Multiscale Methods

In many complex systems a big scale gap can be observed between
micro- and macroscopic scales because of the difference in physical
(social, biological, mathematical, etc.) models and/or laws at different

scales.




“VISIONS OF QUIXOTE,” OIL ON CANVAS, 1989




Even if elementary objects of the system have a complicated (and
even nondeterministic) behavior, their ensembles can be more
structured .
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Even when the difference between models at different scales is not
observed, an efficient approximation of the microscopic scale can
be achieved by looking at the macroscopic scale with its
substantially smaller number of elementary objects.
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Motivation

There exist tens (if not hundreds) of different classes of
algorithms for large-scale combinatorial optimization that
eventually ensure the solution or a small gap.

However, despite of their effectiveness and availability of
computational resources, there are always certain barriers in the

problem size and algorithm complexity.
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Motivation

When these barriers are met, typical ways to continue tackling
the problem are by using

Decomposition Smart but “blind” search
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However, there is another barrier that these methods typically
do not overcome: we solve “one variable at a time”



The Multiscale Method
Multiscale = Multilevel = Multigrid = Multiresolutional

e The Multiscale method is a class of algorithmic techniques for
solving efficiently large-scale computational and optimization prob-
lems.

e A multivariable problem defined in some space can have an ap-
proximate description at any given length scale of that space (a
continuum problem can be discretized at any given resolution, multipar-
ticle system can be represented at any given characteristic length, etc).

e The multiscale algorithm recursively constructs a sequence of
such descriptions at increasingly larger (coarser) scales, and com-
bines local processing at each scale with nter-scale interactions.



Algebraic multigrid in three slides

e We need to solve a large-scale system Ax = b, SPD

o -Cranssiaarelimination, HH, Gheteskey, @R, ...

o Iterative methods z¥*9 = Tz®) 4y, e.g., Gauss-Seidel station-
ary iterative relaxation
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Aha! A suitable relaxation can reduce the information content of
the error, and quickly make it approximable by far fewer variables.



Algebraic multigrid in three slides

Brandt, McCormick, Rudge, “Algebraic Multigrid (AMG) for automatic multi-
grid solution with application to geodetic computations”, 1982

e Given: A € R™" positive definite, symmetric.
e Goal: solve Ax =b.

e Claim: If A is positive definite, then

1
x minimizes P(x) = §$TA$ —a'b iff Az =b.

e I - current approximation

o c(rror) = x — I (hard to estimate)

o b — Ar = r(esidual) = A(x — ) = Ae



Algebraic multigrid in three slides

At all levels: solve Ae = r, where e(rror) = x — T and
r(esidual) = b — Ax

1
min §eTAe —ely =
1
min §(é+ M eV A+ 1 ) — (6+ 1 e)r & . &
. 1 C i C C >
min ()" [(H)TA ] € = ()T (1) (r — A¢) =

1
main §(eC)TACeC — (ef)'re

e ¢ - initial fine level error
C
e ¢€ - coarse level error

e 1/ - coarse-to-fine interpolation operator



History of Multiscale Methods

Joseph Fourier Radiy Fedorenko Achi Brandt

Functional analysis at Smoothing, finite Popularization, first
multiple resolutions elements, two-level basic research
(1768-1830) multigrid (1977), algebraic

(1930-2009) multigrid (1980), ...



Examples of multilevel and multiscale classes of algorithms

* Line search multigrid for convex optimization (Goldfarb, Wen)

* PDE-constrained optimization (Borzi, Nash, Toint, ...)

* Multilevel trust-region methods (Gratton, Mouffe, Sartenaer, Toint, ...)

* Non-convex non-linear optimization for VLSI placement (Chan, Cong, Sze, ...)
* Linear programming - multilevel iterative methods (Gelman, Mandel|, ...)

* Derivative-free multilevel optimization (Mendonca, Peckman, Toint, ...)

Examples of multilevel combinatorial optimization

* (Hyper)graph partitioning and clustering (see many references in “Recent
advances in graph partitioning”, 2016)

* Various graph/matrix arrangement problems such as the minimum linear
arrangement, bandwidth, workbound, wavefront, fill-in (Brandt, Hu, Ron, Safro,
...)

* \ertex separators (Karypis, Hager, Safro, Sanders, Schultz, ...)

* Coloring (Walshaw)

TSP (Walshaw, Ron, ...)

e VLSI placement (Chan, Cong, Hu, Karypis, Brandt, Ron, Viswanathan, ...)
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Multilevel Algorithms for Optimization Problems on Networks

e Examples: VLSI Placement, Partitioning, Minimum Linear Ar-
rangement, Minimum Bandwidth, Clustering, TSP, Commu-
nity Detection, Segmentation, Visualization, ...

e (Quality: Usually exhibit superior results to other methods on
practical test suites.

e Time: Usually exhibit linear time complexity:.

e Technical advantage: Admits parallelization. Suitable for var-
ious HPC configurations.



Four main questions Think globally, act locally

Distance metric Relaxation and

between nodes . Refinement

Coarse—to—fine

Fine—to—coarse
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Network Compression-friendly Ordering
(and Minimum Linear Arrangement Problems) ,
Compressed row representation

m Sorted list of neighbors (possibly with edge info)

1 2,5,6,12,18, 23,103

1584 1585, 1592, 1600

[KDDOQ9 Chierichetti et al.] Given a sorted list of neighbours (x4, x,, X3, -..),
represent it by a list of differences (x, X, - X;, X3 - X4, ...) Or (X, X, - X4, X3 - X, ...)

