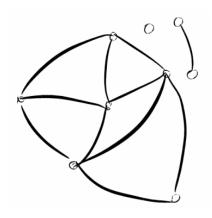


Degree Distributions



$$p_0 = \frac{1}{9}, \ p_1 = \frac{2}{9}, \ p_2 = \frac{1}{9}, \ p_3 = \frac{2}{9}, \ p_4 = \frac{3}{9}$$

The probability that randomly chosen node has degree *k*

Each node is connected independently with probability *p* to *n*-1 nodes

Classical undirected random graph models $G_{n,p}$

choose *k* neigh among *n-1*

probability of being connected to exactly k

neighbors

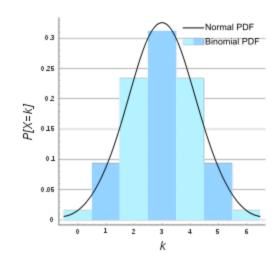
$$\binom{n-1}{k} p^k (1-p)^{n-1-k}$$

The probability of being connected to exactly *k* nodes

(Binomial distribution)

when graphs are small

when graphs are large (n is assumed to be large, mean degree is approximately constant as the network grows) $\frac{(np)^k}{l!}e^{-np} \qquad \text{(Poisson distribution)}$



What if the network is large?

Each node is connected independently with probability p to n-1 nodes

Classical undirected random graph models $G_{n,n}$

choose *k* neigh probability of being among *n-1* connected to exactly k neighbors $\binom{n-1}{k} p^k (1-p)^{n-1-k}$

 p_k is the probability of being connected to exactly k nodes (Binomial distribution)

when graphs are small

When **graphs** are large then *n* is assumed to be large, and mean degree is approximately constant c as the network grows. For example, the number of your friends does not grow with the population in the world.

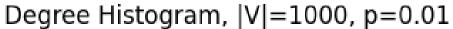
Let p = c/(n-1) then we can write

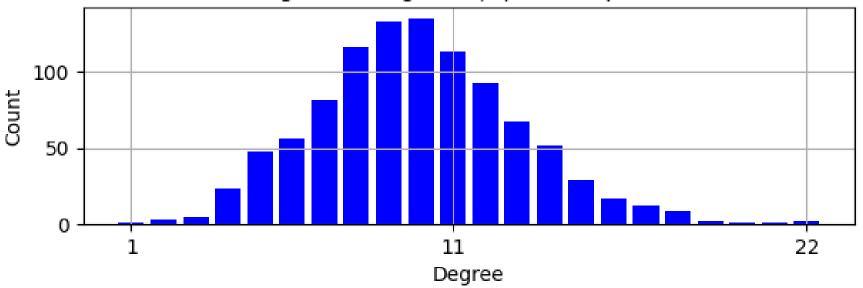
$$\ln(1-p)^{n-1-k} = (n-1-k)\ln(1-p) = (n-1-k)\ln(1-\frac{c}{n-1}) \approx -(n-1-k)\frac{c}{n-1} \approx -c \Rightarrow \text{ Taking exponents of both sides } (1-p)^{n-1-k} = e^{-c}$$

Also
$$\binom{n-1}{k} = \frac{(n-1)!}{(n-1-k)!k!} \approx \frac{(n-1)^k}{k!}$$
, so

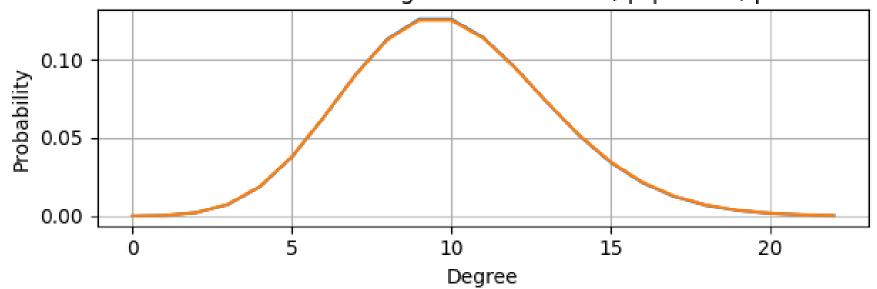
Poisson distribution

$$p_k = \frac{(n-1)^k}{k!} p^k e^{-c} = \frac{(n-1)^k}{k!} \left(\frac{c}{n-1}\right)^k e^{-c} = e^{-c} \frac{c^k}{k!} \text{ or } \frac{(np)^k}{k!} e^{-np}$$

