Network Visualization

Hu "Efficient, High-Quality Force-Directed Graph Drawing" Batagelj "Visualization of Large Networks"

Question: How to find a layout for network if nothing is known about its structural properties?

Requirements: flexibility, robustness, clarity

Approach: analogy to physics, i.e., nodes are objects, edges are interactions and forces

Goal: interconnected system at stable configuration = intuitively good layout

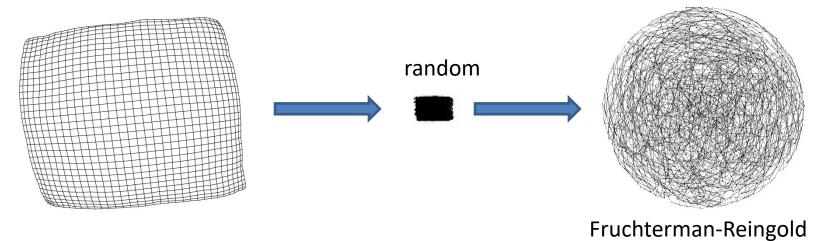
One of the solutions: force-directed methods

A force-directed method

- 1. models the graph drawing problem through a physical system of bodies with forces acting between them.
- 2. The algorithm finds a good placement of the bodies by minimizing the energy of the system.
- Examples of forces to model
- Fruchterman, Reingold : system of springs between neighbors + repulsive electric forces
- Kamada, Kawai: springs between all vertices with spring length proportional to graph distance

Frequent problems that need to be addressed

1. Many local minimums. If we start with random configuration we can settle in one of the local minimums already after several iterations



2. Computational complexity. Ideally, we should model forces for all pairs of nodes. This gives us complexity $O(n^2)$ per iteration.

Demo: mesh 33 in Gephi with F-R, Force Atlas, Force-Atlas 2

How to overcome these problems? Basic ideas: use multiscale algorithms and limit long-range forces.

 $x_i \in \mathbb{R}^2$ or \mathbb{R}^3 - coordinates of node i

 $||x_i - x_j||$ - 2-norm distance between *i* and *j*

We define *spring-electrical* modes with two forces

 $\bullet\,$ the repulsive force between any two nodes i and j

$$f_r = -CK^2/||x_i - x_j||, \ i \neq j$$

 $\bullet\,$ the attractive force between any two neighbors i and j

$$f_a = ||x_i - x_j||^2 / K$$

The combined force on vertex i is

$$f(i, x, K, C) = \sum_{i \neq j} \frac{-CK^2}{||x_i - x_j||^2} (x_j - x_i) + \sum_{ij \in E} \frac{||x_i - x_j||}{K} (x_j - x_i)$$

Parameters (mostly for scaling): K is spring length, C strength of f_a and f_r . Example: two connected nodes, f is minimized when $||x_i - x_j|| = KC^{1/3}$.

