Random Models

e Model G(n, m) is a probability distribution P(G) over all graphs
with n nodes and m edges.

e Properties of model = properties of ensemble
e [ixamples

— r\“m“hgﬂbj}m fhf(flll(?/l?cl R ' Tucans

1
WAy N Y G X
G G
— degreta! frl(nhsrof Raphen

Q: what is the total number of graphs
with no loops and multi-edges?
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Random Models

e Model G(n, p) - graphs with n nodes and independent probabil-
ity p for placing an edge between two vertices (aka Erdos-Rényi
model).

e Properties of model = properties of ensemble where a particu-
lar graph G with m edges appears with probability

P(G) =p"(1—p)B) "

and probablity of drawing a graph with m edges from the ensemble
1S



e mean degree (z): 2 pm) = %(Z) (- 1)p=c

mn
m=0

mean degree in a graph with exactly m edges

e degree distribution

e node is connected to a particular k others ¢, = p*(1 — p)* 1%

n—1

e node is connected to exacly k others p, = ( L )q;.C



(3)

2
e mean degree Z —mP(m) =

n

mean degree in a graph with exactly m edges

e degree distribution

node is connected to a particular k others ¢, = p*(1

node is connected to exacly k£ others pi = (n

2(5)

p=(n—-1lp=c

b )k

—Pp

in large-scale networks p = ¢/(n — 1) can be very small, i.e.,

In((1 - p)"' ) =

also if (

)n—l—k

O
(n—1—k)In(l—c¢/(n—1)) ~ —(n/k) — ~
Taylor series reminder: In(1 + i) =2 (A—i— éAS—i— 1A5 ) where A =
n—1\ _  (n—1)! __ (n—1)"
k ) — n—1-K)K ~ & then
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Poisson distribution in random models
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In contrast to the degree distribution in random model, many real network
degree distributions are different.

1000

100

f autonomous sy stems

- 10
aF)
A0
1
10°
10
]
=10

10°

&

{

(a) Imfernet

TTTTTH & TTTIN

L I B r/'li
P

P

of

IIIIII1 IIIIIII IIIII1 TTTTm

¢

(c) collaborations

of scientists

o— mathematics
O0—0O bhiomedicine

e

IIIIIIJ IIIIIII IIIIIJ ||||||J IIIIIIJ IIIIIJ ||||||J

[

10

100

degres

1000

number of web sites

number of actors

10

10°

10

10°

10°

107

=

T IIIIII IIIIII| IIIIII1 IIIIII1 ||||||1 ||||||1 T |||||1 T I-HII1

o

a—y

=T |||||||

o

o o

i(d) collaborations

of film actors

—

10

100

degree

1000

10000



In contrast to the degree distribution in random model, many real network
degree distributions are different.
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e clustering coefficient C' = ¢/(n — 1) = prob that any two nodes are neighbors

clustering coeflicient '

network n z | measured random graph
Internet (autonomous systems)? 6374 3.8 | 0.24 0.00060
World-Wide Web (sites)P 153127 352 | 0.11 0.00023
power grid® 4941 2.7 | 0.080 0.00054
biology collaborations? 1520251  15.5 | 0.081 0.000010
mathematics collaborations® 253 339 3.9 | 0.15 0.000015
film actor collaborations’ 449913 1134 | 0.20 0.00025
company directors! 7673 144 | 0.59 0.0019
word co-occurrence® 460902  70.1 | 0.44 0.00015
neural network® 282 14.0 | 0.28 0.049
metabolic network? 315 28.3 | 0.59 0.090
food web! 134 8.7 022 0.065

Newman, “Random graphs as models of networks”



e giant component in G(n,p)

Giant component is a network component whose size grows in proportion to n.

