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Multiscale Methods
In many complex systems a big scale gap can be observed between 
micro- and macroscopic scales because of the difference in physical 
(social, biological, mathematical, etc.) models and/or laws at different 
scales.
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Two body scratch model

High resolution Low resolution

Even if elementary objects of the system have a complicated (and 
even nondeterministic) behavior, their ensembles can be more 
structured .

Social networks
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Even when the difference between models at different scales is not 
observed, an efficient approximation of the microscopic scale can 
be achieved by looking at the macroscopic scale with its 
substantially smaller number of elementary objects.



There exist tens (if not hundreds) of different classes of 
algorithms for large-scale combinatorial optimization that 
eventually ensure the solution or a small gap.

However, despite of their effectiveness and availability of  
computational resources, there are always certain barriers in the 
problem size and algorithm complexity.

Motivation
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Motivation
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When these barriers are met, typical ways to continue tackling 
the problem are by using  

Decomposition                           Smart but “blind” search

However, there is another barrier that these methods typically 
do not overcome: we solve “one variable at a time”. 
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The Multiscale Method
Multiscale ≈ Multilevel ≈ Multigrid ≈ Multiresolutional
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Algebraic multigrid in three slides
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Algebraic multigrid in three slides
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Algebraic multigrid in three slides
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History of Multiscale Methods

Functional analysis at  
multiple resolutions

(1768-1830)

Smoothing, finite 
elements, two-level

multigrid
(1930-2009)

Popularization, first
basic research

(1977), algebraic
multigrid (1980), ...

Joseph Fourier  Radiy Fedorenko Achi Brandt
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• Line search multigrid for convex optimization (Goldfarb, Wen)
• PDE-constrained optimization (Borzi, Nash, Toint, ...)
• Multilevel trust-region methods (Gratton, Mouffe, Sartenaer, Toint, ...)
• Non-convex non-linear optimization for VLSI placement (Chan, Cong, Sze, ...)
• Linear programming - multilevel iterative methods (Gelman, Mandel, ...)
• Derivative-free multilevel optimization (Mendonca, Peckman, Toint, ...)

Examples of multilevel combinatorial optimization

• (Hyper)graph partitioning and clustering (see many references in “Recent 
advances in graph partitioning”, 2016)

• Various graph/matrix arrangement problems such as the minimum linear 
arrangement, bandwidth, workbound, wavefront, fill-in (Brandt, Hu, Ron, Safro, 
…)

• Vertex separators (Karypis, Hager, Safro, Sanders, Schultz, …)
• Coloring (Walshaw)
• TSP (Walshaw, Ron, …)
• VLSI placement (Chan, Cong, Hu, Karypis, Brandt, Ron, Viswanathan, …)

Examples of multilevel and multiscale classes of algorithms
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Coarsening
Create a hierarchy of
restriction operators
and corresponding 
coarse problems

Uncoarsening
Approximate 

solutions at each 
level by interpolation 

from coarser level, 
and further 
refinement

Level 0

Level 1

Level k-1 

Level k

Exact solution

Cycles and complexity
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Exact (or best possible) 
solution

coarsest 
network

original network

Interpolation
Relaxation
Refinement
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Multilevel Algorithms for Optimization Problems on Networks
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Think globally, act locallyFour main questions

Exact or best possible solution
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Network Compression-friendly Ordering
(and Minimum Linear Arrangement Problems)

Node Sorted list of neighbors (possibly with edge info)

1 2, 5, 6, 12, 18, 23, 103

… …

1584 1585, 1592, 1600

Node Sorted list of neighbors (possibly with edge info)

1 1, 4, 5, 11, 17, 22, 102

… …

1584 1, 8, 16

[KDD09 Chierichetti et al.] Given a sorted list of neighbours (x1, x2, x3, ...), 
represent it by a list of differences (x1, x2 - x1, x3 - x1, ...) or (x1, x2 - x1, x3 - x2, ...)

… and then apply some compression algorithm (such as Boldi-Vigna scheme)

Compressed row representation

Compressed row gap representation
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Network Compression-friendly Ordering

Network compression-friendly 
ordering, minimum linear 
arrangement, minimum 2-sum, 
minimum bandwidth, etc. are well 
known NP-complete problems.
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Graph Minimum Partitioning/Clustering Problem
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Simple Case: Coarsening by Contractions
(aka strict coarsening)

Examples of common properties
• k-partitioning/clustering: i and j belong to the same part
• Network compression/linear arrangement: 𝜋𝜋 𝑖𝑖 − 𝜋𝜋 𝑗𝑗 is small

Intuitive explanation
Two or more vertices are merged if they have a good chance to 
share common properties.
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Common problem of strict coarsening methods
They make local decisions (i.e., merging) before accumulating the 
relevant global information. It creates additional difficulty for solving 
irregular instances when local decision contradicts global solution.