Compressed row gap representation

m Sorted list of neighbors (possibly with edge info)
1 1,4,5,11,17, 22,102

1584 1, 8,16

... and then apply some compression algorithm (such as Boldi-Vigna scheme)



Network Compression-friendly Ordering

e Graph G = (V, F)
e Weighting function on edges w : £ — R>g

e Permutation of vertices 7 : V — {1,2,...,|V|}

The Minimum Logarithmic Arrangement Problem

min Y wi;lg |7 (i) — 7(j)]
Tes(n) B

Network compression-friendly

ordering, minimum linear
— arrangement, minimum 2-sum,
minimum bandwidth, etc. are well
. known NP-complete problems.
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Graph Minimum Partitioning/Clustering Problem

Given
e Graph G = (V, F)
e Weighting function on edges w : 2 — R>g

e Partitioning of vertices 7 : V. — { Py, Pa, ..., Py}

e Imbalance factor 0 < o < 1

The Minimum k-partitioning Problem

min E Wyw
7 is partitioning
uUE Pj ,’UQ,PJ'

v
such that |P;| < (1 + «) - %

Applications: network analysis, machine learning, load-balancing, HPC, etc.



Results with up to 5% imbalance
S max<=1.05x S opt

| _graph 2 4 ] 16 32 G
add20 || 536 [1256) [[PMNEZ] | 1120 [628] [~HPMNEZ] 1657 [314] [HYPAL] 2027 [157] [FSMAGP] | 2341 (78] [FSMAGP] | 2920 [39] [FSMAGE]
data 181 [1497] [SDP] 363 [?_45] [KeFFPa] i_ 628 [374] [HW] 1076 [187) [FEMAGP] | 1743 [24] [FSMAGE] | 2747 [47) [KaBaPET)
Telt 87 (2398] [JE] | 197 (1237) [NW] | 529 [619] [KaFFPaE] | 557 (309) [KaFFPaE] 930 [155) [FSMAGP] | 1457 (77] [KaBaPRT]
ulke 15 [2455] [JE] =5 (1238] [*HEFF] 75 (633 [KaFFPaE)] 137 (315] [*HPMNEZ] | 236 (158] [KaBaPE] 394 [79) [KaBaPE]
addaz 10 [2481) [J2.2] 33 [1241) [JE] 63 [650] [KasPar] 117 [311) [JE] 217 [156) [JE] 476 [80] [*HPMNEZ]
beestk33 5514 [4554] [iJ] 20158 [2294) [FSMAGF] || 33508 (1147) [FSMAGF] [ 54119 (574] [FEMAGF] | 76070 (287) [7HLF| | 105297 [143] [*HLF]
whitaker3 126 [4908] [JE] 376 (2546 [FEMAGP] | &44 [1283) [*HPMNEZ] | 1068 [643) [KaBaPET| | 1632 (322) [KaBaPET] | 2425 (161) [*HLP]
crack 152 [5187] [HW] 560 [2606] [MW] A6 [1342] [FEMAGE] 1063 [671) [FSMAGP] | 1655 [329) [FSMAGP] | 2487 [154] [*HLF]
wing nodal 1663 (5742) [SDP] | 5520 (2869] [FSMAGP] | 5339 (1436) [FSMAGP] | 2160 [T18] [FSMAGE] 11533 (359] [#ILP] | 15514 [179] [ILF] |
fe_delt2 | 130 [5572) [MESE] 33E [2018] [FEMAGP] 575 [1462] [KaFFPaE] 979 (731) [FSMAGP] || 1571 [366] [*HPMNEZ] | 2406 [183] [*HLP]
vibrobox | 10510 [B184] [JF] 18600 [3235] [FSMAGP] || 23924 [1A17) [KaFFPaE] || 31214 [R09) [~LE] 3RAIG [405) [VHLP] | 45987 [202] [+HLE]
bosetl2s | o0 o [7008] [GrPart] | 7905 (3672) [KaFFPaE] | 13540 [1830] [KaFFPaE] | 00924 (915] [NW] 33450 (450 [FEMAGPE] [53703 (220] [FSMAGE]
delt 137 (80C3] [NW] | 515 (4090] [NW] 515 [2047] [FEMAGE] B87 (1024] [KaDaPE] || 1493 (512) |[KaBaPET] | 2478 (256 [“HLF]
fe_sphere 384 [8289) [JE] FRZ [4257] [~HEFFE] 1152 [2060] [JE] 1675 [1076] [FEMAGT] | 2427 (536) [FRMAGP] | 3456 (269) [FEMAGE]
cti 315 [R480] [JE] 527 [4416] [FRMAGP] 1654 [2200] [~EFFE] | 2701 [1101] [KaBaPET] [ 3904 [553) [FsmMace] | =460 (277) [HLE]
memplus | 5255 [5322) [*HLP| 9281 (4661) [HLP] || 11543 (2330] [*+KFFF] |12799 (1165] [*HPMNEZ]| 13857 (582) [+HLF] 15875 [291) [~HLEP]
ced 353 (11811) [KaFFFa] | 908 (5906) [KaBaPE| | 1420 (2046) [FHEMNEZ] | 204z [1477) [FHILEF] 2855 [739] [+HLF] 5959 [369) [+HLF]
boestlk30 | 6251 [14679) [JE] 16165 [7590) [FEMAGE] | 34068 (3796] [FSMAGE| | 68323 (1898) [FSMAGP] | L0S368 (949 [FEMAGE] | loorar (474) [*HILE] |
hossth31 | 2660 [1BAEZ| [*HLP] | 7065 [9341) [FEMACGE] 12823 (4669] [*HLE] 22718 [2336) [+HLE] 36354 [1168) [*HLP] | 55250 [584] [*HLP]
fa_pwt | 540 (18260] [GrPart] | 700 [9370] [KaFFPak] | 1405 [4744] [FSMAGP] || 2737 (2396) [FSMAGE] | 5305 [1199] [“ILP|] | 7956 [599) [~HLE]
begstledz || 4622 (23319) [KagPar] | 8441 [11706] [KaFFPa] | 18955 [5855] [*HPMNEZ] | 34374 [2928) [KaBaPE] 58352 (1464 [*HFMNEZ]| 88595 (732) [SHLF]
fe_body || 262 [22544) [MQI] S8 [11835] [HKEFE| | 1012 [5918] [++IPMNEZ] | 1683 (2958) [KeBaPE] | 2677 (1479] [#LP] | 4500 [740] [~LP]
tE0k 65 [31437] [SDP] 195 (15719 [~HEFFP] | 441 [7274) [~+PMNE2] | 787 [3938] [KaBaPE] | 1289 [1969) [*HLF] |E>13 [984] [*HILP]
wing || 770 (32511] [*HKFFP] | 1589 (16270] [~ILF] | 2440 (8114 [<HPMNEZ| 3775 [4068) [*HPMMNEZ] | 5512 [2035) [*HLP] | 7529 [1018] [*HLF]
bracka 560 [32600] [SDP] | 2731 [164°5| [KaFFFa] | 6592 [3219] [KaFFPaE| | L1052 (4110] [ILP] | 16765 [2055] [KaBaPET] | 25100 [1027] [HLF]
finans12 || 162 [37376) [Ch2.0] 324 [19088) [Ch2.0] | e4s(o344] [Ch2o] | 1296 (4672) [Chz.0] 2502 [2336] [Ch2.0] | 10560 [1168] [NW]
fe_tooth || 3773 [40567) [SDP] |6687 (20508) [~HPMNED| | 11147 (10255) [~HLP] || 16983 (5128) [~HLP] 24270 [2564] [~ILF] | 33387 (1282 [*HLF]
fe_rotor || 1940 [S2284] [KaFFFa] | 6779 [26150) [KaBaFET| | 12308 [13074] [*HLP] | 19677 [6538) [*+ILF] 30355 [3269) [~HLP] | 44388 (1634] [~HLP]
598a 2336 [STESS] [MQI] 7722 |29130] [FLF| |15413 (14565 [*HPMNEZ] (25198 [7282] [~HFMNEZ|| 37632 (3641] [FHLP| | 54677 [1820) [*HLF]
fe_ocean | 311 [73322) [GrPart] | 168¢ (37274) [KaFFFPa] | 3556 (18811] [KaBaFE] | 7338 (9413) [FSMAGP] | 12033 [4707) [*HLP] | 19391 [2353) [+HLF]
144 [[6345 (75941] [FSMAGP|| 14978 (37971) [*ILE| | 24174 [18986) [*HLP] 36607 (9493) [~HLE] 54160 [4747) [~ILF] | 75753 (2374) [*HLF]
wave |5524 (B2064) [KaFFPaE]| 16528 (41008) [~HLF] 25489 [20183) [*HPMNESZ|[ 42024 (10258) [*HLP] | 59608 (5129] [~HLF] | 81989 [2565] [*HLF]
rl4h || 3802 [112532) [MQI] || 12858 [56374) [#HLP] 25126 [28182) [~HPMNEZ][ 41057 [14094] [*HLF] | 63397 (7047] [HLP] | 94123 (3523] [*HLF]
auto 9450 [235532) [MQI] [Bo71 [117782) [KaFFPaE]| 44205 [58891) [KaFFPaE] | 74266 [29446) [~LP] [ 118998 [14723) [*HLP] | 169260 [7361) [*HLP]