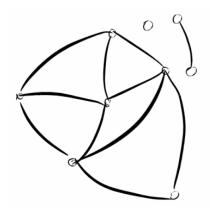




Binomial vs Poisson Degree Distributions, |V|=1000, p=0.01

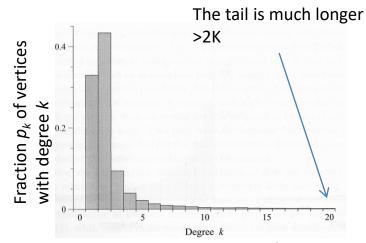


Degree Distributions

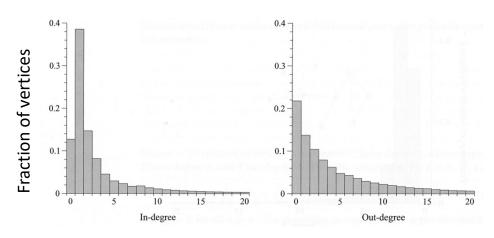


$$p_0 = \frac{1}{9}, \ p_1 = \frac{2}{9}, \ p_2 = \frac{1}{9}, \ p_3 = \frac{2}{9}, \ p_4 = \frac{3}{9}$$

The probability that a randomly chosen node has degree *k*

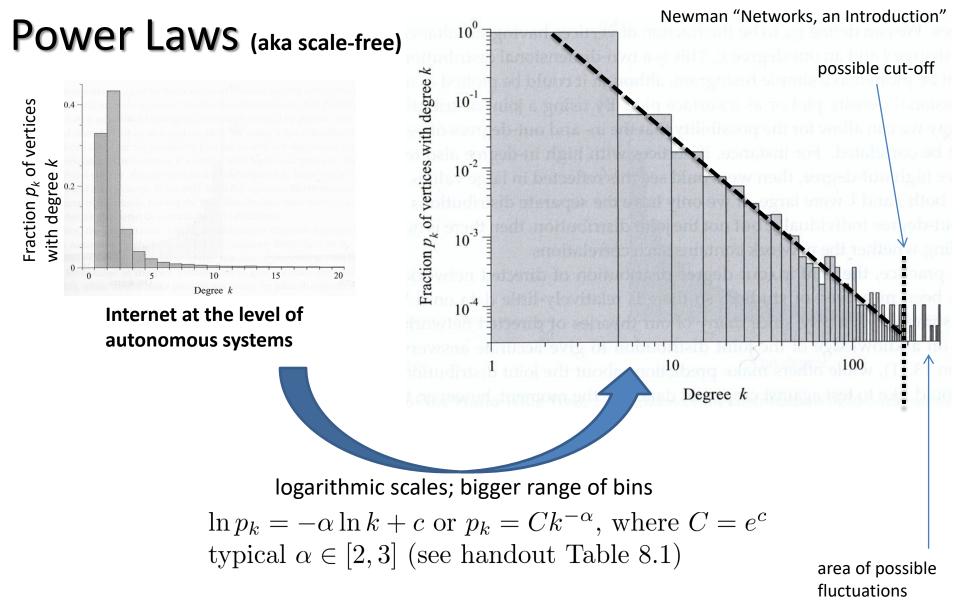


Internet at the level of autonomous systems



World Wide Web

Newman "Networks, an Introduction"



