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Similarities

[FPRS] Random-walk based similarities
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Similarities

Goh et al. “Human Disease Network”, PNAS, 2007

HDN: Each node corresponds to a distinct 
disorder, colored based on the disorder 
class. The size of each node is proportional 
to the number of genes participating in 
the corresponding disorder, and the link 
thickness is proportional to the number of 
genes shared by the disorders it connects. 

DGN: each node is a gene, with two genes 
being connected if they are implicated in 
the same disorder. The size of each node is 
proportional to the number of disorders in 
which the gene is implicated. Nodes are 
light gray if the corresponding genes are 
associated with more than one disorder 
class. Only nodes with at least one link are 
shown.
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Classes of Similarities
Q: In what ways can vertices in a network be similar and how can we 
quantify this similarity?

Similarity between vertices

Structural equivalence

Regular equivalence

i and j share many of the same network neighbors 

i and j do not necessarily share neighbors but have 
neighbors who are themselves similar 

Structural                          Regular
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Structural Equivalence

Problem: Simple count of common neighbors for two vertices is not on its own a 
very good measure of similarity. If two vertices have 3 common neighbors is that 
a lot or a little? It’s hard to tell unless we know, for instance, what the degrees of 
the vertices are, or how many common neighbors other pairs of vertices share. 

Solution: adding some sort of normalization
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Structural Equivalence

degrees of i and j
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Structural Equivalence

≈expected number of
common neighbors

Given i and j, how many common neighbors should we expect them to have in random model? 
Imagine that vertex i chooses d(i) neighbors uniformly at random, and vertex j similarly 
chooses d(j) neighbors at random. For the first neighbor that j chooses there is a probability of 
d(i)/n that it will choose one of the d(i), and similarly for each succeeding choice. (We neglect 
the possibility of choosing the same neighbor twice, since it is small for a large network.) Then 
in total the expected number of common neighbors between the two vertices will be d(i)d(j)/n.
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Structural Equivalence

≈expected number of
common neighbors
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Regular Equivalence

k-l similarity

similarity matrix



Introduction to Network Science 9

PDF: Algebraic Distance
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Random walk based similarities

people

movies

categories

has watched

belongs to

similar
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Random walk based similarities
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Random walk based similarities
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Random walk based similarities
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Random walk based similarities

[FPRS] Random-walk based similarities

Paper review 4: “Random-Walk Computation of Similarities
between Nodes of a Graph with Application to Collaborative Recommendation”
Submit by 9/26/2019
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Homophily and Assortative Mixing
Newman “Networks: An Introduction”

Friendship network at a US high 
school. 470 students, 14-18 yo
Q = 0.305

- the tendency of individuals to associate and bond 
with similar others.

Examples: social networks, citation networks, web 
pages languages, animals

Disassortative Mixing – opposite to assortative

total number of edges 
between similar vertices

expected number of edges 
between similar vertices in 
random model

Example: sexual contact networks

Modularity is a measure of the extent to which like is 
connected to like in a network.
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Homophily and Assortative Mixing

total number of edges 
between similar vertices

expected number of edges 
between similar vertices in 
random model

or assortativity coefficient

Maximization of the modularity is a well-known clustering approach

fraction of edges 
between classes r and s

fraction of ends of edges 
attached to vertices of 
class r

LofEdges: nodes may 
have types but no info 
about degrees
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Assortative Mixing and Scalar Characteristics 
In practice, the number of classes will be limited.      
Reasons: complexity, bins, etc.
Example: school friends, age × age

Newman “Networks: An Introduction”

age
r = 0.616

1 – perfectly assortative network; -1 - perfectly disassortative network

Problem: vertices falling in different bins are 
different when in fact they may be similar 
(10.9yo≈11yo)  

values come in a particular order

covariance

variance
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Example: Assortative Mixing by Degree

Newman “Assortative mixing in networks”

A special case of assortative mixing according to a scalar quantity, is that of mixing by degree. 
In a network that shows assortative mixing by degree the high-degree vertices will be 
preferentially connected to other high-degree vertices, and the low to low. 
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Example: Assortative Mixing by Degree Estrada et al. “Clumpiness” mixing in complex networks

The network illustrated in Figure (a) corresponds to the inmates in a 
prison and that in Figure (b) to the food web. Both networks are 
almost of the same size, and both display uniform degree distributions 
and have almost identical assortativity coefficient, r = 0.103 and 0.118, 
respectively. However, while in the prison network the high-degree 
nodes are spread across the network, they are clumped together in 
the food web. This difference can have dramatic implications for the 
structure and functioning of these two systems.

Disassortative networks. We can also find that the high-degree nodes 
can be separated by only two links with a low-degree node acting as a 
bridge or by very long paths. This situation is illustrated in sexual 
network in Colorado Springs (a) and the transcription interaction 
network of E. coli (b), which have almost equal negative assortative
coefficients. In the former case the high-degree nodes are separated 
by very long chains while in the latter case most of the high-degree 
nodes are clumped together separated by only two or three links.
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Simple Modularity Maximization

Iterative Algorithm (inspired by Kernighan-Lin algorithm for partitioning problem)
1. Choose initial division of a network  into (equally sized) groups
2. Main sweep: repeatedly move the vertices that most increase or least decrease Q
3. Return to step 2 until Q no longer improves

Complexity of Step 2: O(mn)

Newman “Networks: An Introduction”
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Spectral Modularity Maximization

eigenproblem

Note: In practice we cannot assign s with eigenvector corresponding to the largest eval (s is +1/-1 vector)

modularity matrix
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Paper review 5 + computational problem (due 10/3/2019)
1. (50%) Paper review: Newman “Assortative mixing in networks”
2. (50%) Compute modularity

Homework
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