Simple Case: Coarsening by Contractions
(aka strict coarsening)

Intuitive explanation

Two or more vertices are merged if they have a good chance to
share common properties.

Examples of common properties
* k-partitioning/clustering: i and j belong to the same part
* Network compression/linear arrangement: | (i) — m(j)|is small

27 6,27

LEVEL 2

- LEVEL 1



Simple Case: Coarsening by Contractions

Common problem of strict coarsening methods

They make local decisions (i.e., merging) before accumulating the
relevant global information. It creates additional difficulty for solving
irregular instances when local decision contradicts global solution.

Existing multilevel solvers

@ CHACO by Hendrickson and Leland, since 1993
@ METIS by Karypis and Kumar, since 1995

@ SCOTCH by Pellegrini, since 1996

@ JOSTLE by Walshaw, since 1995



Four main questions Think globally, act locally

Distance metric Relaxation and

between nodes . Refinement

Coarse—to—fine

Fine—to—coarse
operator

f

Q¢

Exact or best possible solution



Models of Connectivity

Shortest path; All/some indirect paths
Spectral approaches

Flow network capacity based approaches

Random-walk approaches: commute time, first-passage time,
etc. (Fouss, Pirotte, Renders, Saerens, ...)

Interpretations of the diffusion (Lafon, Maggioni, Coifman, ...)

@ Effective resistance of a graph (Boyd, Saberi, Spielman, ...)



Stationary lterative Relaxation

Relaxation process that shows which pair of vertices tends to
be ‘more connected’ than other.