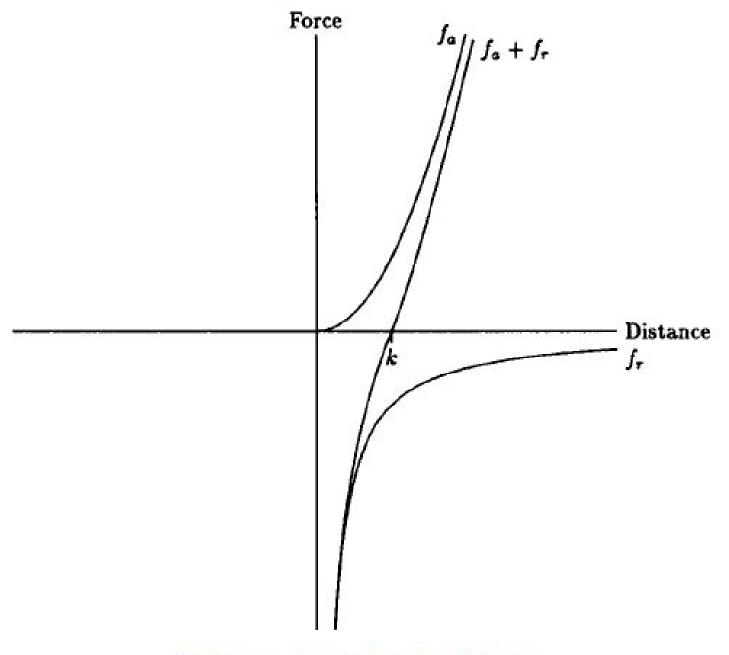


Figure 2. Forces versus distance

The total energy of the system is

$$Energy_{se}(x, K, C) = \sum_{i \in V} f^2(i, x, K, C)$$

Theorem 1. Let $x^* = \{x_i^* \mid i \in V\}$ minimizes the energy of the spring-electrical model Energy_{se}(x, K, C), then sx* minimizes Energy_{se}(x, K', C'), where $s = (K' / K) (C' / C)^{1/3}$. Here K, C, K' and C' are all positive real numbers.

Proof: This follows simply by the relationship

$$\begin{split} f(i, x, K, C) &= \sum_{i \neq j} \frac{-C K^2}{\|x_i - x_j\|^2} (x_j - x_i) + \sum_{i \leftrightarrow j} \frac{\|x_i - x_j\|}{K} (x_j - x_i) \\ &= \left(\frac{C}{C'}\right)^{2/3} \frac{K}{K'} \left(\sum_{i \neq j} \frac{-C' (K')^2}{\|sx_i - sx_j\|^2} (sx_j - sx_i) \right) \\ &+ \sum_{i \leftrightarrow j} \frac{\|sx_i - sx_j\|}{K'} (sx_j - sx_i) \right) \\ &= \left(\frac{C}{C'}\right)^{2/3} \frac{K}{K'} f(i, sx, K', C'), \end{split}$$

where $s = (K' / K) (C' / C)^{1/3}$. Thus,

$$\operatorname{Energy}_{\operatorname{se}}(x, K, C) = \left(\frac{C}{C'}\right)^{4/3} \left(\frac{K}{K'}\right)^2 \operatorname{Energy}_{\operatorname{se}}(sx, K', C').$$

Another example Kamada-Kawai *spring* model

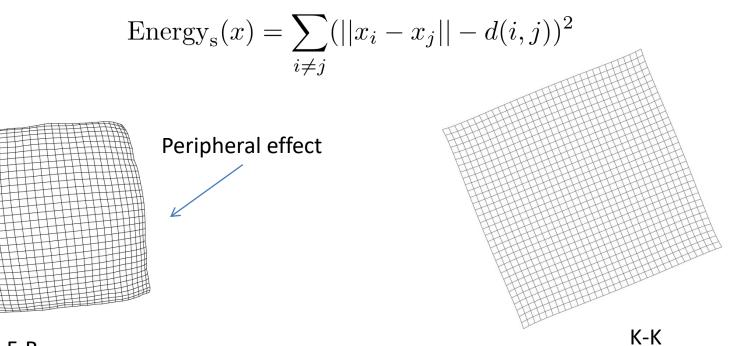
• the repulsive force between any two nodes i and j

graph distance

$$f_r(i,j) = f_a(i,j) = ||x_i - x_j|| - d(i,j), \ i \neq j$$

The combined energy of the system is

2-norm distance



- ForceDirectedAlgorithm(G, x, tol) {
 - converged = FALSE;
 - step = initial step length;
 - Energy = Infinity
 - while (converged equals FALSE) { * $x^0 = x;$
 - * $Energy^0 = Energy; Energy = 0;$
 - * for $i \in V$ {
 - $\cdot f = 0;$
 - for $(j \leftrightarrow i) f := f + \frac{f_a(i,j)}{\|x_j x_i\|} (x_j x_i);$
 - for $(j \neq i, j \in V) f := f + \frac{f_r(i,j)}{\|x_j x_i\|} (x_j x_i);$
 - $\cdot x_{i:} = x_i + \operatorname{step} * (f / \parallel f \parallel);$

