Multiscale Methods

In many complex systems a big scale gap can be observed between micro- and macroscopic scales because of the difference in physical (social, biological, mathematical, etc.) models and/or laws at different scales.

"Visions of Quixote," oil on canvas, 1989

Even if elementary objects of the system have a complicated (and even nondeterministic) behavior, their ensembles can be more structured .

High resolution

Low resolution

Two body scratch model

Social networks

Even when the difference between models at different scales is not observed, an efficient approximation of the microscopic scale can be achieved by looking at the macroscopic scale with its substantially smaller number of elementary objects.

Motivation

There exist tens (if not hundreds) of different classes of algorithms for large-scale combinatorial optimization that eventually ensure the solution or a small gap.

However, despite of their effectiveness and availability of computational resources, there are always certain barriers in the problem size and algorithm complexity.

Motivation

When these barriers are met, typical ways to continue tackling the problem are by using

Decomposition
Smart but "blind" search

However, there is another barrier that these methods typically do not overcome: we solve "one variable at a time".

The Multiscale Method Multiscale \approx Multilevel \approx Multigrid \approx Multiresolutional

- The Multiscale method is a class of algorithmic techniques for solving efficiently large-scale computational and optimization problems.
- A multivariable problem defined in some space can have an approximate description at any given length scale of that space (a continuum problem can be discretized at any given resolution, multiparticle system can be represented at any given characteristic length, etc).
- The multiscale algorithm recursively constructs a sequence of such descriptions at increasingly larger (coarser) scales, and combines local processing at each scale with inter-scale interactions.

Algebraic multigrid in three slides

- We need to solve a large-scale system $A x=b, \mathrm{SPD}$
- Gaussian elimination, LU, Cholesky, Q ,
- Iterative methods $x^{(k+1)}=T x^{(k)}+v$, e.g., Gauss-Seidel stationmary iterative relaxation

Aha! A suitable relaxation can reduce the information content of the error, and quickly make it approximable by far fewer variables.

Algebraic multigrid in three slides

Brandt, McCormick, Rudge, "Algebraic Multigrid (AMG) for automatic multigrid solution with application to geodetic computations", 1982

- Given: $A \in \mathbb{R}^{n \times n}$ positive definite, symmetric.
- Goal: solve $A x=b$.
- Claim: If A is positive definite, then
x minimizes $P(x)=\frac{1}{2} x^{T} A x-x^{T} b$ iff $A x=b$.
- \tilde{x} - current approximation
- $e($ rror $)=x-\tilde{x}$ (hard to estimate)
- $b-A \tilde{x}=r($ esidual $)=A(x-\tilde{x})=A e$

Algebraic multigrid in three slides

At all levels: solve $A e=r$, where $e(r r o r)=x-\tilde{x}$ and $r($ esidual $)=b-A \tilde{x}$

$$
\begin{aligned}
& \min \frac{1}{2} e^{T} A e-e^{T} r= \\
& \min \frac{1}{2}\left(\tilde{e}+\uparrow_{c}^{f} e^{c}\right)^{T} A\left(\tilde{e}+\uparrow_{c}^{f} e^{c}\right)-\left(\tilde{e}+\uparrow_{c}^{f} e^{c}\right)^{T} r \leftrightarrow \ldots \leftrightarrow \\
& \min \frac{1}{2}\left(e^{c}\right)^{T}\left[\left(\uparrow_{c}^{f}\right)^{T} A \uparrow_{c}^{f}\right] e^{c}-\left(e^{c}\right)^{T}\left(\uparrow_{c}^{f}\right)^{T}(r-A \tilde{e})= \\
& \min \frac{1}{2}\left(e^{c}\right)^{T} A^{c} e^{c}-\left(e^{c}\right)^{T} r^{c}
\end{aligned}
$$

- \tilde{e} - initial fine level error
- e^{c} - coarse level error
- \uparrow_{c}^{f} - coarse-to-fine interpolation operator

History of Multiscale Methods

Joseph Fourier

Functional analysis at multiple resolutions
(1768-1830)

Radiy Fedorenko

Smoothing, finite elements, two-level multigrid
(1930-2009)

Achi Brandt

Popularization, first basic research (1977), algebraic multigrid (1980), ...

Examples of multilevel and multiscale classes of algorithms

- Line search multigrid for convex optimization (Goldfarb, Wen)
- PDE-constrained optimization (Borzi, Nash, Toint, ...)
- Multilevel trust-region methods (Gratton, Mouffe, Sartenaer, Toint, ...)
- Non-convex non-linear optimization for VLSI placement (Chan, Cong, Sze, ...)
- Linear programming - multilevel iterative methods (Gelman, Mandel, ...)
- Derivative-free multilevel optimization (Mendonca, Peckman, Toint, ...)

Examples of multilevel combinatorial optimization

- (Hyper)graph partitioning and clustering (see many references in "Recent advances in graph partitioning", 2016)
- Various graph/matrix arrangement problems such as the minimum linear arrangement, bandwidth, workbound, wavefront, fill-in (Brandt, Hu, Ron, Safro, ...)
- Vertex separators (Karypis, Hager, Safro, Sanders, Schultz, ...)
- Coloring (Walshaw)
- TSP (Walshaw, Ron, ...)
- VLSI placement (Chan, Cong, Hu, Karypis, Brandt, Ron, Viswanathan, ...)

Cycles and complexity $\sum_{i=0}^{k} O\left(\frac{n}{2 i}\right) \rightarrow O(n)$

Coarsening

Exact solution
Create a hierarchy of restriction operators and corresponding coarse problems

Uncoarsening Approximate solutions at each level by interpolation from coarser level,
and further from coarser level,
and further refinement

V -cycle

Multilevel Algorithms for Optimization Problems on Networks

- Examples: VLSI Placement, Partitioning, Minimum Linear Arrangement, Minimum Bandwidth, Clustering, TSP, Community Detection, Segmentation, Visualization, ...
- Quality: Usually exhibit superior results to other methods on practical test suites.
- Time: Usually exhibit linear time complexity.
- Technical advantage: Admits parallelization. Suitable for various HPC configurations.

