Simil arit|es For example, imagine a simple movie database with
three sets of elements (or tables), people, movie, and
movie_category, and two relationships has_watched,
between people and movie, and belongs_to, between
movie and movie_category.

has watched

movies

belongs to

Y -

Computing similarities between people allows us to
cluster them into groups with similar interest about
watched movies.

Computing similarities between people and movies
allows us to suggest movies to watch or not to
watch.

Computing similarities between people and movie
categories allows us to attach a most relevant
category to each person.

categories

[FPRS] Random-walk based similarities



Similarities
HDN: Each node corresponds to a distinct
disorder, colored based on the disorder
class. The size of each node is proportional
to the number of genes participating in
the corresponding disorder, and the link

thickness is proportional to the number of
genes shared by the disorders it connects.

DGN: each node is a gene, with two genes
being connected if they are implicated in
the same disorder. The size of each node is
proportional to the number of disorders in
which the gene is implicated. Nodes are
light gray if the corresponding genes are
associated with more than one disorder
class. Only nodes with at least one link are
shown.

Goh et al. “Human Disease Network”, PNAS, 2007
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Classes of Similarities

Q: In what ways can vertices in a network be similar and how can we
quantify this similarity?

Similarity between vertices

L> Structural equivalence i and j share many of the same network neighbors

—> Regular equivalence i and j do not necessarily share neighbors but have
neighbors who are themselves similar

Structural Regular



Structural Equivalence

e Number of common neighbors, i.e., n;; = >, A;xAx; = ijth element of A?

Problem: Simple count of common neighbors for two vertices is not on its own a
very good measure of similarity. If two vertices have 3 common neighbors is that
a lot or a little? It’s hard to tell unless we know, for instance, what the degrees of
the vertices are, or how many common neighbors other pairs of vertices share.

Solution: adding some sort of normalization



Structural Equivalence

e Number of common neighbors, i.e., n;; = >, Ay Ax; = ijth element of A?

e Cosine similarity
2 AiAri

VR A2 AR J)

degrees of i and j

0;; = cosb =



Structural Equivalence

e Number of common neighbors, i.e., n;; = >, Ay Ax; = ijth element of A?

e Cosine similarity

D Aik Ak

VA3, A7, VA

oij = cosf = € [0, 1]

e Pearson coefficients d(1)d(5)
t)aij
> ApAj - ———=
n
k \
=expected number of
common neighbors

Given i and j, how many common neighbors should we expect them to have in random model?
Imagine that vertex i chooses dfi) neighbors uniformly at random, and vertex j similarly
chooses d(j) neighbors at random. For the first neighbor that j chooses there is a probability of
d(i)/n that it will choose one of the dfi), and similarly for each succeeding choice. (We neglect
the possibility of choosing the same neighbor twice, since it is small for a large network.) Then
in total the expected number of common neighbors between the two vertices will be d(i)d(j)/n.



Structural Equivalence

e Number of common neighbors, i.e., n;; = >, A;pAx; = ijth element of A?

e Cosine similarity

Zk k<lkj T E[O,l]

VS AT Ay VDD

045 = cosf =

(Ai) = %Zk Aik

e Pearson coefficients

D ApA; du) _ > AnAgy - % > Ay Ay
k k k l
-~ Z AiAji = (A (Ag) = [Aw Ak — (Ai)(45)]

k
zexpected number of _ o — (AN =n - A A
common neighbors Z g Aj <‘7)) - cov(4; j)
cov(Ai, Aj) Zk( ik — (Ai))(Ajr — (4;))

_1§Tij§1

Ti; = = y
! 0i0} V2 (Aik = (Ai))2/ 2o (Aje — (45))?
e Euclidean distance (number of neighbors that differ) d;; = >, (Air—Ajx)?



Regular Equivalence

The vertices have neighbors that are themselves similar

o= adAdcA or 0ij = Q& ZAikAjlo-kl - k-1 similarity
/ kl

Problem: o;; is not necessarily high
Solution: extra diagonal term

similarity matrix

o=oaAcA -+ I or 0ij = ZAikAjlakl - Cij
kl

Still problem: in iterative calculation (init 0) we count only even paths
New formulation: 7 and j are similar if ¢+ has a neighbor k£ that is similar to j

o = aAa+I or 0;; = OézAikO'kj +C’ij
k

Convergence: 0 =Y~ (aA)™ = (I — aA)™!

m=0



Another problem: too high similarity for high-degree nodes which is not neces-
sarily true

Solution: divide by d(7)

o)
oc=aD Ao+ I or Oij = m Z/L;kakj + Gij
k

mmm) PDF: Algebraic Distance



Random walk based similarities
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Random walk based similarities

The Markov chain (¢ - step, s(t) - state at t) describing the se-
quence of nodes visited by a random walker is called a random
walk. The random walk is defined with the following single-step
transition probabilities of jumping from any state or node ¢ = s(t)
to an adjacent node

J=st+1): Pr(s(t+1) =j|s(t) =1) = a;j/a; = pyj,

where a;; = 2?21 a;;. The probability of being in state ¢ at time ¢
is m;(t) = Pr(s(t) = 1) and P is the transition matrix with entries
pij. The evolution of Markov chain is given by

m(t+1) = P'r(t)
people .