• Energy := Energy +
$$\parallel f \parallel^2$$
;

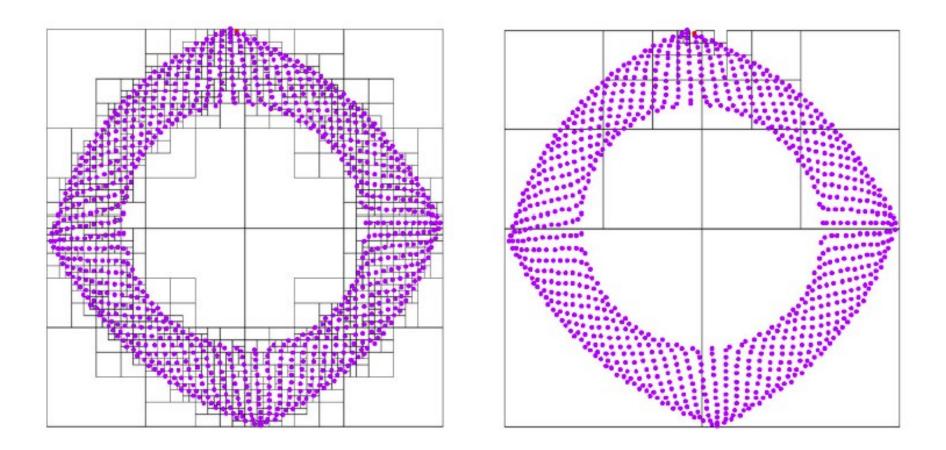
- * }
- * step := update_steplength (step, Energy, Energy⁰); : if ($| | w = w^0 + | | < K$ tol) converged = TPUE;
- * if $(| |x x^0| | < K \text{ tol})$ converged = TRUE;
- }
- return x;

• }

Algorithm 1. An iterative force-directed algorithm.



70 iterations



The repulsive force calculation resembles the *n*-body problem in physics, which is well studied. One of the widely used techniques to calculate the repulsive forces in $O(n \log n)$ time with good accuracy, but without ignoring long-range forces, is to treat groups of faraway vertices as supernodes, using a suitable data Structure. function MultilevelLayout (G^i , tol)

• Coarsest graph layout

- if
$$(n^{i+1} < \text{MinSize or } n^{i+1} / n^i > \rho)$$
 {
* $x^{i:}$ = random initial layout
* x^i = ForceDirectedAlgorithm(G^i , x^i , tol)
* return x^i

- }

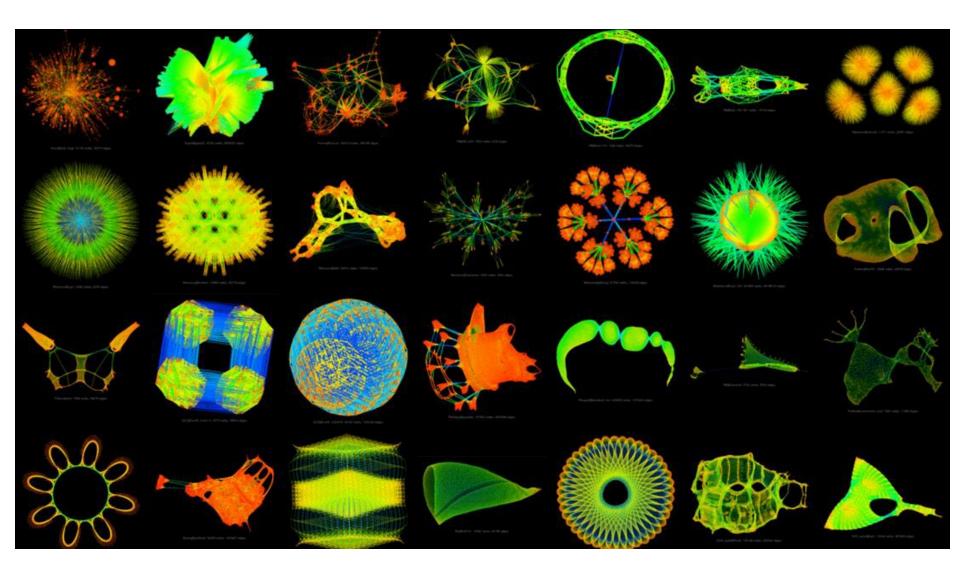
- The coarsening phase:
 - set up the $n^i \times n^{i+1}$ prolongation matrix P^i