Coarsening

Fine-to-coarse operator

Exact or best possible solution

Network Compression-friendly Ordering

 (and Minimum Linear Arrangement Problems)Compressed row representation

Node	Sorted list of neighbors (possibly with edge info)
1	$2,5,6,12,18,23,103$
\ldots	\ldots
1584	$1585,1592,1600$

[KDD09 Chierichetti et al.] Given a sorted list of neighbours ($x_{1}, x_{2}, x_{3}, \ldots$), represent it by a list of differences $\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}, \ldots\right)$ or $\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots\right)$

Compressed row gap representation

Node	Sorted list of neighbors (possibly with edge info)
1	$1,4,5,11,17,22,102$
\ldots	\ldots
1584	$1,8,16$

... and then apply some compression algorithm (such as Boldi-Vigna scheme)

Network Compression-friendly Ordering

- Graph $G=(V, E)$
- Weighting function on edges $w: E \rightarrow \mathbb{R}_{\geq 0}$
- Permutation of vertices $\pi: V \rightarrow\{1,2, \ldots,|V|\}$

The Minimum Logarithmic Arrangement Problem

$$
\min _{\pi \in s(n)} \sum_{i j \in E} w_{i j} \lg |\pi(i)-\pi(j)|
$$

Graph Minimum Partitioning/Clustering Problem

Given

- Graph $G=(V, E)$
- Weighting function on edges $w: E \rightarrow \mathbb{R}_{\geq 0}$
- Partitioning of vertices $\pi: V \rightarrow\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$
- Imbalance factor $0 \leq \alpha \leq 1$

The Minimum k-partitioning Problem

$$
\begin{aligned}
& \min _{\pi \text { is partitioning }} \sum_{u \in P_{j}, v \notin P_{j}} w_{u v} \\
& \quad \text { such that }\left|P_{i}\right| \leq(1+\alpha) \cdot \frac{|V|}{k}
\end{aligned}
$$

Applications: network analysis, machine learning, load-balancing, HPC, etc.