. . 4
similar /




Random walk based similarities

The average first-passage time m(k|7) is the average number of steps

that a random walker, starting in (random) state ¢ # k, will take to
enter state k for the first time, i.e.,

m(kl|i) = E[T;;|s(0) = i], where Ty, = min(¢t > 0|s(t) = k, s(0) = ).

m(klk) =0
m(kl|i) =1+ > piym(klj), fori#k,

j=1

. . /
similar #




Random walk based similarities

The average first-passage cost o(k|i) is the average cost incurred by
the random walker starting from state ¢ to reach state k£ for the first
time. The cost of each transition is given by c(j|7).

o(klk) = ['l
o(k|i) = Z pijcljli) + ‘Z pijolklj), fori# k.

I_';I‘_

/
similar ~




Random walk based similarities

The average commute time n(i, j) is the average number of steps that a random
walker, starting in state ¢ # j, will take to enter state j for the first time and
go back to i, i.e.,

n(i, j) = m(jli) +m(ilf).

has watched

people .
“.\
' - \ \\\

movies

. /
similar #
’

belongs to

categories

Paper review 4: “Random-Walk Computation of Similarities
between Nodes of a Graph with Application to Collaborative Recommendation”
Submit by 9/26/2019

[FPRS] Random-walk based similarities



Homophily and Assortative Mixing

- the tendency of individuals to associate and bond Newman “Networks: An Introduction
with similar others.

Examples: social networks, citation networks, web
pages languages, animals

Disassortative Mixing — opposite to assortative
Example: sexual contact networks

c; - type of vertex 7, §(i, j) - Kronecker delta

q4=3 Zij AZJ5(CM CJ) ) Zij <m 5(019 CJ) y 2o
/ expected number of edges Friendship network at a US high

total number of edges between similar vertices in school. 470 students, 14-18 yo

between similar vertices random model Q =0.305

Q = q/m is called modularity.

Modularity is a measure of the extent to which like is
connected to like in a network.



Homophily and Assortative Mixing

c; - type of vertex 7, §(i, j) - Kronecker delta

q = % Zij Aij5(ci7 Cj) - % Zij d(gi(J)é(Cia Cj)

/ expected number of edges
total number of edges between similar vertices in
between similar vertices

random model

or assortativity coefficient

Q = q/m is called modularity. L
d(z)d
Qmax = 5,7 (2m — 3, (Z) (3)5(01, ¢;)), normalized modularity is Q/Qmax
1 1
LofEdges representatlon. €rs = g 2_i; 0(Ci,7)0(cj,8), ar = 523, d(1)0(c;, )
— 2

LofEdges: nodes may fraction of edges fraction of ends of edges

have types but no info between classes rand s attached to vertices of

about degrees classr

Maximization of the modularity is a well-known clustering approach



Assortative Mixing and Scalar Characteristics

Newman “Networks: An Introduction”

values come |n a particular order

In practice, the number of classes will be limited.
Reasons: complexity, bins, etc.
Example: school friends, age x age

Problem: vertices falling in different bins are
different when in fact they may be similar
(10.9yo=11yo)

If x; and z; are scalars (instead of ¢; and ¢; then define
Zw Aij(zi—p)(z;—p)

cov(x;, x;) = S, :
where mean p = EE ;f: =1/2m > . d(i)x;
— ... = cov(z;, 1) = 5= i (Aij — %)aziasj.

Assortative Coefficient
covariance

S (A — d@)dG) 2m)aia; <
Zzg(d(?’)(sw o d(z)d(])/Qm)xsz <— variance

1 — perfectly assortative network; -1 - perfectly disassortative network

T =



Example: Assortative Mixing by Degree

A special case of assortative mixing according to a scalar quantity, is that of mixing by degree.
In a network that shows assortative mixing by degree the high-degree vertices will be
preferentially connected to other high-degree vertices, and the low to low.

cou(d(i), d(j)) = 24 ., (Ass

" D8, =A@ A 2md D)

224, (Aij—d(@)d(y)/2m)d(i)d(3)

networlk

_d(@)d(j)

