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Random Models

Total number of graphs

Q: what is the total number of graphs 
with no loops and multi-edges?
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Random Models
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mean degree in a graph with exactly m edges
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mean degree in a graph with exactly m edges

Taylor series reminder:
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Poisson distribution in random models

c
c
c
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In contrast to the degree distribution in random model, many real network 
degree distributions are different.
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In contrast to the degree distribution in random model, many real network 
degree distributions are different.
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Newman, “Random graphs as models of networks”
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Q: When p=0 then |gc|=1; when p=1 then |gc|=n. What is the difference between them? 

Co-authorship network its largest connected component
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Q: When p=0 then |gc|=1; when p=1 then |gc|=n. Is this transition smooth? Is there a point of transition? 

i does not belong to gc if for 
every node j either

a) there is no edge ij, prob = 

b) there is edge ij but j is not in giant 
component, prob = 

vertices in giant component

1-p

pu
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Newman “Networks, An Introduction”=> Demo in Matlab
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Conclusion: In the limit of large n, the probability of existence 
of two separate giant components goes to zero.
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fraction of nodes in 
giant component

edges in tree
edge prob

the component is still tree
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Kronecker delta
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see Newman’s book, pp 412-413

Average size of the small components in a 
random model does not grow with the 
number of vertices.

Average component size
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Distribution of component sizes
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l = s+t+1
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http://complexnt.blogspot.com
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Generating Functions and Degree Distributions
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Polylogarithm

drawn values add to a specific sum s

http://en.wikipedia.org/wiki/Polylogarithm
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Random Graphs and Configuration Model

Degrees: 1, 1, 2, 2, 3, 3

1. Add n nodes

2. Add initial d(i) stubs to each i

3. Connect stubs iteratively

Problems? Total degree is even; Can create self-loops, multi-edges
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Configuration Model 

Conclusion?

i is connected to l j is connected to l given il

in the limit we can omit -1

Expected number of multi-edges remains constant as network grows.
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Random graphs with given expected degree
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More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an 
edge, of the number of other edges attached to that vertex.

Two academic collaboration networks, in which scientists are connected together by edges if 
they have coauthored scientific papers, and  a snapshot of the structure of the Internet at 
the autonomous system level.

According to these results a biologist’s collaborators have, on average, more than four times 
as many collaborators as they do themselves. On the Internet, a node’s neighbors have more 
than 50 times the average degree! Note that in each of the cases in the table the 
configuration model value of 〈k2〉/〈k〉 overestimates the real average neighbor degree.

M. Newman “Networks”
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More properties of random model

Excess degree distribution is the probability distribution, for a vertex reached by following an 
edge, of the number of other edges attached to that vertex.

Using the excess degree distribution it is easy to compute the clustering  coefficient for 
configuration model

v
i

j
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Generating Functions and Degree Distributions

we add zero term because of infinity
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Number of second neighbors of a vertex

Probability of having k second 
neighbors  given m first neighbors

degree distribution

Prob excess degrees of m first 
neighbors take values j1 , j2, …, jm

all sets of values j1 , j2, …, jm that sum to k

generating function of pk
(2)
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Conclusion: Once we know generating functions of g0 and g1 the generating function of second 
neighbor distribution is straightforward to calculate. Moreover, this can be extended to

Problem: Sometimes it is difficult to extract explicit probabilities for numbers of second 
neighbors and it is hard to evaluate n derivatives (in order to recover the probabilities).
Solution: calculate the average number of neighbors at distance d. At z=1 of the first derivative 
we can evaluate the average of a distribution (see Slide 16).

mean number of 
second neighbors

[MR] A critical point for random graphs with given degree sequence
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Let’s use theory for practical results …
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Newman “Networks: An Introduction”
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