Results with up to 5% imbalance
 S_max < $1.05 \times$ s_opt

graph	2	4	8	16	32	64
add20	536 (1256) [IPMNE2]	1120 [628) [*+IPMNE2]	1657 (314) [HYPAL]	2027 [157) [FSMAGP]	2341 (78) [FSMAGP]	2920 [39] [FSMAGP]
data	181 (1497) [SDP]	363 (745) [KaFFPa]	628 (374) [NW]	1076 (187) [FSMAGP]	1743 (94) [FSMAGP]	2747 [47) [KaBaPET]
3elt	87 [2398) [JE]	197 [1237) [NW]	[619) [KaFFPaE	557 (309) [KaFFPaE]	930 (155) [FSMAGP]	1498 (77) [KaBaPET]
uk	18 [2455) [.JE]	39 (1238) [*+KFFP]	75 [633) [KaFFPaE]	137 (315) [*+IPMNE2]	236 (158) [KaBaPE]	394 (79) [KaBaPE]
add32	10 [2481) [J2.2]	33 (1241) [-JE]	63 [650) [KasPar]	117 [311) [-JE]	212 (156) [JE]	476 [80) [*+IPMNE2]
bossth33	9914 [4554) [iJ]	20158 (2294) [FSMAGP]	33908 (1147) [FSMAGP]	54119 (574) [FSMAGP]	(287) [*+ILP]	P]
whitaker3	126 (4908) [JE]	376 [2546) [FSMAGP]	644 [1283) [*+IPMNE2]	1068 [643) [KaBaPET]	(322) [$\mathrm{KaBaPET]}$	P]
crack	182 (5187) [NW]	360 (2606) [NW]	666 (1342) [FSMAGP]	1063 [671) [FSMAGP]	1655 (329) [FSMAGP]	2487 (164) [*+ILP]
wing_nodal	1668 (5742) [SDP]	3520 (2869) [FSMAGP]	5339 (1436) [FSMAGP]	8160 (718) [FSMAGP]	11533 (359) [*+ILP]	15514 (179) [*+ILP]
fe_4e1t2	130 [5572) [MRSB]	335 [2918) [FSMAGP]	578 (1462) [KaFFPaE]	979 (731) [FSMAGP]	1571 [366] [*+IPMNE2]	2406 (183) [*+ILP]
vibrobox	10310 [6184) [JE]	18690 [3235) [FSMAGP]	23924 (1618) [KaFFPaE]	31216 (809) [*+ILP]	38823 [405) [*+ILP]	45987 (202) [*+ILP]
bcssth29	2818 (7008) [GrPart]	7925 (3672) [KaFFPaE]	13540 (1830) [KaFFPaE]	20924 (918) [NW]	33450 (459) [FSMAGP]	53703 (229) [FSMAGP]
4elt	137 (8003) [NWW]	315 [4090) [NWM]	515 (2047) [FSMAGP]	887 (1024) [KaBaPE]	1493 [512) [KaBaPET]	2478 [256] [*+ILP]
fe_s	384 (8289)	762 (4257) [*+KFFP]	1152 [2060) [JE]	1678 (1076) [FSMAGP]	2427 (536) [FSMAGP]	-
cti	318 (8480) [JE]	889 (4416) [FSMAGP]	1684 (2200) [${ }^{\text {+ }+ \text { KFFPP] }}$	2701 (1101) [KaBaPET]	3904 [553) [FSMAGP]	5460 [277) [*+ILP]
memplus	5253 (9322) [*+ILP]	9281 (4661) [*+ILP]	11543 (2330) [*+KFFP]	12799 (1165) [*+IPMNE2]	13857 [582) [*+ILP]	15875 [291) [*+ILP]
cs4	353 (11811) [KaFFPa]	908 (5906) [KaBaPE]	1420 [2946) [*+IPMNE2]	2042 (1477) [*+ILP]	2855 (739) [*+ILP]	3959 (369) [*+ILP]
bcsstik3	6251 (14679) [JE]	16165 (7590) [FSMAGP]	34068 (3796) [FSMAGP]	68323 (1898) [FSMAGP]	109368 (949) [FSMAGP]	166787 (474) [*+ILP]
bcssth31	2660 (18683) [*+ILP]	7065 (9341) [FSMAGP]	12823 (4669) [*+ILP]	22718 [2336) [*+ILP]	36354 [1168) [*+ILP]	55250 [584) [*+ILP]
fe_pwit	340 (18260) [GrPart]	700 [9370) [KaFFPaE]	1405 (4744) [FSMAGF]	2737 (2396) [FSMAGP]	5305 (1199) [*+ILP]	7956 (599) [*+ILP]
bcssti32	4622 (23319) [KasPar]	8441 [11706) [KaFFPa]	18955 (5855) [*+IPMNE2]	34374 [2928] [KaBaPE]	58352 [1464] [*+IPMNE2]	88595 (732) [*+ILP]
fe_body	262 (22544) [MQI]	588 (11835) [*+KFFPP]	1012 (5916) [*+IPMNE2]	1683 (2958) [KaBaPE]	2677 (1479) [*+ILP]	4500 (740) [*+ILP]
t60k	65 [31437) [SDP]	195 (15719) [*+KFFPP]	441 (7874) [*+IPMNE2]	787 [3938) [KaBaPE]	1289 (1969) [*+ILP]	2013 (984) [*+ILP]
wing	770 (32511) [*+KFFP]	1589 (16270) [*+ILP]	2440 [8114) [*+IPMNE2]	3775 [4068) [*+IPMNE2]	5512 [2035) [*+ILP]	7529 [1018) [*+ILP]
brack2	660 (32600) [SDP]	2731 (16438) [KaFFFa]	6592 (8219) [KaFFPaE]	11052 (4110) [*+ILP]	16765 (2055) [KaBaPET]	25100 (1027) [*+ILP]
finan512	162 (37376) [Ch2.0]	324 [18688] [Ch2.0]	648 (9344) [Ch2.0]	1296 (4672) [Ch2.0]	2592 (2336) [Ch2.0]	10560 (1168) [NWW]
fe_tooth	3773 (40567) [SDP]	6687 [20508) [*+IPMNE2]	11147 [10255) [*+ILP]	16983 [5128) [*+ILP]	24270 (2564) [*+ILP]	33387 [1282) [*+ILP]
fe_rotor	1940 [52284] [KaFFPa]	6779 [26150) [KaBaPET]	12308 (13074) [*+ILP]	19677 [6538) [*+ILP]	30355 (3269) [*+ILP]	44368 (1634) [*+ILP]
598a	2336 [57855) [MQI]	7722 (29130) [*+ILP]	15413 [14565) [*+IPMNE2]	25198 (7282) [*+IPMNE2]	37632 (3641) [*+ILP]	54677 [1820) [*+ILP]
fe_ocean	311 (73322) [GrPart]	1686 (37274) [KaFFPa]	3886 [18811) [KaBaPE]	7338 (9413) [FSMAGP]	12033 (4707) [*+ILP]	19391 (2353) [*+ILP]
144	6345 (75941) [FSMAGP]	14978 [37971) [*+ILP]	24174 (18986) [*+ILP]	36607 [9493) [*+ILP]	54160 (4747) [*+ILP]	75753 [2374) [*+ILP]
wave	8524 [82064] [KaFFPaE]	16528 (41006) [*+ILP]	28489 [20183] [*+IPMNE2]	42024 [10258) [*+ILP]	59608 (5129) [*+ILP]	81989 [2565) [*+ILP]
m14b	3802 (112532) [MQI]	12858 (56374) [*+ILP]	25126 (28182) [*+IPMNE2]	41097 (14094) [*+ILP]	63397 (7047) [*+ILP]	94123 (3523) [*+ILP]
auto	9450 [235532) [MQI]	25271 [117782] [KaFFPaE]	44206 [58891) [KaFFPaE]	74266 [29446) [*+ILP]	118998 (14723) [*+ILP]	169260 (7361) [*+ILP]

Simple Case: Coarsening by Contractions

 (aka strict coarsening)
Intuitive explanation

Two or more vertices are merged if they have a good chance to share common properties.

Examples of common properties

- k-partitioning/clustering: i and j belong to the same part
- Network compression/linear arrangement: $|\pi(i)-\pi(j)|$ is small

Simple Case: Coarsening by Contractions

Common problem of strict coarsening methods

They make local decisions (i.e., merging) before accumulating the relevant global information. It creates additional difficulty for solving irregular instances when local decision contradicts global solution.

Existing multilevel solvers

- CHACO by Hendrickson and Leland, since 1993
- METIS by Karypis and Kumar, since 1995
- SCOTCH by Pellegrini, since 1996
- JOSTLE by Walshaw, since 1995

Coarsening

Fine-to-coarse operator

Exact or best possible solution

Models of Connectivity

- Shortest path; All/some indirect paths
- Spectral approaches
- Flow network capacity based approaches
- Random-walk approaches: commute time, first-passage time, etc. (Fouss, Pirotte, Renders, Saerens, ...)
- Interpretations of the diffusion (Lafon, Maggioni, Coifman, ...)
- Effective resistance of a graph (Boyd, Saberi, Spielman, ...)

