Network Visualization

Hu “Efficient, High-Quality Force-Directed Graph Drawing”
Batagelj “Visualization of Large Networks”

Question: How to find a layout for network if nothing is known about its structural properties?
Requirements: flexibility, robustness, clarity

Approach: analogy to physics, i.e., nodes are objects, edges are interactions and forces

Goal: interconnected system at stable configuration = intuitively good layout

One of the solutions: force-directed methods

A force-directed method

1. models the graph drawing problem through a physical system of bodies with forces acting
between them.

2. The algorithm finds a good placement of the bodies by minimizing the energy of the
system.

Examples of forces to model
* Fruchterman, Reingold : system of springs between neighbors + repulsive electric forces
 Kamada, Kawai: springs between all vertices with spring length proportional to graph distance



Force-directed methods

Frequent problems that need to be addressed

1. Many local minimums. If we start with random configuration we can settle in one of the
local minimums already after several iterations

Fruchterman-Reingold

2. Computational complexity. Ideally, we should model forces for all pairs of nodes. This
gives us complexity O(n?) per iteration.

Demo: mesh 33 in Gephi with F-R, Force Atlas, Force-Atlas 2

How to overcome these problems? Basic ideas: use multiscale algorithms and limit long-range
forces.



Force-directed methods

z; € R? or R3 - coordinates of node i
|z; — x;|| - 2-norm distance between ¢ and j

We define spring-electrical modes with two forces

e the repulsive force between any two nodes ¢ and j
fr=—CK*/||x; — ||, i #
e the attractive force between any two neighbors ¢ and j
fa = |lwi — 4] |/ K

The combined force on vertex 7 is
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Parameters (mostly for scaling): K is spring length, C strength of f, and f..
Example: two connected nodes, f is minimized when ||z; — z;|| = KC'/3.
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Figure 2. Forces versus distance



Force-directed methods

The total energy of the system is

Energy,.(z, K,C) = ) | f*(i,z,K,C)
eV

Theorem 1. Let »* = {x} | € IV} minimizes the energy of the spring-electrical
model Energ}?qe(lr, K, C), then sx* minimizes Energy%(r, K', C"), where

s=(K' |K)(C" |]O) . Here K, C, K’ and C’ are all positive real numbers.



Proof: This follows simply by the relationship

K2 Il x; —x;
T2 K, = Z oo “2 xj—x,-)+z = J (@; —x;)
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Force-directed methods

Another example Kamada-Kawai spring model

e the repulsive force between any two nodes 7 and j _
v graph distance

fT(Zu?) — fa(iaj) — sz _xjH _ d(z7])7 7“7&]

The combined energy of the system is 2-norm distance

Energy,(z) = Y (||z; — ;|| — d(i,5))?
17

Peripheral effect




e ForceDirectedAlgorithm(G, x, tol) {
— converged = FALSE;
— step = initial step length;
— Energy = Infinity
— while (converged equals FALSE) |
* ;t'ﬁ = X
+ Energy’ = Energy; Energy = 0;
« forielV {
. f=0;
cfor(jeid)f:=f+ _Ja1) E et

| xj —i |
for(j+i, jeV)f:=f+ IR (; —30;

|| xj —x; ||
- x5, = X; +stepx(f /0 fon);
Energy := Energy + u f %;

*
+ step := update_steplength (step, Energy, Energy”);
# if (| |x =" | | < Ktol) converged = TRUE;

= )

— return x;

° |

Algorithm 1. An iterative force-directed algorithm.



o function update_steplength (step, Energy, Energy")

e if (Energy < Energy”) {
— progress = progress + 1;
— if (progress > = 5){

* progress = 0;
step := £ step * step := step/t; Best minimized

e ) layout

o | else |

— progress = 0;
— step := 1 step;

70 iterations
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The repulsive force calculation resembles the n-body problem in physics, which
is well studied. One of the widely used techniques to calculate the repulsive
forces in O(n log n) time with good accuracy, but without ignoring long-range
forces, is to treat groups of faraway vertices as supernodes, using a suitable data
Structure.



function MultilevelLayout (G, tol)
e Coarsest graph layout
— if (#"*! < MinSize or z*! [#' > p){
# " = random initial layout
+ &' = ForceDirectedAlgorithm(G' , &’ tol)
% return x*
-}
e The coarsening phase:
— set up the 1t x it prolongation matrix P
il = P;'T Gf pi
— &'*! = Multilevel Layout(G**!, tol)
e The prolongation and refinement phase:
— prolongate to get initial layout: &' = P* x™*!
— refinement: ¥ = ForceDirectAlgorithm(G' , &%, tol)

— return x’

Algorithm 2. A multilevel force-directed algorithm.



https://sparse.tamu.edu/




High-dimensional Embedding

see Koren, Harel “Graph Drawing by High-Dimensional Embedding”

Algorithm
e Choose m pivots {p1,...,Pm}, each p; € V

e Fach v € V is associated with m coordinates

{X*(v)}™,, where X"(v) = d(p;,v)

e Project m-dimensional coordinates into 2- or 3-dimensional space
How to choose p;
e choose p; at random

2,...,m choose p; that maximizes the shortest distance from

Similar to the k-center problem where the goal is to minimize the distance from
V' to k centers.



High-dimensional Embedding

see Koren, Harel “Graph Drawing by High-Dimensional Embedding”

Figure 3: Layouts of: (a) A 50 x 50 grid; (b) A 50 x 50 grid with % of the edges
omitted at random; (c¢) A 100 x 100 grid with opposite corners connected; (d)
A a 100 x 100 torus; (e) The Crack graph; (f) The 3elt graph



High-dimensional Embedding

see Koren, Harel “Graph Drawing by High-Dimensional Embedding”

(d)

Figure 3: Layouts of: (a) A 50 x 50 grid; (b) A 50 x 50 grid with % of the edges

X

omitted at random; (¢) A 100 x 100 grid with opposite corners connected; (d)
A a 100 x 100 torus; (e) The Crack graph; (f) The 3elt graph



High-dimensional Embedding

see Koren, Harel “Graph Drawing by High-Dimensional Embedding”
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Figure 3: Layouts of: (a) A 50 x 50 grid; (b) A 50 x 50 grid with % of the edges
omitted at random; (c¢) A 100 x 100 grid with opposite corners connected; (d)
A a 100 x 100 torus; (e) The Crack graph; (f) The 3elt graph



High-dimensional Embedding

see Koren, Harel “Graph Drawing by High-Dimensional Embedding”

Figure 8: Drawing of a depth 5 full binary tree



Embedding in 3D using hyperbolic geometry

see Kriukov et al. “Hyperbolic geometry of complex networks”
github.com/CAIDA/walrus




Spectral graph drawing
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Eigenvectors and energy
For a nonzero x € R™ and M € R™*™ the Raleigh quotient is defined

T Mz
Rix) = xlx

Courant-Fischer Theorem. Let M € R"*™ be symmetric with eigenvalues
Ao < ... < A,_1. Let X* be a k-dim subspace of R® and z L X*. Then

o= Jmin (0 max  R(@) =max( min R(x))

Fiedler Theorem.

2

A2(L) =n min ( 2iep\ti ~ 7)) 5) same for A, and max
TER™ sze(;/) (2 — )

A symmetric minor of A is a submatrix B obtained by deleting some rows and
the corresponding columns.
Theorem (Interlacing eigenvalues). Let A € R™"*™ be a symmetric matrix
with eigenvalues A\; < ... < \,,. Let B € R(»=F)x(n=k) he 3 symmetric minor of
A with eigenvalues pq < ... < tty,_x. Then

Ai < i < Aigk
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