$$-G^{i+1} = P^{iT} G^i P^i$$

 $- x^{i+1} = MultilevelLayout(G^{i+1}, tol)$

- The prolongation and refinement phase:
 - prolongate to get initial layout: $x^i = P^i x^{i+1}$
 - refinement: x^i = ForceDirectAlgorithm(G^i , x^i , tol)
 - return x^i

Algorithm 2. A multilevel force-directed algorithm.



https://sparse.tamu.edu/

see Koren, Harel "Graph Drawing by High-Dimensional Embedding"

Algorithm

- Choose *m* pivots $\{p_1, ..., p_m\}$, each $p_i \in V$
- Each $v \in V$ is associated with m coordinates

$${X^{i}(v)}_{i=1}^{m}$$
, where $X^{i}(v) = d(p_{i}, v)$

• Project m-dimensional coordinates into 2- or 3-dimensional space

How to choose p_i

- choose p_1 at random
- For j = 2, ..., m choose p_j that maximizes the shortest distance from $\{p_k\}_{k=1}^{j-1}$

Similar to the k-center problem where the goal is to minimize the distance from V to k centers.

see Koren, Harel "Graph Drawing by High-Dimensional Embedding"

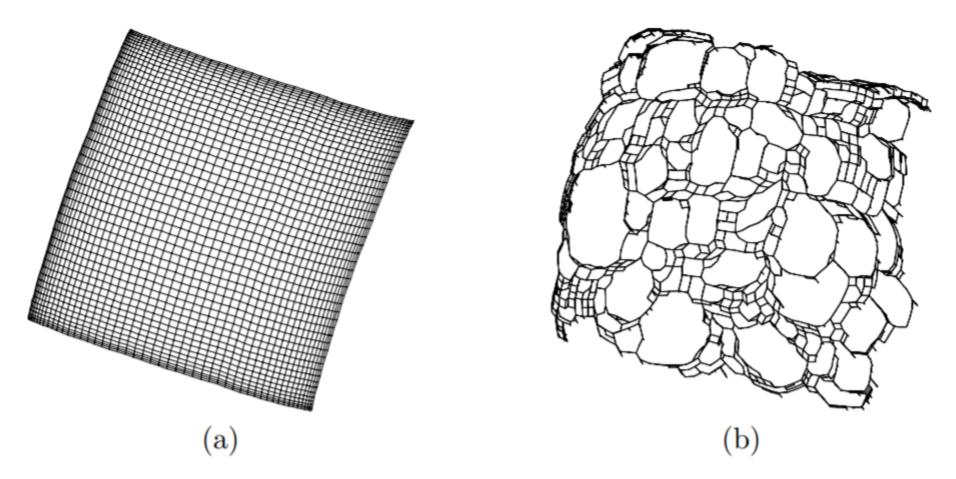


Figure 3: Layouts of: (a) A 50×50 grid; (b) A 50×50 grid with $\frac{1}{3}$ of the edges omitted at random; (c) A 100×100 grid with opposite corners connected; (d) A a 100×100 torus; (e) The Crack graph; (f) The 3elt graph

see Koren, Harel "Graph Drawing by High-Dimensional Embedding"