Problem of histograms: statistics is poor at the tail of the distribution

Solution I: different sizes of bins

	Network	Туре	n	#1	с	S	e	α	С	Cws	r
	Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20	0.78	0.208
	Company directors	Undirected	7 673	55392	14.44	0.876	4.60	-	0.59	0.88	0.276
	Math coauthorship	Undirected	253 339	496489	3.92	0.822	7.57	=	0.15	0.34	0.120
Social	Physics coauthorship	Undirected	52.909	245 300	9.27	0.838	6.19	==	0.45	0.56	0.363
	Biology coauthorship	Undirected	1520251	11 803 064	15.53	0.918	4.92	_	0.088	0.60	0.127
	Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1			
	Email messages	Directed	59812	86300	1.44	0.952	4.95	1.5/2.0		0.16	
	Email address books	Directed	16881	57 029	3.38	0.590	5.22		0.17	0.13	0.092
	Student dating	Undirected	573	477	1.66	0.503	16.01	-	0.005	0.001	-0.029
	Sexual contacts	Undirected	2810					3.2			
Information	WWW nd.edu	Directed	269 504	1497135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.067
	WWW AltaVista	Directed	203 549 046	1466 000 000	7.20	0.914	16.18	2.1/2.7			
	Citation network	Directed	783 339	6716198	8.57			3.0/-			
	Roget's Thesaurus	Directed	1022	5 103	4.99	0.977	4.87		0.13	0.15	0.157
	Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7		0.44	
Technological	Internet	Undirected	10697	31 992	5.98	1.000	3.31	2.5	0.035	0.39	-0.189
	Power grid	Undirected	4941	6594	2.67	1.000	18.99		0.10	0.080	-0.003
	Train routes	Undirected	587	19603	66.79	1.000	2.16			0.69	-0.033
	Software packages	Directed	1439	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.016
	Software classes	Directed	1376	2213	1.61	1.000	5,40		0.033	0.012	-0.119
	Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3.0	0.010	0.030	-0.154
	Peer-to-peer network	Undirected	880	1296	1.47	0.805	4.28	2.1	0.012	0.011	-0.366
Biological	Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.240
	Protein interactions	Undirected	2115	2240	2.12	0.689	6.80	2.4	0.072	0.071	-0.156
	Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.263
	Freshwater food web	Directed	92	997	10.84	1.000	1.90	_	0.20	0.087	-0.326
	Neural network	Directed	307	2359	7.68	0.967	3.97		0.18	0.28	-0.226

Table 8.1: Basic statistics for a number of networks. The properties measured are: type of network, directed or undirected; total number of vertices n; total number of edges m; mean degree c; fraction of vertices in the largest component S (or the largest weakly connected component in the case of a directed network); mean geodesic distance between connected vertex pairs ℓ ; exponent α of the degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient C from Eq. (7.41); clustering coefficient C from the alternative definition of Eq. (7.44); and the degree correlation coefficient C from Eq. (7.82). The last column gives the citation(s) for each network in the bibliography. Blank entries indicate unavailable data.

Power Laws: Logarithmic Binning

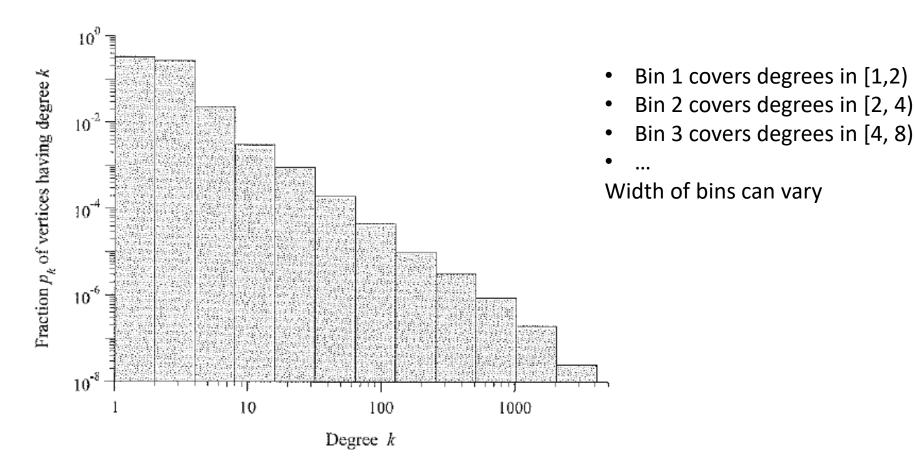


Figure 8.6: Histogram of the degree distribution if the Internet, created using logarithmic binning. In this histogram the widths of the bins are constant on a logarithmic scale, meaning that on a linear scale each bin is wider by a constant factor than the one to its left. The counts in the bins are normalized by dividing by bin width to make counts in different bins comparable.