Stationary Iterative Relaxation

Relaxation process that shows which pair of vertices tends to be 'more connected' than other.
(1) $\forall i \in V$ define $x_{i}=\operatorname{rand}()$
(2) Do k times step 3
(3) $\forall i \in V x_{i}^{k}=(1-\omega) x_{i}^{k-1}+\omega \sum_{j} w_{i j} x_{j}^{k-1} / \sum_{i j} w_{i j}$

Conjecture

If $\left|x_{i}-x_{j}\right|>\left|x_{u}-x_{v}\right|$ then the local connectivity between u and v is stronger than that between i and j.

We will call $s_{i j}^{(k)}=\left|x_{i}-x_{j}\right|$ the algebraic distance between i and j after k iterations.

Toy Example: mesh 20×40 + diagonal

Random Initialization

... after 10 iterations of Jacobi over-relaxation

Algebraic Distance

$)+L+U) H_{J a c o b i}=D^{-1}(L+U) \quad H_{\text {Jacoboi }}=(D / \omega)^{-1}((1 / \omega-1) I$

en nodes i and Extended p-normed algebraic distance betwet

 random initializa- j after k iterations $x^{(k+1)}=H_{*} x^{(k)}$ on R tions $x^{(0, r)}$$)_{1}-x_{2}^{(k, r) \mid p)^{1 / p}}{ }^{1 / p}$,

$$
D \stackrel{(k)}{\stackrel{(k)}{\therefore}} \int^{\bar{r}_{\ell j}} \int^{R} x_{\dot{\dot{Z}}}^{(k, r}
$$

> Ron, S, Brandt "'Relaxation-based coarsening and multiscale graph organization", SIAM MMS, 2011
> Chen, S "Algebraic distance on graphs", SIAM J on SC, 2012
> Brandt, Brannick, Kahl, Livshits "Bootstrap AMG", SIAM J on SC, 2011
$>$ Bolten et al. "‘A Bootstrap Algebraic Multilevel Method for Markov Chains', SIAM J on SC, 2011
> Shaydulin, Chen, S "Relaxation-based coarsening for multilevel hypergraph partitioning", SIAM MMS, 2019

Theorem

Slow

convergence ...

Given a connected graph, let $\left(\mu_{i}, \hat{v}_{i}\right)$ be the eigen-pairs of (L, D), labeled in nondecreasing order of the eigenvalues, and assume that $\mu_{2} \neq \mu_{3} \neq \mu_{n-1} \neq \mu_{n}$. Unless $\omega=2 /\left(\mu_{2}+\mu_{n}\right), \hat{s}_{i j}^{(k)}$ will always converge to a limit $\left|\left(e_{i}-e_{j}\right)^{T} \xi\right|$ in the order $O\left(\theta^{k}\right)$, for some ξ and $0<\theta<1$.
(i) If $0<\omega<\frac{2}{\left(\mu_{3}+\mu_{n}\right)}$, then $\xi \in \operatorname{span}\left\{\hat{V}_{2}\right\}$ and $\theta=\frac{1-\omega \mu_{3}}{1-\omega \mu_{2}}$;
(ii) If $\frac{2}{\left(\mu_{3}+\mu_{n}\right)} \leq \omega<\frac{2}{\left(\mu_{2}+\mu_{n}\right)}$, then $\xi \in \operatorname{span}\left\{\hat{V}_{2}\right\}$ and $\theta=-\frac{1-\omega \mu_{n}}{1-\omega \mu_{2}}$;
(iii) If $\frac{2}{\left(\mu_{2}+\mu_{n}\right)}<\omega<\min \left\{\frac{2}{\left(\mu_{2}+\mu_{n-1}\right)}, \frac{2}{\mu_{n}}\right\}$, then $\xi \in \operatorname{span}\left\{\hat{V}_{n}\right\}$ and $\theta=-\frac{1-\omega \mu_{2}}{1-\omega \mu_{n}} ;$
(iv) If $\left.\frac{2}{\left(\mu_{2}+\mu_{n-1}\right.}\right) \leq \omega<\frac{2}{\mu_{n}}$, then $\xi \in \operatorname{span}\left\{\hat{V}_{n}\right\}$ and $\theta=\frac{1-\omega \mu_{n-1}}{1-\omega \mu_{n}}$.

Theorem

Given a graph, let $\left(\mu_{i}, \hat{V}_{i}\right)$ be the eigen-pairs of (L, D), labeled in nondecreasing order of the eigenvalues. Denote $\hat{V}=\left[\hat{v}_{1}, \ldots, \hat{v}_{n}\right]$. Let $x^{(0)}$ be the initial vector of the JOR process, and let $a=\hat{V}^{-1} x^{(0)}$ with $a_{1} \neq 0$. If the following two conditions are satisfied:

$$
1-\omega \mu_{n} \geq 0 \quad \text { and } \quad f_{k}:=\frac{\alpha r_{k}^{2 k}\left(1-r_{k}\right)^{2}}{1+\alpha r_{k}^{2 k}\left(1+r_{k}\right)^{2}} \leq \frac{1}{\kappa}
$$

where $\alpha=\left(\sum_{i \neq 1} a_{i}^{2}\right) /\left(4 a_{1}^{2}\right), r_{k}$ is the unique root at $[0,1]$ of

$$
2 \alpha r^{2 k+2}+2 \alpha r^{2 k+1}+(k+1) r-k=0
$$

but fast stabilization which is what we need in multilevel framework

> Ron, S, Brandt "Relaxation-based coarsening and multiscale graph organization", SIAM MMS, 2011
> Chen, S "Algebraic distance on graphs'", SIAM J on SC, 2012

Uncoarsening

Exact or best possible solution

Types of Coarsening

1. Iterative selection of some variables to the coarse level (e.g., independent sets)
2. Strict coarsening (merging pairs) with some smart distance function (similar to some graph partitioning multilevel techniques)