Q: When p=0 then |gc|=1; when p=1 then |gc|=n. What is the difference between them?

e L.
.
. .
e . T e b ..-_.' 1 R .
- N em . . ol e Ny d
R, ) it . . oy
S 7 - *ve /P . . “ -
H b CROS % % " . Ty o
. L - PERYLE S . e
R Ny e e, . s »
. % . S I S % 'J_2_ '“:'5 o .
. S £ Saast (o Sae e sT0eSS e ol 3
M
y > 0 L ST L i
Loy R L X P
" [ . 5
- .f' ..-g-:;'-«";r‘ RS ‘}.:_l.;_:,‘ vy v . 3 .
e L 3, L i W T T TR s
en'e el RO LVRER RIS
RIS Py ORI N T X I e PRI
. Iy ) .l.’ ) = vﬁ." ..\-2 Tttt e Nin *
iV . % .
g --."-',"&"!.'.}{-‘-:"vl S y "". "'-"‘ Pat o ‘s
e = 1 X, o - . - '
<L T S "":-{"’*.2 i Lt e :
P R b e et S
T DA T R
-" I P :’:'.§ 5‘_-;." o S .
4 . . - - -
. L RO R . ’ ., -
. E e
T.e . at et 2 ’
. L Y
S ." -y ..u‘. 3
- ‘-’ " e - -
- ! .
. P - " \
'y w . - Ses : -
o sue 4
- we
wa.
-

Co-authorship network

its largest connected component



10



e giant component in G(n,p)

Giant component is a network component whose size grows in proportion to n.
u = avg fraction of vertices that do not belong to the giant component.

Q: When p=0 then |gc|=1; when p=1 then |gc]|=n. Is this transition smooth? Is there a point of transition?

a) there is no edge ij, prob =1-p
i does not belong to gc if for

every node j either
b) there is edge ij but j is not in giant
component, prob = pu

Pr|i does not belong to gc via j] =1 — p+ pu, i.e.,
total probability of not being connected to gc via any of n — 1 other vertices is

u=(1—p+pu)" = (1— nflu—u))n_l

nu "~ " —(n—1) c

(1—u)=—c(1—u) — u:e—c(l—u) = Szl_e—cS

/

n—1

vertices in giant component
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Figure 12.1: Graphical solution for the size of the giant component. (a) The three curves in the left panel show
y = 1— e for values of ¢ as marked, the diagonal dashed line shows y = S, and the intersection gives the solution to
Eq. (12.15),S =1 - e “°. For the bottom curve there is only one intersection, at S = 0, so there is no giant component,
while for the top curve there is a solution at S = 0.583... (vertical dashed line). The middle curve is precisely at the
threshold between the regime where a non-trivial solution for S exists and the regime where there is only the trivial
solution S = 0. (b) The resulting solution for the size of the giant component as a function of c.

=> Demo in Matlab Newman “Networks, An Introduction”



Physics E-print Archive

Medline complete  astro-ph  cond-mat hep-th SPIRES NCSTRL

total papers 2163923 98502 22029 22016 19085 66652 13169
total authors 1520251 52909 16706 16726 8361 56627 11994

first initial only 1090584 45685 14303 15451 7676 47445 10998
mean papers per author 6.4(6) 5.1(2) 4.8(2) 3.65(7) 4.8(1) 11.6(5) 2.55(5)
mean authors per paper 3.754(2) 2.530(7) 3.35(2) 2.66(1) 1.99(1) 8.96(18) 2.22(1)
collaborators per author | 18.1(1.3) 9.7(2) 15.1(3) 5.86(9) 3.87(5) 173(6) 3.59(5)
size of giant component 1395693 44337 14845 13861 5835 49002 6396

first initial only 1019418 39709 12874 13324 5593 43089 6706

as a percentage 92.6(4)% | 85.4(8)% 89.4(3) 84.6(8)%  T1.4(8)% | 88.7(1.1)% | 57.2(1.9)%
2nd largest component 49 18 19 16 24 69 42
clustering coefficient C 0.066(7) 0.43(1) 0.414(6) 0.348(6) 0.327(2) 0.726(8) 0.496(6)
mean distance 4.6(2) 5.9(2) 4.66(7) 6.4(1) 6.91(6) 4.0(1) 9.7(4)
maximum distance 24 20 14 18 19 19 31

Table 1: Summary of results of the analysis of seven scientific collaboration networks. Numbers in parentheses give an estimate of the error
on the least significant figures.



