diam

Randomly rerouted (or added) edges
with probability p (for each of the edges in circle)

_______________________________________________________________ >
Circle models Random models
are not “small-world” have small clustering

coefficients

Watts-Strogatz Model (1998)

- Given circle models with n nodes

- Go through all edges, remove each with probability p
and then add new edge uniformly at random



Small-World Model (without edge removal)

If ¢ is a degree in circle model and p is a prob of an edge then

1

e Sncp short-cuts in new graph

e cp ends of new short-cuts at each node on the average

e s number of short-cuts is Poisson distributed over all nodes

_ep (CD)’
_ Ccp
Ps =€ s!

e node degree k = s + ¢, then degree distribution of small-world
models is .
(cp)™°

(k—¢c)l

pr=¢€ 7

where p, =0 1if k < c.



Small-World Model (without edge removal)

or Lflyax

C/Crax

| o b ]
O S Y O S L 1 S S I I | L L, N O S | I e e B I 0 = I

0.001 0.01 0.1 1

Shortcut probability p

Figure 15.5: Clustering coefficient and average path length in the small-world model.
The solid line shows the clustering coefficient, Eq. (15.7), for a small-world model with
¢ = 6 and n = 600, as a fraction of its maximum value Cpax = %(c —2)/(c—1) = 0.6,
plotted as a function of the parameter p. The dashed line shows the average geodesic
distance between vertices for the same model as a fraction of its maximum value /.« =

n/2c = 50, calculated from the mean-field solution, Eq. (15.14). Note that the horizontal
axis is logarithmic.




Homework (reviews by 5/6/2021):

Watts and Strogatz “Collective dynamics of ‘small-world’ networks”,

1998
Kleinberg “Small-world phenomenon: an algorithmic perspective”,

2000



R-Mat Generator
by Chakrabarti, Zhang, Faloutsos

Choose a b

a=04 b=0.15 quadranib R

C=0.15 | d=03
Initially Choose
guadrant c

and so on

R B R

Final cell chosen,

“drop” an edge
here

Presentation by C. Faloutsos at SIAM DMO04



R-Mat Generator

by Chakrabarti, Zhang, Faloutsos

Communities
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communities

RedHat

v

Presentation by C. Faloutsos at SIAM DMO04
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Kronecker Graphs

Definition 1 (Kronecker product of matrices) Given hvo matrices A = [a; ;] and B of sizes n x
m and n' x m' respectively, the Kronecker product matrix C of dimensions (n-n') x (m -m') is
given by

a11B a12B ... a1,,B

_ as1B a29B ... ay,,B
C=A=B-= _ , '

an1B anoB ... apmB

We then define the Kronecker product of two graphs simply as the Kronecker product of their
corresponding adjacency matrices.

Definition 2 (Kronecker product of graphs (Weichsel, 1962)) If G and H are graphs with adja-
cency matrices A(G) and A(H ) respectively, then the Kronecker product G  H is defined as the
graph with adjacency matrix A(G) @ A(H).

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani



http://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf

(a) Graph K (b) Intermediate stage (c¢) Graph Ky = I‘E-. 1 2 Ky
1(1]0 K |K |0
1)1 5155
011 0 K K,
(d) Adjacency matrix (e) Adjacency matrix

of K4 of Ko = K1 & Ky

Example of Kronecker multiplication: Top: a “3-chain” initiator graph and its Kronecker
product with itself. Each of the X; nodes gets expanded into 3 nodes, which are then
linked using Observation 1. Bottom row: the corresponding adjacency matrices. See
figure 2 for adjacency matrices of K3 and K.

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani



http://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf

(a) K5 adjacency matrix (27 x 27) (b) K4 adjacency matrix (81 x 81)

Figure 2: Adjacency matrices of K3 and K. the 3" and 4® Kronecker power of K matrix as
defined in Figure 1. Dots represent non-zero matrix entries, and white space represents
zeros. Notice the recursive self-similar structure of the adjacency matrix.

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani



http://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf
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Figure 3: Two examples of Kronecker initiators on 4 nodes and the self-similar adjacency matrices
they produce.

from paper Kronecker Graphs: An approach to modeling networks
by J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani



http://cs.stanford.edu/people/jure/pubs/kronecker-jmlr10.pdf

Exponential Random Graphs Model

Instead of analyzing one network with fixed parameters, it is useful to consider ensembles of
networks that are similar to the original.

Let us fix average values of some network properties (such as clustering and
modularity). Possible property of an ensemble: values closer to the averages
have higher probability. Define

Y Pr(G) =1

Geg

graphs with n nodes

For network measure z;, 1 <i < M(<K 2”(”_1)/2)

(zi) = ) Pr(G)ay(G)

Geg

i.e., if Pr(G) are variables then such systems do not describle the system com-
pletely.

How to choose Pr(G)?

7447@00&»%1}0”7'0 AN Aworte %ma&




Best choice of probability distribution given a small number of
constraints maximizes Gibbs entropy

Z Pr(G)InPr(G)

Geg

J. Willard Gibbs

Maximization of entropy with Lagrange multipliers 1839-1903

max — » Pr(G)InPr(G)—a(l—) Pr(G)=> Bi({x:)— >  Pr(G)z(G

Geg Geg ( Geg

Differentiate wrt P(G) of a particular G

~InPr(G) —l+a+ Y Bixi(G)=0

or
JH(G)

Z Y

Pr(G) = exp(a — 1 + Z Biz;(G)) = Pr(G) =

where Z = ¢!~ and H(G) = Y_, 8;z;(G) is the graph Hamiltonian.

7447@00&»%1}0%7'0 W Aworke %ma&



Z 1is solved by normalization

Z Pr(G) = % Z e = 1

GEg Geg

H(G)

B, are solved by substituting Pr(G) = £<—— into ZGeg Pr(G)z;(G) = (z;)

In general 3; can play a role of importance coefficients.

Practice

If we have Pr(G) over graphs let us estimate useful quantities. For property y

W)= " PrCW(E) = o 3 M Dy(@)

Geg Geg

Example: Fix the expected number of edges only. Then H = Sm and individual
graphs appear with prob

Bm
Pr(G) = 67, where Z = Z eP’™ = higher 8 correspond to denser networks

G

7447@00&»%1}0”7'0 Aworte %ma& 33
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