Small-world Phenomena

Name, address, occupation of the target
were known; no sending was allowed

* 18 packages returned back to Boston

* mean path result was just 5.9 steps

* small-world effect was confirmed in
many other experiments

Omaha, NE

S~

<
<_| 96 packages to
random recipients

\\
/7

Bonus observations in the experiment

* most of the packages were received
through 3 target’s friends

* people are good in finding short paths
(later was shown that it is hard to find
shortest path without knowing full ) 4

information)

Similar experiments

* emails: only 384 out of 24K were received/
results confirmed, 4 steps

* Microsoft .NET Messenger Service: 6.6
people




Degree Distributions
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Each node is connected

What if the nEtwork iS IargE? independently with probability

p to n-1 nodes

Classical undirected random graph models G, ,

choose k neigh probability of being
among n-1 connected to exactly k
........... e "'h'éi;cg'h'b'é'fé""'_
n—1 & " P . S When graphs are large then n is
: ( I );;r (1 —p) e (Binomial distribution) assumed to be large, and mean
[ degree is approximately constant ¢
p, is the probability of being T as the network grows. For example,
connected to exactly k nodes when graphs are small the number of your friends does
...................................................... not grow with the population in
the world.

Let p = ¢/(n-1) then we can write

In(1-p)" 1% = (n—1-k)In(1-p) = (n—1-k)In(1--%) =~ —(n—1—k) =<
—c = Taking exponents of both sides (l—p)”_l_k =e ¢
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( k ) — n—1-k)Kl ~ K 50 distribution
T S N R 0 L
= — e = (& = e — Or (&
P o k! n—1 k! k!



Count

Probability

Degree Histogram, |V|=1000, p=0.01

100

50

1 11 22
Degree

Binomial vs Poisson Degree Distributions, |V|=1000, p=0.01

0.10

0.05 -

0.00 -

[—
Ty,
e .

"y

Degree




Degree Distributions
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\S} Po =9, P1 =9, P2 =49, P3 =g, P4 =g

The probability that a randomly
chosen node has degree k

The tail is much longer
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logarithmic scales; bigger range of bins

Inp, = —alnk +cor pp, = Ck™, where C' = e€
typical a € [2, 3] (see handout Table 8.1)

area of possible

fluctuations
Problem of histograms: statistics is poor at the tail of the distribution

Solution I: different sizes of bins



Network Tyvpe 1 m C 5 [ xa C Cws r
Film actors Undirected 449913 25516452 11343 0880 348 23 020 078 0.208
Company directors Undirected 7673 55392 1444 0876 460 - 059 088 0.276
Math coauthorship Undirected 253339 4964589 392 o822 757 - 015 .34 0.120
Physics coauthorship  Undirected 52908 245300 9.27 0838 619 - 045 056 0.363
= Biology coauthorship  Undirected 1520251 11803064 1553 0918 492 - (0088 0.60 0.127
_§ Telephone call graph Undirected 47 000000 80 000 DO .16 2.1
Email messages Dhirected 59812 86300 1.4 0952 495 15/20 0.16
Email address books  Directed 16851 57 02% 335 0590 522 - (17 013 0.092
Student dating Undirected 573 477 1L.66 0503 1601 - 05 0001 -0.029
Sexual contacts Undirected 2810 3.2
c WWWnd.edu Directed 269 504 1497135 555 LoO0 1127 21/24 011 029 —0.067
.::lc: WWW AltaVista Directed 203549046 1466 000000 720 0414 1618 21727
g Citation network Drirected 783339 6716198 8.57 3.0/-
% Roget's Thesaurus Directed 1022 5103 499 0977 457 - @13 015 0.157
= Word co-occurrence Undirected 460902 16100000 669  1.000 27 044
Internet Undirected 10697 31992 595 Lo 331 25 0B85 039 —(.189
E Powergrid Undirected 4941 6594 267  LOOD 1899 - (10 0080 -0.003
Eo Train routes Undirected 587 19603 6679 LOOD 216 - 0.69 -0.032
E Software packages Dhirected 1439 1723 .20 0998 242 1L6/14 Q070 0082 0016
= Software classes Drirected 1376 2213 1.6 1000 540 - (B3 0012 -011%
£ Eleetronic cireuits Undirected 24097 53248 43  L0OD 1105 3o 0010 0030 0154
Peer-to-peer network  Undirected B840 1296 147 0805 428 21 0012 0011 0366
Metabolic network Undirected 765 3666 964 0996 256 22 0090 067 -0.240
-E Protein interactions Undirected 2115 2240 212 0688 680 24 0072 0071 0156
_% Marine food web Dhirected 134 598 446 10O 205 - @16 023 -0263
§ Freshwater food web Dhirected 92 997 1064 LOOD 150 - 020 00687 -0.326
Newral network Dhrected 307 2359 7.68 0957 397 - (18 028 ~0.226