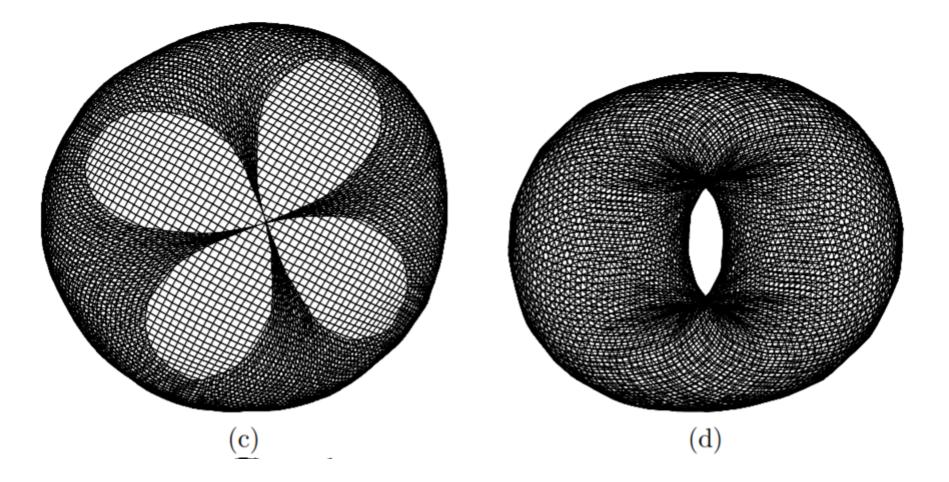


Figure 3: Layouts of: (a) A 50×50 grid; (b) A 50×50 grid with $\frac{1}{3}$ of the edges omitted at random; (c) A 100×100 grid with opposite corners connected; (d) A a 100×100 torus; (e) The Crack graph; (f) The 3elt graph

see Koren, Harel "Graph Drawing by High-Dimensional Embedding"

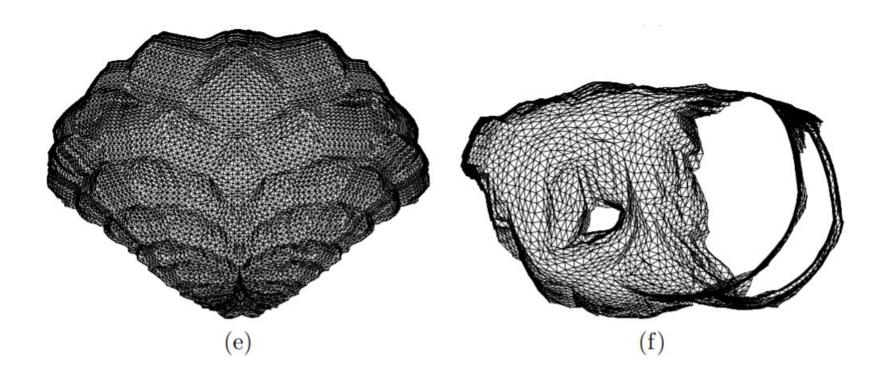


Figure 3: Layouts of: (a) A 50×50 grid; (b) A 50×50 grid with $\frac{1}{3}$ of the edges omitted at random; (c) A 100×100 grid with opposite corners connected; (d) A a 100×100 torus; (e) The Crack graph; (f) The 3elt graph

see Koren, Harel "Graph Drawing by High-Dimensional Embedding"

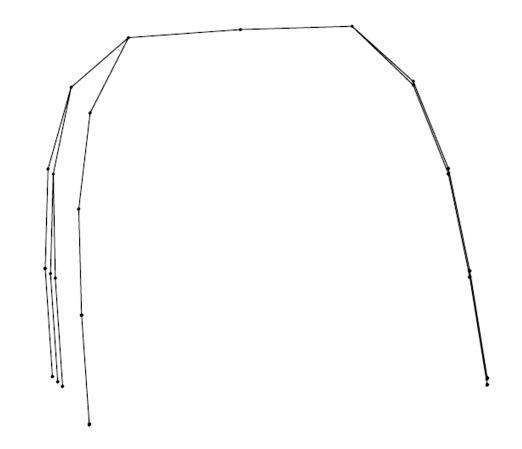
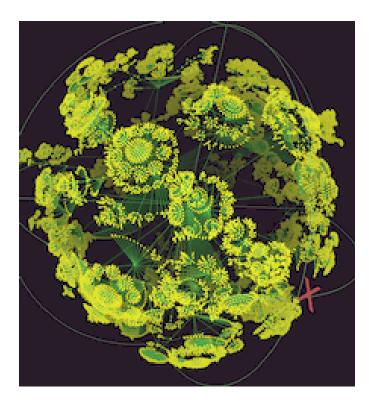
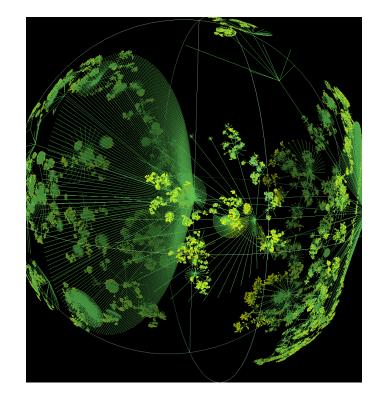