Cumulative Distribution

Probability at a random vertex has degree k or greater

$$P_k = \sum_{k'=k}^{\infty} p_{k'}$$

Let p_k follows a power law in its tail, i.e., $p_k = Ck^{-\alpha}$ for $k \ge k_{\min}$. Then

$$P_k = C \sum_{k'=k}^{\infty} k'^{-\alpha}$$

$$\approx C \int_{k}^{\infty} k'^{-\alpha} dk' = \frac{C}{\alpha - 1} k^{-(\alpha - 1)}$$

$$\alpha = 1 + N \left(\sum_{i} \ln \frac{d(i)}{k_{\min} - 1/2} \right)^{-1}$$

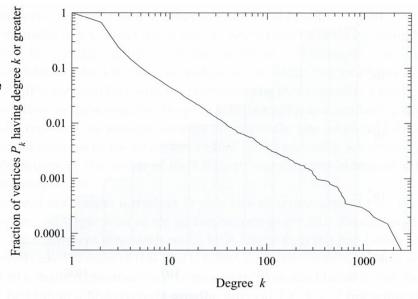


Figure 8.7: Cumulative distribution function for the degrees of vertices on the Internet. For a distribution with a power-law tail, as is approximately the case for the degree distribution of the Internet, the cumulative distribution function, Eq. (8.4), also follows a power law, but with a slope 1 less than that of the original distribution.

Newman "Networks, an Introduction"

Advantages:

- no bins
- easy calculation
- can be plotted as normal function at log-log scale
- binning loses the information; cumulative distribution preserves everything

Disadvantages

- less easy to interpret than histograms
- successive points are correlated

Cumulative Distribution

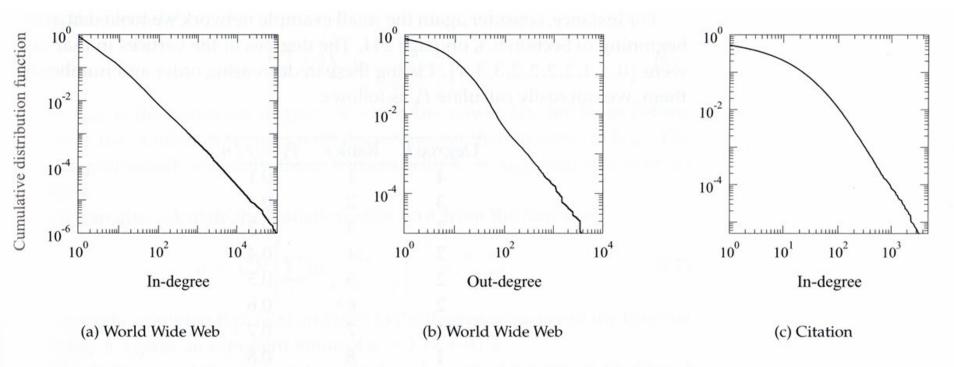


Figure 8.8: Cumulative distribution functions for in- and out-degrees in directed networks. (a) The in-degree distribution of the World Wide Web, from the data of Broder *et al.* [56]. (b) The out-degree distribution for the same Web data set. (c) The in-degree distribution of a citation network, from the data of Redner [280]. The distributions follow approximate power-law forms in each case.

From Newman "Networks, an Introduction"

Power Laws

More examples: city populations, moon craters, solar flares, computer files, words frequencies in human languages, hits on web pages, publications per scientist, book sales, ...

Normalization: we have to find C such that $\sum_{k=0}^{\infty} p_k = 1$ After eliminating k = 0

$$C = \frac{1}{\sum_{k=1}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha)}, \text{ i.e., } p_k = \frac{k^{-\alpha}}{\zeta(\alpha)}, \text{ where } p_0 = 0$$

$$\frac{1}{\zeta(s)} = \frac{1}{\zeta(s)} \left(1 - \frac{1}{\rho - s}\right)$$
Riemann zeta function

However, pure power-law behavior is not perfect for real-world networks

Normalization over the tail:

incomplete Riemann zeta function

$$p_k = \frac{k^{\alpha}}{\sum_{k=k_{\min}}^{\infty} k^{-\alpha}} = \frac{k^{-\alpha}}{\zeta(\alpha, k_{\min})}$$

or if we approximate it then
$$C \approx 1/\left(\int_{k_{\min}}^{\infty} k^{-\alpha} dk\right) = (\alpha - 1)k_{\min}^{\alpha - 1}$$