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total number of
vertices n; total number of edges m; mean degree c; fraction of vertices in the largest component S (or the largest weakly connected component in
the case of a directed network); mean geodesic distance between connected vertex pairs {; exponent a of the degree distribution if the distribution
follows a power law (or “-” if not; infout-degree exponents are given for directed graphs); clustering coefficient C from Eq. (7.41); clustering
coefficient Cyyg from the alternative definition of Eq. (7.44); and the degree correlation coefficient r from Eq. (7.82). The last column gives the

citation(s) for each network in the bibliography. Blank entries indicate unavailable data.



Power Laws: Logarithmic Binning

* Bin 1 covers degrees in [1,2)
* Bin 2 covers degrees in [2, 4)
* Bin 3 covers degrees in [4, 8)

Width of bins can vary

Fraction p, of vertices baving degree &
=

1 10 10¢ 1000

Degree &

Figure 8.6: Histogram of the degree distribution if the Internet, created using loga-
rithmic binning. In this histogram the widths of the bins are constant on a logarithmic
scale, meaning that on a linear scale each bin is wider by a constant factor than the one
to its left. The counts in the bins are normalized by dividing by bin width to make
counts in different bins comparable.



Cumulative Distribution

Probability at a random vertex has degree k or greater
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Let pi follows a power law in its tail, i.e., : a
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—1 Figure 8.7: Cumulative distribution function for the degrees of vertices on the Inter-
d ( Z) net. For a distribution with a power-law tail, as is approximately the case for the degree
o = 1 _|_ N ln distribution of the Internet, the cumulative distribution function, Eq. (8.4), also follows
. 1 /2 a power law, but with a slope 1 less than that of the original distribution.
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Newman “Networks, an Introduction”
Advantages:

* no bins

* easy calculation

* can be plotted as normal function at log-log scale

* binning loses the information; cumulative distribution preserves everything

Disadvantages

* less easy to interpret than histograms

* successive points are correlated



Cumulative Distribution

Cumulative distribution function

10 10 0> 10’
In-degree Out-degree In-degree
(a) World Wide Web (b) World Wide Web (¢) Citation

Figure 8.8: Cumulative distribution functions for in- and out-degrees in directed networks. (a) The in-degree dis-
tribution of the World Wide Web, from the data of Broder et al. [56]. (b) The out-degree distribution for the same Web
data set. (c) The in-degree distribution of a citation network, from the data of Redner [280]. The distributions follow
approximate power-law forms in each case.

From Newman “Networks, an Introduction”



Power Laws

More examples: city populations, moon craters, solar flares, computer files, words
frequencies in human languages, hits on web pages, publications per scientist, book sales, ...

Normalization: we have to find C such that >~ pr =1
After eliminating k£ = 0

1 1 k=«
C' = —== = ,l.e., pp = , where pg =0
D e k@ ¢(a) ()

\

—_ ( /\ L \ Riemann zeta function
f(g)‘ ﬂ/ \ P—S

= 1S P i\ W\f_
However, pure power-law behavior is not perfect for real-world networks

Normalization over the tail: incomplete Riemann

.0 J—o zeta function

Pr = oo =
Zkz:k:min k=2 C(aa kmin) /

or if we approximate it then C' ~ 1/ (fkoo k‘%lk) = (a — 1)k

min min




Moments: The mth moment of the distribution is defined as

mln

kapk— Z K" pi + C Z K™k

k kmln

if power law begins with some k.,

mth moment exists (finite) when o > m + 1 (integrate the second term)

Remark: This estimate works for arbitrarily large network with the same power
law distribution. For finite network (k™) = £ 3. .. d(i)™



Another interesting question is where the majority of the dis-
tribution of x lies. For any power law with exponent o« > 1, the
median is well defined. That is, there is a point x1 that divides the

distribution in half so that half the measured Vah21es of x lie above
1 and half lie below.

pla) de =

v Iq/2 v Lmin

plax) du.