@ Ve Vdefine x; = rand()

@ Do k times step 3

Q@ VieVx=(-wxT"+udXwx /W
Conjecture

If|xi — X;| > |xu — Xv| then the local connectivity between u and
v is stronger than that between i and |.

il

We will call sfjk) = |X; — X;| the algebraic distance between | and
J after k iterations.



Toy Example: mesh 20x40 + diagonal

i

40
edge weights: red=2, black=1

20



Random Initialization




. after 10 iterations of Jacobi over-relaxation

J
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0.04

0.02

-0.02

-0.04

0.03r

0.02 |-



Algebraic Distance

The iterators H, for z*tY) = H, %) are defined as

gi | lower upper
|agona\ triangular triangular

+ U)Hgauss = (D — L)™'U Hsor = (D/w— L)' ((1/w—1)D

D')I"]D A~ Covweuv

)+ L+ U)H joeopi = D"HL +U) H sgcohi = (D/w)™ (1w —1)I

>n nodes ¢ and Extended n-normed alegebrajc distance betwee
random initializa- j after k iterations z**V = H.2® on R

1/p
) x(ﬁf”p\ ,; = U(Y‘\ (k,r

2 A Y [ / /

Ron, S, Brandt "'Relaxation-based coarsening and multiscale graph organization", SIAM MMS, 2011

Chen, S ““Algebraic distance on graphs'’, SIAM J on SC, 2012

Brandt, Brannick, Kahl, Livshits “"Bootstrap AMG", SIAM J on SC, 2011

Bolten et al. “"A Bootstrap Algebraic Multilevel Method for Markov Chains", SIAM J on SC, 2011

Shaydulin, Chen, S “'Relaxation-based coarsening for multilevel hypergraph partitioning', SIAM MMS, 2019
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Theorem

Given a connected graph, let (1., V;) be the eigen-pairs of (L, D),
labeled in nondecreasing order of the eigenvalues and assume that
o # 3 # pin_1 # pn- Unless w = 2/(pz + p1n), S ) will always
converge to a limit |(e; — &) ¢| in the order O(H") for some ¢ and

SIOW 0<d<1.
(i) 0 <w< =20, then & e span{{z} and § = ]:jﬁg
convergence ... (i) If o2 <w < o2, then & € span{ip} and 6 = — =42,
(i) If s ﬂ” <w< mm{m =}, then ¢ € span{,} and
= —1-wua.
1—wpp!’
. P ~ _ 1—wpp—
(V) If o) Sw < 2, then & € span{¥,} and 6 = =5~
Theorem
Given a graph, let (;, V;) be the eigen-pairs of (L, D), labeled in
nondecreasing order of the eigenvalues. Denote V = [, . . ., Vn]. Let
%) pe the initial vector of the JOR process, and leta = V'~ 1x) with
ar # 0. If the following two conditions are satisfied:
¥ 2k -I _ 2 -I L] L] []
| >0 and fo= 20C U0 1 but fast stabilization
1+an®(1+rn)? ~ w
where o = (Z,-# a?) / (4a3), ry is the unique root at [0, 1] of Wh ICh IS What we neEd
2072 4 20/ 4 (K4 1) — k=0, in multilevel framework
2
(k) (k+1)
theni_ [ % | X < 4cond(D)fy .
[[xC|” [|x D] (1 + cond(D)f)?

» Ron, S, Brandt “"Relaxation-based coarsening and multiscale graph organization', SIAM MMS, 2011
» Chen, S "Algebraic distance on graphs", SIAM J on SC, 2012



Four main questions Think globally, act locally

Distance metric

between nodes . . Refinement

Coarse—to—fine

Fine—to—coarse
operator

f

Q¢

Exact or best possible solution



Types of Coarsening

1. Iterative selection of some variables to
the coarse level (e.g., independent sets)

2. Strict coarsening (merging pairs) with some
smart distance function (similar to some graph

partitioning multilevel techniques)

3. AMG algebraic distance based coarsening
of graph Laplacian

32



AMG: coarse variables

[

SEEDS -~

e Choose a dominating set C' C V s.t. all others from F = V \ C are
“strongly coupled” to C

e “Strongly coupled” = Kernel coupling - algebraic distances p;;

» Ron, S, Brandt “"Relaxation-based coarsening and multiscale graph organization', SIAM MMS, 2011

» Chen, S "Algebraic distance on graphs'’, SIAM J on SC, 2012

» Brandt, Brannick, Kahl, Livshits “'Bootstrap AMG", SIAM J on SC, 2011

» Bolten et al. A Bootstrap Algebraic Multilevel Method for Markov Chains'', SIAM J on SC, 2011

» Shaydulin, Chen, S “"Relaxation-based coarsening for multilevel hypergraph partitioning", SIAM MMS, 2019



Interpolation weights

(thw =

\

ey
Pij

1

. 0

> Prirl)

keN(i)

Belong to several aggregates

e F, je N(i)

reC,j=I
otherwise

@ Define the interpolation weights of all vertices

@ In some sense, the interpolation weights (iw) are the
probabilities of a vertex to share a common property with
the aggregates it belongs to.