Metwerk Type i . m c 5
Film aclors Undirected 4459132 25516462 11343 0.98)
Company directors Undiracted 7673 55392 1444 0878
Math coauthorship Undiracted 253335 186489 3582 0.822
Phyzics coauthorship  Undiracted 52 909 245300 327 (.838
= Bioclogy coauthorship  Undizected 1520251 1LEC3 064 13,53 0.513
&  Telephonecall graph  Undizected 47000000 80000000 3.6
" Email messages Dizrected 59812 86300 144 0852
Email address books © Directad 16681 57028 3.33 0590
Student dating Undirected 573 477 166 0503
Sexual contacts Undirected 2810
g WWW nd. edu Diracted, - 269 504 1497125 5.55  1.000
- WWW AltaVista Diracted 205540046 1466070000 720 0514
’é Cikation network Directed 783324 670158 3.37
¢  Roget's Thesaurus Directed 1022 5103 1.99 0977
g Word ¢o-oocurzeance Undirected 450902 16100003 68696  1.000
Internet Undirected 10657 31992 593  1.000
o Power grid, Undirected 4947 65%4 257  1.000
'@ Train rowtes Undirected 547 19603 6679 1000
© Software packages Diracted 1439 1725 1.20 0.998
£ Software classes Directed 1376 2213 161 1.000
& Flectromic circuits Undirected 24097 33248 434 L00O
reer-to-peer network  Undirected gE0 1295 147  0.805
Metabolic network Indirected 763 5636 964 0.5996
¥ Proteininteractions  Undirected 2135 2240 212 0.589
& Marine food web Directed 134 598 446 1.000
f:% Freshwater food web  Directed 92 937 10,84 1.000
Directed 307 2359 7.08 0967

Neural network




Two giant components in G(n, p)?
e Generate G with p =c¢/(n — 1)

e Suppose that after adding edges with prob p, we have 2 giant
components that cover fractions of nodes Si, and Ss

e S; and S; remain separate with probability

C

— (1 — 5152n2: 1 — S1S9m2
¢=(1-p) (1—=——)

C

1
= Ing= 515 lim (n*In(1 — — 1)) = 5152(—c(n+1) + 5

—cS5152n
qd = o€ o2 ) E?'P
. . n—oo
where qq i1s a constant, i.e., ¢ — 0 , S

Conclusion: In the limit of large n, the probability of existence J O
of two separate giant components goes to zero.



e Alright ... we have only one giant component. What about the sizes of small
components?

s is the probability that randomly chosen node belongs to a small component
of size s.

e We cannot normalize 75 to unity because some nodes may belong to the

giant component, i.e., _ _
fraction of nodes in

o0 /
Z giant component
7TS — 1 - S.

s=0

e Observation: small components are likely to be trees.
Consider a small tree component of s nodes. The total number of places

we can add an extra edge to is (5) — (s — 1) edges in tree

edge prob
1\ ) /

n—bQo

Average total number of added edges 5(5 —1)(s—2)- > 0

n—1 7

the component is still tree




Calculation of 4 (the probability that randomly chosen node belongs to a small

component of size s).
%Z’Z

(o4
e Consider node 7 in a small (tree) component b\l "
(64

e ... and modified network with deleted 1.
In the modified network, prob p is the same and
in the limit of n the changes are negligible. Sizes of
gc and sc will be indistinguishable for same p.

P}‘:[Vj € N(i) n; € sc of size s;] = H;?:l?Tsj

Since Y ey S = s — 1 we have

Kronecker delta
‘\
v o0 o0
_.ck

(I 7y, ) 6(s — 1, Z 5;)

s = Z?{)k Pr[s|k| = e_cz C—' Z Z (H?zlwsj) d(s — 1,Zsj)
k=0 ' '



T = Zpk Prls|k] = e_cz % Z Z (Hle'ﬂsj) d(s — I,Zsj)

k=0 E=0 = s1=1 sp=1 7

One way to evaluate 7, is by using generating function

h(z) = Zﬂszs = (s) = % =h'(1)/(1-5)=1/(1 —c+cS).

see Newman’s book, pp 412-413
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Average size of the small componentsin a
random model does not grow with the
number of vertices.