AMG: coarse variables

- Choose a dominating set $C \subset V$ s.t. all others from $F=V \backslash C$ are "strongly coupled" to C
- "Strongly coupled" $=$ Kernel coupling • algebraic distances $\rho_{i j}$
> Ron, S, Brandt "'Relaxation-based coarsening and multiscale graph organization", SIAM MMS, 2011
> Chen, S "Algebraic distance on graphs", SIAM J on SC, 2012
> Brandt, Brannick, Kahl, Livshits "Bootstrap AMG", SIAM J on SC, 2011
$>$ Bolten et al. " A Bootstrap Algebraic Multilevel Method for Markov Chains", SIAM J on SC, 2011
$>$ Shaydulin, Chen, S "Relaxation-based coarsening for multilevel hypergraph partitioning", SIAM MMS, 2019

Interpolation weights

$$
\left(\uparrow_{c}^{f}\right)_{i j}= \begin{cases}\frac{\sum_{i j}^{-1}}{\left(\sum_{\left.k \in N(i)^{-p_{k}^{\prime}}\right)}\right.} & i \in F, j \in N(i) \\ 1 & i \in C, j=i \\ 0 & \text { otherwise }\end{cases}
$$

- Define the interpolation weights of all vertices
- In some sense, the interpolation weights (iw) are the probabilities of a vertex to share a common property with the aggregates it belongs to.

Coarse Graph

\uparrow_{c}^{f} - restriction operator L_{f} - weighted Laplacian at level f

coarse level vertices

Coarse graph Laplacian

$$
\begin{gathered}
L_{c}=\left(\uparrow_{c}^{f}\right)^{T} L_{f} \uparrow_{c}^{f} \\
w_{I J}=\sum_{l, k}\left(\uparrow_{c}^{f}\right)_{I l} \cdot w_{l k} \cdot\left(\uparrow_{c}^{f}\right)_{k J}
\end{gathered}
$$

Exact solution

MLogA Uncoarsening: Minimizing the Contribution of One Node

N_{i} - the set of i th neighbors with assigned coordinates \tilde{x}_{j}. To minimize the local contribution of i to the total energy, we have to assign to it a coordinate x_{i} that minimizes

$$
\begin{equation*}
\sum_{j \in N_{i}} w_{i j} \lg \left|x_{i}-\tilde{x}_{j}\right| \tag{1}
\end{equation*}
$$

$\forall j \in N_{i}, x_{i}=\tilde{x}_{j} \Rightarrow(1)$ is $-\infty$, we resolve this by setting

$$
x_{i}=\tilde{x}_{t} \Longleftrightarrow t=\arg \min _{k \in N_{i}} \sum_{k \neq j \in N_{i}} w_{k j} \lg \left|\tilde{x}_{k}-\tilde{x}_{j}\right|
$$

MLogA Uncoarsening: Refinement

Find π of W that

$$
\begin{array}{rr}
\text { minimizes } & \sum_{i j \in W} w_{i j} \lg \left|x_{i}-x_{j}\right|+\sum_{i \in W, j \notin W} w_{i j} \lg \left|x_{i}-\tilde{x}_{j}\right| \\
\text { subject to } & x_{i}=v_{i} / 2+\sum_{k, \pi(k)<\pi(i)} v_{k}
\end{array}
$$

What are the most competitive algorithms?

- Randomized ordering - usually comes from parallel network crawling (fast to obtain, bad for performance)
- Lexicographical - network traversal for some order of neighbours such as BFS and DFS (easy to calculate, can be good for networks with excellent locality)
- Gray ordering - inspired by Gray coding when two successive vectors differ by exactly one bit (easy to calculate, good for Web-like (or good locality) networks)
- Shingle ordering - brings nodes with similar neighborhoods together, uses Jaccard coefficient
$J(A, B)=|A \bigcap B| /|A \bigcup B|$ to measure the similarity (works good in "preferential attachment models" when rich gets richer).
- LayeredLPA - label propagation algorithm is similar to the algebraic distance (usually better than previous methods)

Computational Results: Multiscale MLogA vs Gray/Shingle

(a) Gray ordering vs ms-GMLogA

(b) Double shingle vs ms-GMLogA

Scalability

Heavy-tailed degree distributions; Are they compressible?

Refinement for k-partitioning

Potentially hard graphs for multilevel k-partitioning/clustering

S, Sanders, Schulz "Advanced coarsening schemes for graph partitioning", 2012

Potentially hard graphs for multilevel algorithms, $k=4$

Ratios between strict coarsening and AMG solvers

Response to Epidemics and Cyber Attacks

Open Science Grid: collaboration network example

Multiscale Algorithm

function MSSolve (G) if G is small then $S_{f} \leftarrow$ solve the problem exactly
else
return S_{f}

$$
\begin{aligned}
& c \\
& o \\
& a \\
& r \\
& s \\
& e \\
& n \\
& i \\
& n \\
& g
\end{aligned}
$$

$$
\begin{aligned}
& \text { order infected nodes } \\
& \text { find coarse variables } \\
& G_{c} \leftarrow \text { create coarse graph } \\
& S_{c} \leftarrow \operatorname{MSSolve}\left(G_{c}\right) \\
& S_{f} \leftarrow \text { Interpolate }\left(S_{c}\right) \\
& S_{f} \leftarrow \text { LocalRefinement }\left(S_{f}\right) \\
& \text { end if }
\end{aligned}
$$

Coarsening

Coarse model
$\underset{X}{\operatorname{maximize}}$

$$
\sum_{i j \in E_{c}} W_{i j} X_{i} X_{j}+\sum_{i \in V_{c}} A_{i} X_{i} \quad \begin{aligned}
& \text { Links between } \\
& \text { accumulated nodes }
\end{aligned}
$$

subject to

$$
\begin{aligned}
& X_{i}-\prod_{j \in N(i)}\left(1-P_{i j} \Phi_{j} X_{j}\right) \leq T_{i} \quad \forall i \in V_{c} \\
& X \in\{0,1\}^{n}
\end{aligned}
$$