Coarse Graph

1/ - restriction operator L - weighted Laplacian at level f
I g b ! i
l 0 | I I
: 1 kf--- - -wikl) |
| ¥ I i
! QO ! !
| > | :
I ~ | |
| O ! |
| > | |
JI———7 7 ¥ s : !
(T2)ir | Pfee P = Wi j
q |
3 - g

coarse level
vertices

Coarse graph Laplacian

wry = Z(Tf)u cwy, - (1w

1k



Coarsening is Interpolation
problem Relaxation
iIndependent Refinement

Minimum k—Partitioning
Minimum 2—-sum

Minimum Bandwidth

Minimum Workbound \\ 5. '
Minimum Wavefront / .

Minimum Linear Arrangement

Network Compressed Representation *
Clustering Q O

Manifold Identification

Exact solutlnn



MLogA Uncoarsening: Minimizing the Contribution of One Node

N; —the set of ith neighbors with assigned coordinates X;. To
minimize the local contribution of / to the total energy, we have to
assign to it a coordinate x; that minimizes

S wylglxi — % (1)

JEN;

Vje N, xi =X = (1)is —oo, we resolve this by setting

X =X < t=arg min > wiglg X — X .
© ' kAN,



MLogA Uncoarsening: Refinement

Find = of W that
minimizes Z w;ilg |x; — xj| + Z wiilg [X; — Xj|
ijew ieW.jegW

subject to Xi = V;j/2+ Z Vi
k,m(k)<m(i)



What are the most competitive algorithms?

>

Randomized ordering - usually comes from parallel
network crawling (fast to obtain, bad for performance)

Lexicographical - network traversal for some order of
neighbours such as BFS and DFS (easy to calculate, can
be good for networks with excellent locality)

Gray ordering - inspired by Gray coding when two
successive vectors differ by exactly one bit (easy to
calculate, good for Web-like (or good locality) networks)

Shingle ordering - brings nodes with similar neighborhoods
together, uses Jaccard coefficient

J(A,B) = |A( B|/|A|J B| to measure the similarity (works
good in "preferential attachment models” when rich gets
richer).

LayeredLPA - label propagation algorithm is similar to the
algebraic distance (usually better than previous methods)



Computational Results: Multiscale MLogA vs Gray/Shingle

I T I T I
1 —
—— directed: ms-GMLogA/Gray
. = — undirected: ms-GMLogA/Gray
=
S; 0.8
E
S 056
5 |
-
=04
2
®
—_
0.2
I | I | I | I |
0 20 40 60 80
ordered graphs

(a) Gray ordering vs
ms-GMLogA

100

ratios ms-GMLogA/Shingle

—— directed: ms-GMLogA/Shingle
— undirected: ms-GMLogA/Shingle

I | I | I
20 40 60 80
ordered graphs

(b) Double shingle vs
ms-GMLogA

100



Scalability

! v Je v sy ey by

4 2 0 2 4 6 8 10 12
lg(running time 1n sec.)



Heavy-tailed degree distributions; Are they compressible?

1

Compressed BPL/Native BPL

| | | !
0 10 20 30 40
Networks with heavy-tailed degree distribution

0.2 '




Refinement for A-partitioning

solution inherited
from coarse level

LEVEL 1

LEVEL 0

refined solution



Potentially hard graphs for multilevel
k-partitioning/clustering

S, Sanders, Schulz “Advanced coarsening schemes for graph partitioning”, 2012



Potentially hard graphs for multilevel algorithms, A=4

Ratios between strict coarsening and AMG solvers

2_2 I I I I I I I I I I I I I I

1 2 3 45 6 7 8 910111213 14 15

Potentially hard networks



Response to Epidemics and Cyber Attacks

100

LBNL ORNL

30

0
m LANL
20

Open Science Grid: collaboration network example

Goldberg, Leyffer, S “Optimal Response to Epidemics and Cyber Attacks in Networks”, 2015



20

site ¢ closed /open z; € {0,1}
infection probability at ¢ ¢;

40

70

1

maximize
X

subject to

infection at node j is less
than some constant

number of shared users W;
probability of j — ¢ spread  p;;

connections between
open sites, i.e., the utility

ofnetwork
Z Wi LT
1yell
Ti — H (1 —pijpizj) <t
JEN (4)
r e {0,1}"

VieV



Multiscale Algorithm

function MSSolve(G)
if G is small then
St < solve the problem
exactly
else
order infected nodes
find coarse variables
(G. < create coarse graph
S. < MSSolve(G.)
S¢ < Interpolate(S,)
S¢ < LocalRefinement(Sy)
end if
return Sy

Q@Q3—30% 000

Q@ 3 730w = 000 3 C



Coarsening

i
I
I
I
New linear term I
Coarse model / o
Links between

maximize W,: X; X A X, accumulated nodes
subject to X, — H (1-P,;®,X,)<T; Viel,
JEN ()
X e{0,1}"
P, Wi, ®;, X;, T; < AMG coarsening,

Galerkin reinforced by algebraic distance

50



Uncoarsening

maximize E Wi X j + E wija:z-:’i:j + g a;xT;
T

1,JES 1€S5,7€S €S
subject to x; — k; H (1 —pij¢j’t_133j) <b;VieV
FEN(3) Local refinement
JES

z; € {0,1} VieV

q - Ib\ :
Boundary conditions AT %




Small random graphs, < 80 nodes, < 400 edges
Erdos-Renyi, Barabasi-Albert, and R-MAT models

|

0.98

0.96

0.94

.92

Ratio between MA and uptimal solution

| . | . | .
50 100 150 200
Networks ordered by ratios

Te
@
)