Size

Average component size
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Figure 12.4: Average size of the small components in a random graph. The upper
curve shows the average size (s) of the component to which a randomly chosen vertex
belongs, calculated from Eq. (12.34). The lower curve shows the overall average size R
of a component, calculated from Eq. (12.40). The dotted vertical line marks the point
¢ = 1 at which the giant component appears. Note that, as discussed in the text, the
upper curve diverges at this point but the lower one does not.



Distribution of component sizes

0.4 7 ¢=0.75
0.2 —
R” 2
2 e ey s A
= 9 T Figure 12.5: Sizes of small components in the
L
3 3 random graph. This plot shows the probabil-
A& 02 ity 7t; that a randomly chosen vertex belongs
1 =13 to a small component of size s in a Poisson
. random graph with ¢ = 0.75 (top), which is in
i the regime where there is no giant component,
y and ¢ = 1.5 (bottom), where there is a giant
0 : s  component.

Component size s



e path lengths

e Intuition: avg number of nodes s steps away from random ¢ is ¢®*. We
reach all vertices when ¢®* ~ n, i.e., s ~Inn/Inc.

e Problem: this argument doesn’t work when s is large.

e Consider two starting vertices ¢+ and j with their s- and t—distance neigh-
borhoods, respectively, when s,t¢ are small

1. if edge exists between surfaces then
one can show that there are edges
between larger surfaces

- =

—> Pr|d;; > s+t+ 1] = prob A edge between two surfaces
c®, and ¢’ when t is small

2. There are on avg ¢® X ¢! pairs of nodes,
s.t. one lies on each surface and each
pair is connected with prob p =c¢/(n —1)
i.e., Prld;; >s+t+1] = (1 —p) =1 - c/n)cl_1 or InPr|d;; > ] =
d=tIn(l —¢/n) =~ —c'/n /!

| = s+t+1



Diamater Modularity

MNatworks fn::l Observed Expected ?h‘l‘m iﬂl“ Pyalue Observed Expected :Hm iﬂu“ Pvalue
Charsetens in “Les Miserabibes”! 77 264 2.50 56 158 00003 056 020 934 oz =1t
Words in “David Copperficld™ 112 254 248 23 1.81 00703 031 029 48 1.67 00549
Dolphins’ 2 3.36 270 24.3 1440 <107* 051 037 40.8 158 <1
Political bogs* 124 174 .59 57 135 <107% 043 Q.14 0.5 18zF <t
Co-authorship® T&10 703 542 206 70 =107 0 04T 4.9 250 <
Fowiball® 15 251 223 125 5430 <107% 060 028 119.2 4468 =107
Power’ 4941 18.59 832 1283 430 <10°% 083 0.73 285 s <1
Airline® B10 3.06 261 174 3.53 00004 031 013 130.0 114720 <107?
Electronic circuits” 512 BB 564 26 1240 =<107* 081 063 A 5% <ip?
Protein-protein interaction™® 1870 81 578 178 .19 =107% 041 Q.7 132 18,23 <1y
Mewral'' Fi 246 4.35 4.5 3.38 w0odF G40 Q.22 80,0 51,06 107"
Tramscriptional requlatory'™ 3455 3.72 3.39 9.7 360 00003 06D 047 9.5 s <107t
Metabokic' 563 B.78 6.54 34.3 1857  <10°Y 0B84 0.73 145 mwy2 <

"The network of coappearances af characters in Victor Hugo's novel “Les Miserables”. Nodes represent charactens and edges connect any pair of charscters that sppesr
in the same chapies,

The network of commaon adjective and noun adjacencies for the novel “David Copperfield™ by Chares Dickens. Modes represent the most commandy ocourring
adjectived snd nound in the boak.

*The netwark of frequent associations between 62 dalphing in a community living off Doubtful Sound, Mew Zealand,

*The network of palitical blogs. Nodes represent blogs and edges are the Enks between blogs.

"The network of scientists posting preprints on the high-energy theory archive a1 wew.andv.ong, 1995-1999, Nodes are authors and edges connect coauthorns.,

*The network of American football games between Division & colleges dunng reqular season Fall 30000 Nodes are teams and edges connect teams that contest in a
game,

"The network of the Western States Power Grid of the United S1ates. Nodes ane power plants, stations and households, and edges are powerlines,

FThe netwark of scheduled air Bne connections in United Skates, 3005, Noded ane airpoats and edges are schedulsd direct fights.