Moments: The mth moment of the distribution is defined as

$$\langle k^m \rangle = \sum_{k=0}^{\infty} k^m p_k = \sum_{k=0}^{k_{\min}-1} k^m p_k + C \sum_{k=k_{\min}}^{\infty} k^m k^{-\alpha}$$

if power law begins with some k_{min}

mth moment exists (finite) when $\alpha > m+1$ (integrate the second term)

Remark: This estimate works for arbitrarily large network with the same power law distribution. For finite network $\langle k^m \rangle = \frac{1}{n} \sum_{i \in V} d(i)^m$

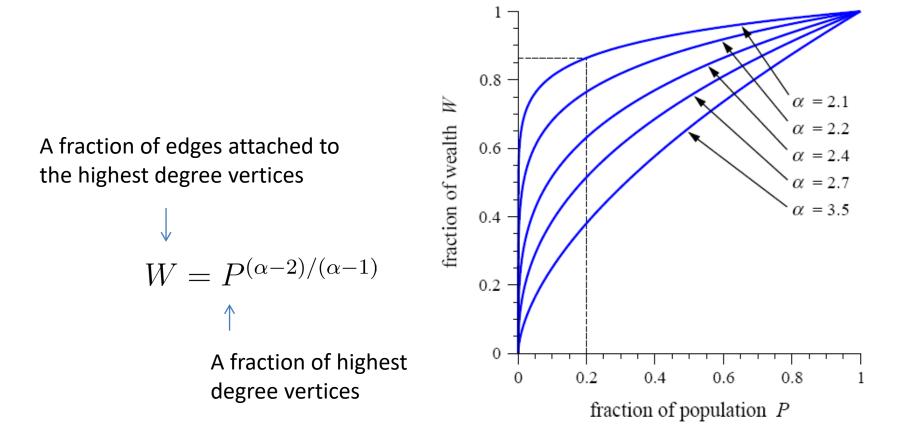
Another interesting question is where the majority of the distribution of x lies. For any power law with exponent $\alpha > 1$, the median is well defined. That is, there is a point $x_{\frac{1}{2}}$ that divides the distribution in half so that half the measured values of x lie above $x_{\frac{1}{2}}$ and half lie below.

$$\int_{x_{1/2}}^{\infty} p(x) dx = \frac{1}{2} \int_{x_{\min}}^{\infty} p(x) dx,$$

Point that divides distribution in two halves

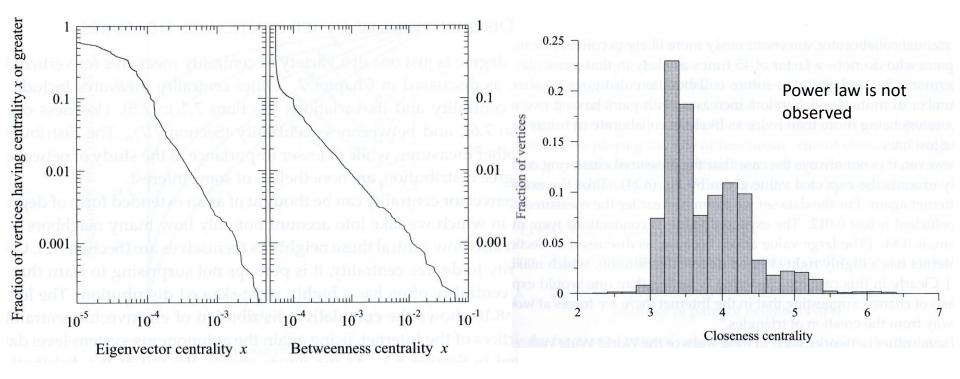
$$x_{1/2} = 2^{1/(\alpha - 1)} x_{\min}.$$

Top-heavy distributions or 80/20 rule: how many edges are connected to the highest degree vertices?



Example 1: According to various estimations, 50-60% of the incoming links point to 1% of the "reach" nodes.

Example 2: In scientific citation networks, about 8% of papers are cited by more than 50% of all papers.