S ) d(i)d()

n r
physics coauthorship™ 52909 0.363

1 | biology coauthorship® 1520251 0.127
5 | mathematics coauthorship® 253 339 0.120

E | film actor collaborations® 449913 0.208
= company directors? 7673 0.276

= [ Internet® 10697 —0.189
2 | World-Wide Webf 269 504 —0.065

— | protein interactions® 2115 —0.156
£ | neural network” 307 —0.163

food web' 02 —0.276

n | random graph" 0
%: Callaway et al.” d/(14 24)
2 | Barabasi and Albert™ 0

TABLE I: Size n and assortativity coefficient r for a num-
ber of different networks: collaboration networks of (a) sci-
entists in physics and biology [16], (b) mathematicians [17],
(c) film actors [4], and (d) businesspeople [18]: (e) connections
between autonomous systems on the Internet [19]: (f) undi-
rected hyperlinks between Web pages in a single domain [6];
(g) protein-protein interaction network in yeast [20]; (h) undi-
rected (and unweighted) synaptic connections in the neu-
ral network of the nematode C. Elegans [4]; (i) undirected
trophic relations in the food web of Little Rock Lake, Wis-
consin [21]. The last three lines give analytic results for model
networks in the limit of large network size: (u) the random
graph of Erdds and Rényi [22]: (v) the grown graph model of
Callaway et al. [15]; (w) the preferential attachment model of
Barabasi and Albert [6].

Newman “Assortative mixing in networks”



Example: Assortative MIXIng by Degree Estrada et al. “Clumpiness” mixing in complex networks

The network illustrated in Figure (a) corresponds to the inmates in a
prison and that in Figure (b) to the food web. Both networks are
almost of the same size, and both display uniform degree distributions
and have almost identical assortativity coefficient, r = 0.103 and 0.118,
respectively. However, while in the prison network the high-degree
nodes are spread across the network, they are clumped together in
the food web. This difference can have dramatic implications for the
structure and functioning of these two systems.

a)

b)

Disassortative networks. We can also find that the high-degree nodes
can be separated by only two links with a low-degree node acting as a
bridge or by very long paths. This situation is illustrated in sexual
network in Colorado Springs (a) and the transcription interaction
network of E. coli (b), which have almost equal negative assortative
coefficients. In the former case the high-degree nodes are separated
by very long chains while in the latter case most of the high-degree
nodes are clumped together separated by only two or three links.



Simple Modularity Maximization

Iterative Algorithm (inspired by Kernighan-Lin algorithm for partitioning problem)

1. Choose initial division of a network into (equally sized) groups

2. Main sweep: repeatedly move the vertices that most increase or least decrease Q
3. Return to step 2 until Q no longer improves

Complexity of Step 2: O(mn)
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Newman “Networks: An Introduction”



Spectral Modularity Maximization

d(i)d(j
Q=5 2ij (Aij - %) o(ciscj) = 5 2_ij Bijo(cis ¢5)
Note that B;; has the property

e
D Bij=) A ngd(j) =0
J J J

5;8;+1

Denote by s; the indicator variable 4-1/-1 for cluster number, i.e., 6(c;, ¢;) = =3
| modularity matrix

1
TR T

m

Method: relax integer constraint for s with reals and s’s =n
Solve maximization problem by using Lagrange multiplier eigenproblem

0 /
o ZBijjSk + B(n — ZS?) =0 = ZBiij = (3s; or Bs = s

Jjk J J

Note: In practice we cannot assign s with eigenvector corresponding to the largest eval (s is +1/-1 vector)
We choose s to be close to u; by maximizing » . s;(u1),, i.e.,
s; = +1 (—1) if (ul)z > (<) 0



Homework

Paper review 5 + computational problem (due 10/3/2019)
1. (50%) Paper review: Newman “Assortative mixing in networks”
2. (50%) Compute modularity

7.8 In a survey of couples in the US city of San Francisco, Catania ef al. [65] recorded, -
among other things, the ethnicity of their interviewees and calculated the fraction of .
couples whose members were from each possible pairing of ethnic groups. The frac-
tions were as foliows:

Women

Black Hispanic White Other | Total
Black | 0.258 0.016 0.035  0.013 | 0.323
Higpanic | 0.012 C.157 0058 0019 | 0.247
White | 0.013 0.023 0306 0.035 | 0.377
Other | 0.005 0.007 0024  0.016 | 0.053
Total | (.289 0.204 0423 0084

Men

Assuming the couples interviewed to be a representative sample of the edges in the
undirected network of relationships for the community studied, and treating the ver-
tices as being of four types—black, Hispanic, white, and other—calculate the numbers
g, and 2, that appear in Eq. (7.76) for each type. Hence calculate the modularity of the
network with respect to ethnicity.
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