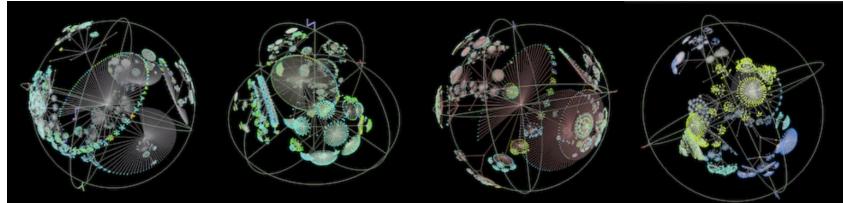
Figure 8: Drawing of a depth 5 full binary tree

Embedding in 3D using hyperbolic geometry

see Kriukov et al. "Hyperbolic geometry of complex networks" github.com/CAIDA/walrus

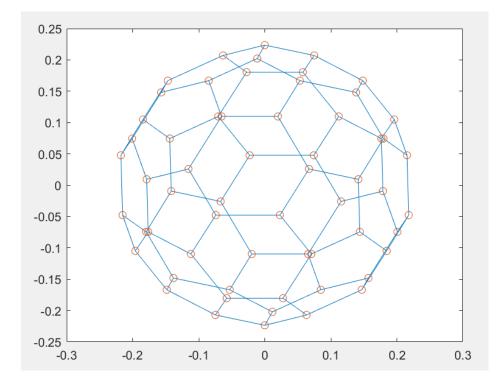






Spectral graph drawing

```
A = full(bucky);
D = diag(sum(A));
L = D - A;
[v, e] = eig(L);
gplot(A, v(:, [2 3]))
hold on;
gplot(A,v(:, [2 3]), 'o')
```



Eigenvectors and energy

For a nonzero $x \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times n}$ the Raleigh quotient is defined

$$R(x) = \frac{x^T M x}{x^T x}$$

Courant-Fischer Theorem. Let $M \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\lambda_0 \leq \ldots \leq \lambda_{n-1}$. Let X^k be a k-dim subspace of \mathbb{R}^n and $x \perp X^k$. Then

$$\lambda_{i} = \min_{X^{n-i-1}} (\max_{x \perp X^{n-i-1}, x \neq 0} R(x)) = \max_{X^{i}} (\min_{x \perp X^{i}, x \neq 0} R(x))$$

Fiedler Theorem.

$$\lambda_2(L) = n \min_{x \in \mathbb{R}^n} \left(\frac{\sum_{ij \in E} (x_i - x_j)^2}{\sum_{ij \in \binom{V}{2}} (x_i - x_j)^2} \right) \text{ same for } \lambda_n \text{ and } \max$$

A symmetric minor of A is a submatrix B obtained by deleting some rows and the corresponding columns.

Theorem (Interlacing eigenvalues). Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1 \leq ... \leq \lambda_n$. Let $B \in \mathbb{R}^{(n-k) \times (n-k)}$ be a symmetric minor of A with eigenvalues $\mu_1 \leq ... \leq \mu_{n-k}$. Then

$$\lambda_i \le \mu_i \le \lambda_{i+k}.$$

 $\Omega \Lambda$