$P_{i j}, W_{i j}, \Phi_{i}, X_{i}, T_{i} \leftarrow$ AMG coarsening,
Galerkin reinforced by algebraic distance

Uncoarsening

$$
\underset{x}{\operatorname{maximize}} \sum_{i, j \in S} w_{i j} x_{i} x_{j}+\sum_{i \in S, j \notin S} w_{i j} x_{i} \tilde{x}_{j}+\sum_{i \in S} a_{i} x_{i}
$$

$$
\text { subject to } \quad x_{i}-k_{i} \prod_{\substack{j \in N(i) \\ j \in S}}\left(1-p_{i j} \phi_{j, t-1} x_{j}\right) \leq b_{i} \forall i \in V
$$

Local refinement
calrent

$$
x_{i} \in\{0,1\} \forall i \in V
$$

$$
k_{i}=\prod_{j \in N(i), j \notin S}\left(1-p_{i j} \phi_{j, t-1} \tilde{x}_{j}\right)
$$

Small random graphs, < 80 nodes, < 400 edges Erdos-Renyi, Barabasi-Albert, and R-MAT models

Iterated Local Search vs Multiscale HIV spread model

Large-scale networks

Network Generation, A Practical Approach

Theoretical questions

- What processes form a network?
- How to predict its future structure?
- Why should network have property X?

Artificial network
This artificial network has similar degrees, some eigs, diameter but ...

Is it really similar to the original network?

Practical question

- Will my algorithm/heuristic work on networks created by similar processes?

Artificial network

Artificial network

Original network

Properties taken into account by most of the existing network generators: degree distribution, clustering coefficient, some eigenvalues, diameter, etc. They are different at different resolutions!

MU|ti-

 SCale Entropic NeTwork GEnEratoR
http://www.cs.clemson.edu/~isafro/musketeer

To create a new edge uv

- $d_{2}(i, j):=$ second shortest path between two neighbors
- Estimate $\mathbb{P}\left[d_{2}(i, j)=k\right]$

1. Sample x from the estimated distribution
2. Randomly select u and find v within distance x
3. Create edge $u v$ with edge weight from a given distribution

Toy Example: Mesh 33×33 by
 0%

Original graph: mesh 33×33	Generation with local changes	Generation with small number of global changes
Number of generated nodes is 3 times bigger	Global changes and number of generated nodes is 3 times bigger	Generation with small number of global changes

Example: Power Grid by \circ

Original graph: US western states power grid, Watts, Strogatz, Nature, 1998	Generation with local changes	Generation with small number of global changes
Number of generated nodes is 3 times bigger	Global changes and number of generated nodes is twice bigger	Generation with small number of global changes

Example: Power Grid by of:

Example: Barabasi-Albert Model by

Median of
replicas

SEIR cascade on Colorado Springs Network

 susceptible \rightarrow exposed \rightarrow recovered \rightarrow susceptible

Multilevel Methods for Network Visualization

http://www.cise.ufl.edu/research/sparse/matrices/

Finding Minimum Vertex Separators

subject to $\quad \mathcal{S}=\mathcal{V} \backslash(\mathcal{A} \cup \mathcal{B}), \quad \mathcal{A} \cap \mathcal{B}=\emptyset, \quad(\mathcal{A} \times \mathcal{B}) \cap \mathcal{E}=\emptyset$,

$$
\ell_{a} \leq|\mathcal{A}| \leq u_{a}, \text { and } \ell_{b} \leq|\mathcal{B}| \leq u_{b} .
$$

Bilinear Quadratic Program $\max _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}} \mathbf{c}^{\boldsymbol{\top}}(\mathbf{x}+\mathbf{y})-\gamma \mathbf{x}^{\top}(\mathbf{A}+\mathbf{I}) \mathbf{y}$
subject to $\quad \mathbf{0} \leq \mathbf{x} \leq \mathbf{1}, \quad \mathbf{0} \leq \mathbf{y} \leq \mathbf{1}, \quad \ell_{a} \leq \mathbf{1}^{\top} \mathbf{x} \leq u_{a}, \quad$ and $\quad \ell_{b} \leq \mathbf{1}^{\top} \mathbf{y} \leq u_{b}$.
Hager, Hungerford "A Continuous Quadratic Programming Formulation of the Vertex Separator Problem"

Finding Minimum Vertex Separators in Heavy Tailed Networks

\square Average ratio \square Maximum ratio

Dimensionality Reduction

Given a set of high dimensional data represented by vectors x_{1}, \ldots, x_{n} in R^{m}, the task is to represent these with low dimensional vectors $y_{1}, \ldots, y_{n} \in R^{d}$ with $d \ll m$, such that nearby points remain nearby, and distant points remain distant.

Segmentation

[SGSBB] "Hierarchy and adaptivity in segmenting visual scenes", Nature, 2006

Segmentation: The pixel graph

Low contrast - strong coupling, High contrast - weak coupling;
Segmentation \equiv Low-energy cut

$$
\operatorname{minimize} \Gamma(u)=\frac{\sum_{i>j} w_{i j}\left(u_{i}-u_{j}\right)^{2}}{\sum_{i>j} w_{i j} u_{i} u_{j}}
$$

Any boolean u that yields a low-energy $\Gamma(u)$ corresponds to a salient segment

Segmentation: Multiscale Approach

Figure 2 | The multiscale normalized cut graph approach. a, A simple image. b, Pixels of the image are nodes, represented by filled circles; strong coupling is represented by thick red lines, and weak coupling by thin blue lines. c, Adaptive coarsening. Each pixel in \mathbf{b} is strongly coupled to one of the chosen seeds shown here (thus, pixels strongly coupled to a given seed form an aggregate). Couplings between the seeds are shown. d, An additional coarsening level. In this case, this is the level at which the salient segment is detected.