"Elecironic circuits, Modes are alectrenic olements and edges are clectronic connections,

"The protein-protesn interadtion network of the budding yeast 5. cerevitioe, Modes are proteins and edges connedt proteins that interact with each sther,

"'The neural netwerk for the worm C elegons. Modes sre neurons and edges. link neurons that cannect.

"*The transcriptional regulatony network of the budding yeast 5 cenevisior. Modes ane genes and edges connect genes that regulate one another.,

"*The metabolic network of the bacterium E ool Modes are metabolites and edges connect metabolites that can be convened by a biochemical resction.

Y Zseore, nurmber of Mandard deviations by which the observation deviates from the expectation.

doi 1.1 371 fjournal pone 0056860001

http://complexnt.blogspot.com



Generating Functions and Degree Distributions
The generating function (gf) for the probability distribution py is

the polynomial
9(z) = Zpkzk-
k=0
If we know gf for p;, then we can recover the values of p; by differ-
entiating

1 d*g
- kldzF
Example: £ = 0,1, 2 with the respective p, = %, %, % for all £ then

()_1+7 L1
=516 167

Pk

z=0

Example: £ follows Poisson distribution, i.e., py = e “3;

ok
—C C C\Z2—
g(z) =e Zyzk:e( 2
k=0



Power-law distributions p. = Ck™, a >0, £ >0
Reminder: C' is calculated from normalization condition, i.e., C' = 1/{(«)

0 k=0 I -« Lig(2)
p‘“:{ka/qm k>0 IS g R m\

k=1
Since we are interested in differentiating g(z) note that Polylogarithm

OLiq(2)  Lig—1(2)
dz z

Some properties of g(z)
e g(1)=1
/ 2 d \2 m d\™
o (k) =g'(1), (k) = | (=) 9()] (k) = | (=)™ 9(2)
e Choose m integers k; from p; = Pr[chosing particular set of values {k;}| =
Hi Dk,
SR YREED DERD DRI D1 | (O
X i=1 k1=0  kp=0

fo's) m
h — s — e s — — m
drawn values add to a specific sum s (2) ;} Tsz (];) pkzk) (9(2))

z=1


http://en.wikipedia.org/wiki/Polylogarithm

Random Graphs and Configuration Model

Degrees: 1,1, 2,2,3,3

1. Add n nodes

‘ ' | T 2. Add initial d(i) stubs to each i

? 3. Connect stubs iteratively

Problems? Total degree is even; Can create self-loops, multi-edges



Configuration Model
Multi-edges: Probability of adding an edge between ¢ and j with degrees k;,

and kj is L Je in the limit we can omit -1
Pij = 5—— /
2m — 1
Probability of second edge is (k; — 1)(k; —1)/2m

Expected number of multiedges in conf model

2(21,1)2 iijikj(ki—l)(kj—l) = 2(,6;2”2 ;ki(l@—l) > kj(kj—1) = %[(k )<k—> <k>]2

J

Similar result for self-edges

kb= D) (k) — ()
P =) g = 2k)

i i
Conclusion? Expected number of multi-edges remains constant as network grows.

Expected number of common neighbors
ik = 1) kb Skl = 1) ) = (k)
=) o m e om n(ky 9T (k)
l \

jis connected to | /" Jjis connected to / given il




Random graphs with given expected degree
Vi € V define parameter ¢;. Then edge probability

cici/2m i F#£ ]
= , where c; = 2m
Pig {c?/4m i =] zz:

average number of edges in network

Sh =G+ Y =
+ 2m - dm

i<j i<j

average degree

2 ey ey
<ki>:2pii+2pij:%+232 ZZCZZ;‘Z

JF JFi J




More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an
edge, of the number of other edges attached to that vertex.

p = (]i? + 1)pk+1
()

Two academic collaboration networks, in which scientists are connected together by edges if

they have coauthored scientific papers, and a snapshot of the structure of the Internet at
the autonomous system level.