(



lterated Local Search vs Multiscale

HIV spread

14000
12000
10000

3000

Optimization objective

6000

model
................... A P T h—
Objective by multiscale method with 5 refinement iterations
N i
o .,, 600
& |
L | -
|
................................... ....i”i”.“i”I.-..............."'...............
o 380
— . II‘ f-" —
\'-,‘ /
................................ 9‘\,/
P e e e
s
i . £ 250 Slow improvement |
o""""""l'oo N " zones
...... s SO e SR = NS
e o
© - T -
0

Number of iterations



Large-scale networks

128 T e F—— T e === -]
e -
32 E _____________________________________________________________________________ el
. : Networks have nodes
Ratios : with exceptionally high
Between 6} ssssimmmmeeansaesnn s ienaaiiiniis =

MA and ILS
8 -

degrees

. . . | . .
0 20 40 60 80 100
Networks ordered by ratios
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Network Generation, A Practical Approach

Theoretical questions Practical question
* What processes form a network? * Will my algorithm/heuristic work
* How to predict its future structure? on networks created by similar
* Why should network have property X? processes?
Artificial network Artificial network

This artificial network has
similar degrees, some eigs,
diameter but ...

\

: . Original network
Is it really similar to the

original network?

55



Properties taken into account by most of the existing network generators:
degree distribution, clustering coefficient, some eigenvalues, diameter, etc.
They are different at different resolutions!

Original Generated
nefwork neftwork

MUIti-
$Cale
Entropic
NeTwork
GEnEratoR

Control of
simliarifles and
properties

Control of
simllarltles and
propertles local, controlled
randomization and
properly generatlon

at all scales

Control of
simllarltles and
propertles

S0 v = 0003 C

@ 3

http://www.cs.clemson.edu/~isafro/musketeer



To create a new edge uv

* d,(i, j) := second shortest path
between two neighbors
* Estimate P[d,(i, j) = k]

1. Sample x from the estimated
distribution

2. Randomly select u and find v within
distance x

3. Create edge uv with edge weight
from a given distribution




Toy Example: Mesh 33x33 by M

Generation with small number

Original graph: mesh 33x33 ||Generation with local changes of global changes

Number of generated nodes is||(Global changes and number of generated |Generation with small number
3 times bigger nodes is 3 times bigger of global changes




Example: Power Grid by m

Original graph: US western states power
grid, Watts, Strogatz, Nature, 1998

Generation with local changes

Generation with small

number of global changes

Global changes and number of
generated nodes is twice bigger

Generation with small

number of global changes
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Example: Power Grid by m

Median of
replicas
I I | |
num nodes I—E]— q 102 .
num edges - HEF 1 ol i
num comps - + o0 ]
clustering - p{D_( o ]
avg
degree | FH 0.99 i
total deg*deg
assortativity | | ‘D} | 0.96 ]
avg | _ L _ _ i
distance = _| 1.07
avg between. | e TL——_ | |
centrality 1.06
modularity | + oo i

0.0 0.5 1.0 1.5 2.0
Relative to real network



Example: Barabasi-Albert Model by m

Median of

replicas
num nodes - | H - —[ﬂ— — i+ | 100
num edges |- tt———q @ F-—— + 008 A
num comps |- ¢ 1.00 A
clustering |- + I- ~E:|~ — 102 A
degreo - -1 + 008 -
ot degtes S BENECUEEELSE | o
eccentrii?tg i o[ F—— L0617
dista?zg i |-+ LOL
harmonic avg - -4+ 101 A
g between | SR o
modularity |- H-— —tH+ 1.06 A
powerlaw exp | I ~[E~ ! 0.99 .

! ! . !

0.0 0.5 1.0 1.5 2.0

Relative to real network



SEIR cascade on Colorado Springs Network

susceptible 2 exposed - recovered = susceptible

16

original network

ype.
14} al +—e MUSKETEER

/1 TN +—+ Edge swapping
=l 5 [ I\ =—a Expected degree model ||

Scale-free model
Kronecker model

[==]
-

New cases

(il §

il |I1I EIII J-‘ 5 -I EII P --- 5 TI -
Time (days)
62



Multilevel Methods for Network Visualization



http://www.cise.ufl.edu/research/sparse/matrices/

Finding Minimum Vertex Separators

min  |S|
A,BCV

subject to S=V\(AUB), ANnB=0, (AxB)N&E =1,
by <|A| <ug, and £, < |B| < up.

Bilinear Quadratic Program max c'(x+y)—x"(A+1y
x,yeR"”

subjectto 0<x<1, 0<y<1l, /,<1"'x<u,, and ¥, <1y <uy.
Hager, Hungerford “A Continuous Quadratic Programming Formulation of the Vertex Separator Problem”
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Finding Minimum Vertex Separators in Heavy Tailed Networks

M Average ratio B Maximum ratio

10.70

8.09

1.331.38
0.99 0.99 1.02 1.08 1.06 1.06 1.07 1.04 1.07 1.07 1.121.12 118 5 oy 119117 0.93

METIS (KL/FM Refinement) vs AMG+Bilinear QP
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Dimensionality Reduction

Given a set of high dimensional data represented by vectors x4, ..., T,
in R™, the task is to represent these with low dimensional vectors

Y1, ..., Yn € R with d < m, such that nearby points remain nearby,
and distant points remain distant.