Two-dimensional layout problem

Find an optimal layout of 2D objects such that
(1) the total length of the given connections between these objects will be minimal
(2) the two-dimensional space will be well utilized and
(3) the overlapping between objects will be as little as possible

Two-dimensional layout problem

minimize	Total edge length (quadratic functional)
subject to	\forall small squares \mathfrak{s} the amount of the material
	inside \mathfrak{s} is less than its area
	(linear inequality constraints).

Material movement problem

$$
\begin{aligned}
& \min _{u, v} \frac{1}{2} \sum_{i j \in E} w_{i j}\left[\left(\tilde{x}_{i}+\sum_{p \in c(i)} \alpha_{p i} u_{p}-\tilde{x}_{j}-\sum_{p \in c(j)} \alpha_{p j} u_{p}\right)^{2}+\right. \\
&\left.\left(\tilde{y}_{i}+\sum_{p \in c(i)} \alpha_{p i} v_{p}-\tilde{y}_{j}-\sum_{p \in c(j)} \alpha_{p j} v_{p}\right)^{2}\right]
\end{aligned}
$$

square s

$$
\begin{aligned}
& \forall s, \mathfrak{e q d}(s)= \\
& \begin{aligned}
& \frac{\Upsilon(s)+\Upsilon_{r}(s)}{2 \mathcal{A}} h_{y} \frac{u_{\mathrm{rt}}(s)+u_{\mathrm{rb}}(s)}{2}- \frac{\Upsilon(s)+\Upsilon_{l}(s)}{2 \mathcal{A}} h_{y} \frac{u_{\mathrm{lt}}(s)+u_{\mathrm{lb}}(s)}{2} \\
& \frac{\Upsilon(s)+\Upsilon_{t}(s)}{2 \mathcal{A}} h_{x} \frac{v_{\mathrm{rt}}(s)+v_{\mathrm{lt}}(s)}{2}- \frac{\Upsilon(s)+\Upsilon_{b}(s)}{2 \mathcal{A}} h_{x} \frac{v_{\mathrm{rb}}(s)+v_{\mathrm{lb}}(s)}{2} \\
& \leq M(s)-\Upsilon(s)
\end{aligned}
\end{aligned}
$$

$\Upsilon(s) \quad$ total area of nodes overlapping with s
h_{x} and h_{y} width and height of s
\mathcal{A}
$\Upsilon_{r}(s) \quad$ area of nodes overlapping with right neighbor square
$\Upsilon_{l}(s)$
area of s
$\Upsilon_{t}(s) \quad \ldots$
$\Upsilon_{b}(s)$

Two-dimensional layout problem: coarsening

Two-dimensional layout problem: example Mesh 64x64 + Random Edges

Two-dimensional layout problem: VLSI Chip

Original

Multiscale Solver By Brandt, Ron

- Ron, S, Brandt "Relaxation-based Coarsening and Multiscale Graph Organization", 2011
- Chen, S "Algebraic Distance on Graphs", 2011
- Leyffer, S "Fast Response to Infection Spread and Cyber Attacks on Large-scale Networks", 2013
- S, Sanders, Schulz "Advanced Coarsening Schemes for Graph Partitioning", 2013
- Gutfraind, Meyers, S "Multiscale Network Generator", 2013
http://www.cs.clemson.edu/~isafro/musketeer
(can be used to generate networks for your tests!)

Surveys

- Brandt, Ron "Multigrid Solvers and Multilevel Optimization Strategies", 2003
- Walshaw "Multilevel Refinement for Combinatorial Optimization", 2008
- Buluc, Meyerhenke, S, Sanders, Schulz "Recent Advances in Graph Partitioning", 2013
- Bartel et al. "An Experimental Evaluation of Multilevel Layout Methods", 2011

The Minimum Workbound Problem

Goal: minimize over all π

$$
w b(G, \pi)=\sum_{i} \max _{\substack{j \\ \pi(j)<\pi(i)}} w_{i j}(\pi(i)-\pi(j))^{2}
$$

Generalization:

$$
w b(G, x)=\sum_{i} \max _{j: x_{j}<x_{i}} w_{i j}\left(x_{i}-x_{j}\right)^{2} \approx \sum_{i}\left(\sum_{j: x_{j}<x_{i}} w_{i j}\left(x_{i}-x_{j}\right)^{p}\right)^{2 / p}
$$

Window Minimization for the minimum workbound problem (Taylor exp.):

$$
w b_{p}(W, \tilde{x}, \delta) \approx w b_{p}(W, \tilde{x}, \underline{0})+\sum_{i \in W} \frac{\partial w b_{p}}{\partial \delta_{i}}(W, \tilde{x}, \underline{0}) \delta_{i}+\sum_{i, j \in W} \frac{\partial^{2} w b_{p}}{\partial \delta_{i} \partial \delta_{j}}(W, \tilde{x}, \underline{0}) \delta_{i} \delta_{j}
$$

Experimental Results: Minimum Workbound

[SRB] "Multilevel algorithms for linear ordering problems", 2008

Susceptible-Infected-Susceptible Model

The Kephart-White SIS model parameters:
S - number of susceptible nodes; I - number of infected nodes;
β - infection transmission rate; δ - rate of recovery from infection.

$$
\left\{\begin{array}{l}
\frac{d I}{d t}=\lambda S-\delta I \\
\frac{d S}{d t}=\delta I-\lambda S
\end{array}\right.
$$

Chakrabarti et al. proposed a dynamical system of SIS

$$
1-\phi_{i, t}=\left(1-\phi_{i, t-1}\right) h_{i, t}+\delta \phi_{i, t-1} h_{i, t}, \quad i=1 \ldots|V|,
$$

to describe the probability of keeping i in S, where

$$
h_{i, t}=\prod_{j \in N(i)}\left(1-p_{i j} \phi_{j, t-1}\right) .
$$

Epidemic threshold τ, a measure to predict when the infection outbreak disappears (comparable to β / δ).