Cumulative distributions for Internet nodes

Noncumulative histogram for Internet nodes

An exception to this pattern is the closeness centrality, which is the mean of distances from a vertex to all other reachable vertices. The values of the closeness centrality are typically limited to a rather small range from a lower bound of 1 to an upper bound of order $\log n$, and this means that their distribution cannot have a long tail.

Homework: paper review + computational part Submit by 10/8/2020

- 1. (20%) Newman "Power laws, Pareto distributions and Zipf's law"
- 2. (80%) Computational part
 - Download network "as-22july06" from the Sparse matrix collection
 - Plot the degree distribution histogram
 - Plot the cumulative degree distribution function
 - Compute power law parameters $\it C$, and $\it lpha$

Clustering Coefficient and Transitivity

A triangle is a complete subgraph of G with 3 vertices.

$$\lambda(G)$$
 = number of triangles in G ; $\lambda(v)$ is defined accordingly; $\lambda(G) = \frac{1}{3} \sum_{v} \lambda(v)$
A triple imperismental function with model and a euges.

A triple is a *triple at v* if v incident with both edges.

$$\tau(v) = {d(v) \choose 2} = {d^2(v) - d(v) \over 2}, \ \tau(G) = \sum_{v} \tau(v)$$

We define clustering coefficient as $c(v) = \lambda(v)/\tau(v)$.

; coefficient of G as

Given
$$V' = \{v \in V | d(v) \ge 2\}$$
 we define the clustering

$$C(\overset{\mathbf{1}}{G}) = \frac{\mathbf{1}}{V'} \sum_{v \in V'} c \mathbf{1}$$

Transitivity of G is defined as

$$(G) = \frac{3\lambda(G)}{\tau(G)}$$

Clustering Coefficient and Transitivity

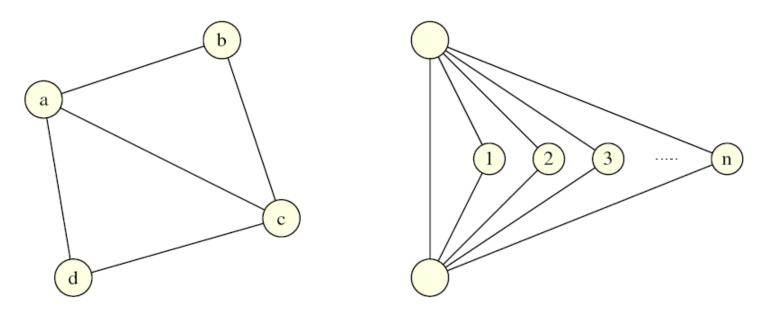


Fig. 11.2. On the left: Graph with clustering coefficients: c(a) = c(c) = 2/3, c(b) = c(d) = 1, $C(G) = \frac{1}{4}(2+4/3) \approx 0.83$ and transitivity $T(G) = 3 \cdot 2/8 = 0.75$. On the right: family of graphs where $T(G) \to 0$, $C(G) \to 1$ for $n \to \infty$.

Clustering Coefficient and Transitivity

Transitivity by Bollobas and Riordan

$$T(G) = \frac{\sum_{v \in V'} \tau(v)c(v)}{\sum_{v \in V'} \tau(v)}$$

- If all nodes have the same degree then C(G) = T(G)
- If all clustering coefficients are equal then C(G) = T(G)

Computing Clustering Coefficient

Computing cc = computing triples (trivial, how?) + computing triangles Computing triangles = $O(nd_{max}^2)$ – trivial, $O(n^{2.376})$ – mat-mat multiplication

Approximation for very large networks

 $X_i \in [0, M]$ is a random independent and identically distributed variable; k is number of samples; ϵ is error bound

Hoeffding inequality

$$\Pr\left(\left|\frac{1}{k}\sum_{i=1}^{k}X_{i} - \mathbb{E}\left[\frac{1}{k}\sum_{i=1}^{k}X_{i}\right]\right| \geq \epsilon\right) \leq e^{\frac{-2k\epsilon^{2}}{M^{2}}}$$

Lemma: If we consider the constant error bound then there exist algorithms that approximate the clustering coefficients for each node c(v) and the transitivity T(G) in time O(n). The clustering coefficient C(G) can be approximated in time in O(1).

Homework: "Approximating clustering-coefficient and transitivity" (submit review by 10/13/2019)