[FSS] ”Multilevel Nonlinear  Last Level B > Vi |}
Dimensionality Reduction for ' n_

Manifold Learning”



Segmentation

[SGSBB] “Hierarchy and adaptivity in segmenting visual scenes”, Nature, 2006



Segmentation: The pixel graph

Low contrast - strong coupling, High contrast - weak coupling;
Segmentation = Low-energy cut

D is g Wi (wi — uj)?

minimize I'(u) = S wu;
i>g5 T

Any boolean u that yields a low-energy I'(u) corresponds to a salient segment




Segmentation: Multiscale Approach

Figure 2 | The multiscale normalized cut graph approach. a, A simple
image. b, Pixels of the image are nodes, represented by filled circles; strong
coupling is represented by thick red lines, and weak coupling by thin blue
lines. €, Adaptive coarsening. Each pixel in b is strongly coupled to one of the
chosen seeds shown here (thus, pixels strongly coupled to a given seed form
an aggregate). Couplings between the seeds are shown. d, An additional

coarsening level. In this case, this is the level at which the salient segment is
detected.




Two-dimensional layout problem

Find an optimal layout of 2D objects such that

@ the total length of the given connections between these
objects will be minimal

@ the two-dimensional space will be well utilized and
© the overlapping between objects will be as little as possible

(a) ib)



Two-dimensional layout problem

minimize Total edge length (quadratic functional)
subject to v small squares s the amount of the material
inside s is less than its area
(linear inequality constraints).

; ; ;
R A 2. 13 14 15

4 N

NN

i - ii
i
. : II L :
-

ng
I 0 00 A Y 1 k1
!
|
|
|
|
|
|
1
|
|
|
|
|




Material movement problem

1 2
min 5 3wy | (34 3 apty~ 55— 3 apy) +
)

1JEE pEc(i) pEc(j
2
( E , QupiVp — Yj — E : O‘pjvp> ]
pEc(i) pEc(y)
square s
u; vy u>» vo
® ! ‘
_ . . 12 130 14 15
(s i ST 3 3
w0 S —
o 8 9 10, 1
______________________________ h, J-
vertex i o 4 ] & 6\\ 7
i \\ _______
Olib(s) i 0 1 2 3
« ®




Vs, eqd(s) =

T(s)+ T,(s)

T(s)+ Ty(s

2.A Y 2 2.4

> 3

I

SRS

ﬁ

~ o~
/\/—\/—\

S

>
S
|

2A 2 2A 2
< M(s)—T(s)

total area of nodes overlapping with s

and h, width and height of s

/N

w ®W W wp
N~ —

area of s
area of nodes overlapping with right neighbor square



Two-dimensional layout problem: coarsening

Variables 20—9—9—9—9¢ 10 ° ¢ .

®
[
L
w e
@
L
— @
o @
@

D) )
Constraints 2:%:7%:%% f\% | //// §§§§'
NN (e P
0 '@'@2@'@" i \\\\gﬁ%‘?

o v S
® & @ @ @ ®
0 1 2 3 1

f‘\?\?\;~




Two-dimensional layout problem: example
Mesh 64x64 + Random Edges

Tl v o s on gy s v o sy o e s G682 R T T e e e e
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Two-dimensional layout problem: VLSI Chip

--..n‘..-:..é.'..u.r.---,.....-. =

o . TR

Multiscale Solver
By Brandt, Ron



* Ron, S, Brandt “Relaxation-based Coarsening and Multiscale Graph
Organization”, 2011

 Chen, S “Algebraic Distance on Graphs”, 2011

 Leyffer, S “Fast Response to Infection Spread and Cyber Attacks on Large-scale
Networks”, 2013

S, Sanders, Schulz “Advanced Coarsening Schemes for Graph Partitioning”, 2013
 Gutfraind, Meyers, S “Multiscale Network Generator”, 2013

http://www.cs.clemson.edu/~isafro/musketeer
(can be used to generate networks for your tests!)

Surveys
* Brandt, Ron “Multigrid Solvers and Multilevel Optimization Strategies”, 2003

* Walshaw “Multilevel Refinement for Combinatorial Optimization”, 2008
* Buluc, Meyerhenke, S, Sanders, Schulz “Recent Advances in Graph Partitioning”, 2013
e Bartel et al. “An Experimental Evaluation of Multilevel Layout Methods”, 2011


http://www.cs.clemson.edu/%7Eisafro/musketeer

The Minimum Workbound Problem

Goal: minimize over all 7

wb(G, ) = Z max  wi;(n(i) — m(5))*

(Generalization:

Z e wij (i — Z Z wij (2 )2/p

J-Tj
) J:xi<x4

Window Minimization for the minimum workbound problem (Taylor
exp.):
8wbp % wb,,

wbp (W, Z, 6) ~ wbp(W, Z,0) + Z (W.2,08 + 3 86;00,

iew 0i i,jEW

(W, 2,0)6;0;

Multiscale Methods for

Networks



Experimental Results: Minimum Workbound
[SRB] ”Multilevel algorithms for linear ordering problems”, 2008

1 e [
0.8
Ratios
between (.l
multilevel

and spectral
algorithms 0.4

0.2

0 5 10 15 20 25 30 35 40
Large-scale graphs

Multiscale Methods for

Networks



Susceptible-Infected-Susceptible Model @~ ©CLEMEON

The Kephart-White SIS model parameters:
S - number of susceptible nodes; I - number of infected nodes;

[ - infection transmission rate; 0 - rate of recovery from infection.

b = \S -1
45 — 5] — \S.