Physical system

large system of equations completely disordered
large system of equations partially disordered

large system of equations ordered to optimize calculations

Uncoarsening: Interpolation, Minimum p-sum Problem

1) Place the seeds according to their aggregates

2) Place other vertices by minimizing their local contribution to the total energy :

- $p=1$: at their medians
- $p=2$: at their weighted averages
- $p>2$: solve minimization numericaly

Relaxation

Two types of pointwise relaxation that improve current solution:

- Compatible Relaxation: keep coarse vertices (seeds) invariant minimizing the energy of other vertices one-by-one wrt to the problem,
- Gauss-Seidel Relaxation: Improve all vertices.

Initial legal coordinates $x_{i}, \forall i \in V$
for all $i \in V y_{i} \leftarrow x_{i}$
for all $i \in F$ (Compatible) $/ i \in V$ (Gauss-Seidel) do

$$
y_{i}=\arg \min _{y_{i}} \begin{cases}\left|\sum_{y_{j}<y_{i}, j \in V} w_{i j}-\sum_{y_{j}>y_{i}, j \in V} w_{i j}\right|, & \text { if } p=1 \\ \sum_{j \in V} y_{j} w_{i j} / \sum_{j \in V} w_{i j}, & \text { if } p=2 \\ \sum_{j \in V} w_{i j}\left(y_{i}-y_{j}\right)^{p}, & \text { if } p>2\end{cases}
$$

end
for all $i \in V x_{i}=\frac{v_{i}}{2}+\sum_{y_{k}<y_{i}} v_{k}$

Uncoarsening: Local Refinement, $p=2$

Lemma: Improving the ordering cost of W (a subset of consecutive vertices) cannot increase the cost of total ordering.

Window minimization

- \tilde{x} - current approximation
- δ-correction

Uncoarsening: Local Refinement, $p=2$

$\operatorname{minimize} \sigma_{2}(W, \tilde{x}, \delta)=\sum_{i, j \in W} w_{i j}\left(\tilde{x}_{i}+\delta_{i}-\tilde{x}_{j}-\delta_{j}\right)^{2}+\sum_{\substack{i \in W \\ j \neq W}} w_{i j}\left(\tilde{x}_{i}+\delta_{i}-\tilde{x}_{j}\right)^{2}$
To prevent the possible convergence of many coordinates to one point add

$$
\sum_{i \in \mathfrak{W J}}\left(\tilde{x}_{i}+\delta_{i}\right)^{m} v_{i}=\sum_{i \in \mathfrak{W J}} \tilde{x}_{i}^{m} v_{i}, m=1,2
$$

Final system of equations

$$
\left\{\begin{array}{l}
\sum_{j \in \mathfrak{W}} w_{i j}\left(\delta_{i}-\delta_{j}\right)+\delta_{i} \sum_{j \notin \mathfrak{W}} w_{i j}+\lambda_{1} v_{i}+\lambda_{2} v_{i} \tilde{X}_{i}=\sum_{j} w_{i j}\left(\delta_{i}-\delta_{j}\right) \\
\sum_{i} \delta_{i} v_{i}=0 \\
\sum_{i} \delta_{i} v_{i} \tilde{x}_{i}=0
\end{array}\right.
$$

Linear Arrangement: Spectral Approach

minimize over real x

$$
\text { minimize over real } x
$$

$$
\begin{gathered}
E(x)=\sum_{i, j} w_{i j}\left(x_{i}-x_{j}\right)^{2} \\
\sum_{i} x_{i}^{2}=1, \quad \sum_{i} x_{i}=0 . \\
\Longleftrightarrow \\
E(x)=x^{T} A x \\
x^{T} B x=1, \quad \sum_{i} x_{i}=0 \\
a_{i j}=-w_{i j}, a_{i i}=\sum_{j} w_{i j}, b_{i j}=\delta_{i j} \\
\Longleftrightarrow
\end{gathered}
$$

subject to

$$
A x=\lambda B x .
$$

x is the second eigenvector of
Heuristics: order the vertices according to the eigenvector of the second smallest eigenvalue.

Experimental Results: Linear Arrangement, $p=2$
[SRB] "Multilevel algorithm for the minimum 2-sum problem", 2006

Linear Arrangement, Larger powers

Linear Arrangement, Larger powers

- Define $\widehat{w}_{i j}=w_{i j}\left(\tilde{x}_{i}-\tilde{x}_{j}\right)^{p-2}$
- Substitute $w_{i j}$ with $\widehat{w}_{i j}$ in
$\operatorname{minimize} \sigma_{p}(W, \tilde{x}, \delta)=$

$$
\begin{aligned}
& =\sum_{i, j \in W} w_{i j}\left(\tilde{x}_{i}+\delta_{i}-\tilde{x}_{j}-\delta_{j}\right)^{p}+\sum_{\substack{i \in W \\
j \notin W}} w_{i j}\left(\tilde{x}_{i}+\delta_{i}-\tilde{x}_{j}\right)^{p}= \\
& =\sum_{i, j \in W} \widehat{w}_{i j}\left(\tilde{x}_{i}+\delta_{i}-\tilde{x}_{j}-\delta_{j}\right)^{2}+\sum_{\substack{i \in W \\
j \notin W}} \widehat{w}_{i j}\left(\tilde{x}_{i}+\delta_{i}-\tilde{x}_{j}\right)^{2} \approx
\end{aligned}
$$

$$
\approx \widehat{\sigma}_{2}(W, \tilde{x}, \delta)
$$

Experimental Results: Linear Arrangement, $p=\infty$ [SRB] "Multilevel algorithms for linear ordering problems", 2008