B | =

Point that divides distribution in two halves

. _ 9l/(a=1) |
L1/2 — 2™ Lmin-

Further reading: Newman “Power laws, Pareto distributions and Zipf’s law”



Top-heavy distributions or 80/20 rule: how many edges are

connected to the highest degree vertices?
-

A fraction of edges attached to
the highest degree vertices

|

W = pla=2)/(a—1)
!

A fraction of highest
degree vertices

fraction of wealth W

T T T T T T | T T T | T T T | T T T |
0 0.2 0.4 0.6 0.8 |

fraction of population P

Example 1: According to various estimations, 50-60% of the incoming links point to 1% of
the “reach” nodes.

Example 2: In scientific citation networks, about 8% of papers are cited by more than 50%
of all papers.

Further reading: Newman “Power laws, Pareto distributions and Zipf’s law”



Fraction of vertices having centrality x or greater
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Cumulative distributions for Internet nodes
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Closeness centrality

Noncumulative histogram for Internet nodes

An exception to this pattern is the closeness centrality,
which is the mean of distances from a vertex to all other
reachable vertices. The values of the closeness centrality are
typically limited to a rather small range from a lower bound
of 1 to an upper bound of order log n, and this means that
their distribution cannot have a long tail.



Homework: paper review + computational part
Submit by 10/8/2020

1. (20%) Newman “Power laws, Pareto distributions and Zipf's law”
2. (80%) Computational part
* Download network “as-22july06” from the Sparse matrix
collection
* Plot the degree distribution histogram
* Plot the cumulative degree distribution function
 Compute power law parameters C, and o



Clustering Coefficient and Transitivity

A triangle is a complete subgraph of G with 3 vertices.
A(G) = number of triangles in G; A\(v) is defined accordingly; A(G) = = > A(v)
M e-i-1g fapretlsassudugfdpirot i witd s noded afla-z cuges.

A triple is a triple at v if v incident with both edges.

o) = (1)) = F @) = Yow)

v

We define clustering coefficient as c(v) = A(v)/7(v).

- coefficient of G as Given V' = {v € V|d(v) > 2} we define the clustering

) 0@ =5 Y e

veV/

Transitivity of G is defined as




Clustering Coefficient and Transitivity

Fig. 11.2. On the left: Graph with clustering coefficients: c¢(a) = ¢(¢) = 2/3, ¢(b) =
cld) =1, C(G) = %(2 +4/3) == 0.83 and transitivity 17'(G) = 3-2/8 = 0.75. On the
right: family of graphs where 7'() — 0, C'(G) — 1 for n — oo.



Clustering Coefficient and Transitivity

Transitivity by Bollobas and Riordan

Z’UEV’ T(U)C(U)
>_weyr T(V)

e If all nodes have the same degree then C(G) = T(G)

T(G) =

e If all clustering coefficients are equal then C(G) = T(G)



Computing Clustering Coefficient

Computing cc = computing triples (trivial, how?) + computing triangles
Computing triangles = O(nd,,2) — trivial, O(n?37¢) — mat-mat multiplication

Approximation for very large networks

X; € [0, M] is a random independent and identically distributed variable; k is
number of samples; € is error bound

Hoeftding inequality

_2ke2
Pr ( = (—) < e M2

Lemma: If we consider the constant error bound then there exist algorithms
that approximate the clustering coefficients for each node c¢(v) and the transi-
tivity T(G) in time O(n). The clustering coefficient C(G) can be approximated
in time in O(1).

1 k
kZX"]

1=1

1 I8
EZXE:—E

=1

Homework: “Approximating clustering-coefficient and transitivity”
(submit review by 10/13/2019)
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