Average Average (k=)
Network n degree neighbor degree (k)
Biologists 1 520252 15.5 684 130.2
Mathematicians 253339 3.9 9.5 13.2
Internet 22963 4.2 224.3 261.5

According to these results a biologist’s collaborators have, on average, more than four times
as many collaborators as they do themselves. On the Internet, a node’s neighbors have more
than 50 times the average degree! Note that in each of the cases in the table the
configuration model value of (k?)/(k) overestimates the real average neighbor degree.

M. Newman “Networks”
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More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an
edge, of the number of other edges attached to that vertex.

p = (]i? + 1)pk+1
()

Using the excess degree distribution it is easy to compute the clustering coefficient for
configuration model

N kiky 1~ e LK) —(K))?
C= k';zoqkiqkj = Qm(;k%) ==

—



Generating Functions and Degree Distributions

For degree and excess degree distributions we define generating functions

oo oo
= Zpkzk and g1(z) = Z q2", respectively

k=0
They are not independent we add zero term because of infinity
1 & N > / 1 dgo  go(2)
91(2) = 75 2 (b + pra2” = prz*T
G w5 = ma = g

Example (Poisson): pp = e_c% = go(2) = ec(z_l) and g1 (z) =€
Example (power-law): pp = Ck™® = g (2) = C( (f) Thus,

 Lin_1(2)  Lig—1(2)
9= L) (a1

Polylogarithm function

OOZ Z
Lig(z) =) —=z+=—+>+...



Number of second neighbors of a vertex
Probability that ¢ has exactly k second neighbors

2 (2)
e i - m=0 \ \ Probability of having k second

first neighbors R neighbors given m first neighbors

@
=
M
<
3

/

- degree distribution
# " {7 “sécond neighbors Prob excess degrees of m first

- T A - TTT - T T / neighbors take values j,, j,, ..., .,

P(2) k]m Z Z o |k, Z]r HQJT

..7120 )\ jm_o

all sets of values j, ,jz, s Jy that sum to k

ZP(Z)k Z mez d o k,zjljr Hlfnquz...:

J1=0 Jm=0
>0 >

— E J —
—_— . .Z f— z
generating function of p,? Z Pm - 45 9o (91 ( ))



Conclusion: Once we know generating functions of g, and g, the generating function of second
neighbor distribution is straightforward to calculate. Moreover, this can be extended to

g% ( Z Z pPP® (k|m) 2 ZP(2) = 9% (91 (2)) = 90(91(91(2)))

k=0 m=0

= ¢'Y(2) = ¢ V(g1(2)) = go(g1(-..91(2)...))

Problem: Sometimes it is difficult to extract explicit probabilities for numbers of second
neighbors and it is hard to evaluate n derivatives (in order to recover the probabilities).
Solution: calculate the average number of neighbors at distance d. At z=1 of the first derivative

we can evaluate the average of a distribution (see Slide 16).

dg? 2=1,g1(1)=1 ' (1)=(k) >
=g @giz) T - gb(gi (1) =" gl(k) = > hai =
k=0
mean number of 1 « 1 2
second lereighbors <?> Z k(k + 1)pk+1 — W((k ) - <k>)

Conclusion: ¢y = (k?) — (k) and more general

Condition of giant component’s existance

d—1
Cq = (C_z) ¢; — in configuration model is (k%) — 2(k) > 0

C
1 [MR] A critical point for random graphs with given degree sequence



Let’s use theory for practical results ...

Given a network with power-law distribution p, = Ck™“, a >0, k£ > 0
Reminder: C' is calculated from normalization condition, i.e., C = 1/((«)

(o0 k=0
PE=N k=2/¢(a) k>0

This network will have a giant component iff (k%) — 2(k) > 0

_OO _Loo —a+1:C(O~’_1)
(k) = 2k = gy 2 C(@)
2 - 2 _LOO —a+2 ¢ (o —2)
W9 = 2 Wpe = gy 2K =2
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Figure 13.8: Graphical solution of Eq. (13.138). The
configuration model with a pure power-law degree
distribution (Eq. (13.133)) has a giant component if
(e —2) > 2f(a« —1). This happens for values of a
below the crossing point of the two curves.

Newman “Networks: An Introduction”
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