Chakrabarti et al. proposed a dynamical system of SIS
1 —¢ir=(1—¢ir—1)hit +0pir—1hir, i=1..|V],
to describe the probability of keeping 7 in .S, where

hi ¢ = H (1 —pijdit—1)
JEN (4)
Epidemic threshold T, a measure to predict when the infection outbreak disap-

pears (comparable to 3/9).



large system of equations

Physical system partially disordered

5000

10000 10000

1s00 SR

! A AR 1 15000
0 5000 : 10000 15000 0 5000 10000 15000

large system of equations large system of equations
completely disordered ordered to optimize calculations

Multiscale Methods for Large Networks




Adjacency Matrix A

2 1 2 3 4 5
1 10 4 2
2 10 1 7
3 4 1
> 4 7 3
5 2 3
Laplacian L
1 2 3 4 5 T
1 16 -10 -4 .9 < real, symmetric matrices
2 ‘10 18 -1 -7 eigenvalues are real
3 4 -1 5
Lij = —wij
4 -7 10 -3
Lii = ) ijen Wi
> 2 = > pormalized Laplacian £ = D"%.L.-D"%

Multiscale Methods for

Networks



Uncoarsening: Interpolation, Minimum p-sum Problem

1) Place the seeds according to their aggregates

Lo A P EDA_R.SEllf '_\‘.

'-’r-- h
| O Nl
1

2) Place other vertices by minimizing their local contribution to
the total energy
@ p=1: attheir medians

@ p=2: attheir weighted averages
@ p > 2 : solve minimization numericaly

Multiscale Methods for

Networks



Relaxation

Two types of pointwise relaxation that improve current solution:
@ Compatible Relaxation: keep coarse vertices (seeds)
invariant minimizing the energy of other vertices

one-by-one wrt to the problem,
@ Gauss-Seidel Relaxation: Improve all vertices.

Initial legal coordinates x;, Vi< V

for alli Vy; — Xj
for alli € F (Compatible)/i = V (Gauss-Seidel) do

‘Z}f}-{m.jr&b’ Wﬁ_Zﬁ}y;,jEV wil, If p=1
y! - arg n}ln < Z},’EF }'}W;jr';f ZjEV W;Jr ,ff -D — 2
D _jev Wilyi — )P, ifp=>2

end
Vi
forallie Vxi=3 + >,V

Multiscale Methods for

Networks



Uncoarsening: Local Refinement, p=2

Lemma: Improving the ordering cost of W (a subset of
consecutive vertices) cannot increase the cost of total ordering.

Window minimization

- “/?-1 S S -
i

DS S A S PSS S S

.

N 7/1
ALY

-

minimize oo(W.X.8) = Y Wy(Xi+6—X—0)%+ > wj(Xi+0i—%)?
IjeW ieW
JEW
@ X - current approximation
@ ¢ - correction

Multiscale Methods for

Networks



Uncoarsening: Local Refinement, p=2

minimize oo(W. X.0) = Y wi(X5i+0i—%—0)7+ ) w(X+6;—%)?
I.je W ieW
JgW
To prevent the possible convergence of many coordinates to
one point add

Y (Ki+0)"vi = > X . m=1.2
€20 €20
Final system of equations

> ican Wil(0r — 0) 4 0i D" gqn Wi + M Vi + A2Viki = 57, wij(0i — 0)

Z;’ rj;b"; =0
Z;’ oiViXi =0

Multiscale Methods for

Networks



Linear Arrangement: Spectral Approach

minimize over real x E(x) = >, wij(x; — 1;)°
subject to Soar=1, > x;=0
<
minimize over real x E(z) =21 Az
subject to t'Br=1, Y . 2;=0
where a;; = —w;;, a; = Zj Wi, bij = 0y
<
x is the second eigenvector of Ax = \Bx.

Heuristics: order the vertices according to the eigenvector of the
second smallest eigenvalue.

Multiscale Methods for

Networks



Experimental Results: Linear Arrangement, p=2
[SRB] "Multilevel algorithm for the minimum 2-sum problem”, 2006

1

0.9
0.8
Ratios
between 0.7
multilevel

and spectral
algorithms o5

0.4
0.3
0.2

0.1

0 ) 10 15 20 25 30 35 40
Large-scale graphs
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Linear Arrangement, Larger powers

POSTPROCESSING:

Additional iterations of Window
Minimization with sequentially growing p

d
Jo ey
L - - L
P=P i ::'/f' -.. & \\\".III [ ] ... ..\I SD
e @ o | I * o/ yolv " PT 4K
o -.- x> (o5 -.- R Solve for p =2k
H\-'_ 4 R\xr_/"-f
1 d
{o ey, -
r/' i\\-. / . L o
Prle e o .\ /v o * ¢ 51 =——— Solvefor p=2k-2
- \
— “‘“uf’_’/
4
Y —
EVEAEIAN AR
L\ e [ ee o7 Solve for p=4
T L“IL___f”_F
1 d
AN 2
P, E f/ " s, Solve for p=2
“'x!_{ :;

Methods for

Multiscale

Networks



Linear Arrangement, Larger powers

e Define ’l/U\Z'j — Wi (fz — fj)p_Q

e Substitute w;; with w;; in

minimize o,(W,Z,0) =

= Z wii (T; + 0; — T — wa (T; + 6 — ;)P

1,JEW 1eW

JEW

A~ ~ 2 ~

= E Wi (T; + 0; — 2 4 g Wi (T; + 0; — T;)° &~
1,5eW 1eW
JEW

Multiscale Methods for

Networks



Experimental Results: Linear Arrangement, p=e°
[SRB] ”Multilevel algorithms for linear ordering problems”, 2008

1.2
1 | | O N S |
0.8
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algorithms 0.4
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