Simple Case: Coarsening by Contractions
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Think globally, act locallyFour main questions

Exact or best possible solution
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Models of Connectivity
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Stationary Iterative Relaxation
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Toy Example: mesh 20x40 + diagonal
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Random Initialization
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… after 10 iterations of Jacobi over-relaxation
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Algebraic Distance

diagonal
lower 
triangular

upper 
triangular

 Ron, S, Brandt ``Relaxation-based coarsening and multiscale graph organization'', SIAM MMS, 2011
 Chen, S ``Algebraic distance on graphs'', SIAM J on SC, 2012
 Brandt, Brannick, Kahl, Livshits ``Bootstrap AMG'', SIAM J on SC, 2011
 Bolten et al. ``A Bootstrap Algebraic Multilevel Method for Markov Chains'', SIAM J on SC, 2011
 Shaydulin, Chen, S ``Relaxation-based coarsening for multilevel hypergraph partitioning'', SIAM MMS, 2019 
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Slow 
convergence …

but fast stabilization 
which is what we need 
in multilevel framework

 Ron, S, Brandt ``Relaxation-based coarsening and multiscale graph organization'', SIAM MMS, 2011
 Chen, S ``Algebraic distance on graphs'', SIAM J on SC, 2012
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Think globally, act locallyFour main questions

Exact or best possible solution
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Types of Coarsening

1. Iterative selection of some variables to 
the coarse level (e.g., independent sets) 

2. Strict coarsening (merging pairs) with some 
smart distance function (similar to some graph 
partitioning multilevel techniques) 

3. AMG algebraic distance based coarsening  
of graph Laplacian 
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AMG: coarse variables

 Ron, S, Brandt ``Relaxation-based coarsening and multiscale graph organization'', SIAM MMS, 2011
 Chen, S ``Algebraic distance on graphs'', SIAM J on SC, 2012
 Brandt, Brannick, Kahl, Livshits ``Bootstrap AMG'', SIAM J on SC, 2011
 Bolten et al. ``A Bootstrap Algebraic Multilevel Method for Markov Chains'', SIAM J on SC, 2011
 Shaydulin, Chen, S ``Relaxation-based coarsening for multilevel hypergraph partitioning'', SIAM MMS, 2019 
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Interpolation weights

-1

-1
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Coarse Graph
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MLogA Uncoarsening: Minimizing the Contribution of One Node
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MLogA Uncoarsening: Refinement
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What are the most competitive algorithms?
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Computational Results: Multiscale MLogA vs Gray/Shingle
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Scalability
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Heavy-tailed degree distributions; Are they compressible?
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Refinement for k-partitioning

solution inherited 
from coarse level

refined solution
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Potentially hard graphs for multilevel 
k-partitioning/clustering

S, Sanders, Schulz “Advanced coarsening schemes for graph partitioning”, 2012
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Potentially hard graphs for multilevel algorithms, k=4

Potentially hard networks

Ratios between strict coarsening and AMG solvers
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Response to Epidemics and Cyber Attacks

Open Science Grid: collaboration network example

Goldberg, Leyffer, S “Optimal Response to Epidemics and Cyber Attacks in Networks”, 2015 47
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connections between
open sites, i.e., the utility
of network

infection at node i is less 
than some constant
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Multiscale Algorithm
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Coarsening

Links between 
accumulated nodes

New linear term



51

Uncoarsening

Boundary conditions

Local refinement
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Small random graphs, < 80 nodes, < 400 edges
Erdos-Renyi, Barabasi-Albert, and R-MAT models
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Iterated Local Search vs Multiscale
HIV spread model
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Ratios 
Between
MA and ILS

Large-scale networks

Networks have nodes 
with exceptionally high 
degrees
(dense rows in matrices)
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Network Generation, A Practical Approach

Original network

Artificial network Artificial network

Artificial networkArtificial network

Theoretical questions
• What processes form a network?
• How to predict its future structure?
• Why should network have property X?

This artificial network has 
similar degrees, some eigs, 
diameter but …

Is it really similar to the 
original network?

Practical question
• Will my algorithm/heuristic work 

on networks created by similar 
processes?
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Properties taken into account by most of the existing network generators: 
degree distribution, clustering coefficient, some eigenvalues, diameter, etc. 
They are different at different resolutions!

MUlti-
SCale
Entropic
NeTwork
GEnEratoR

http://www.cs.clemson.edu/~isafro/musketeer
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To create a new edge uv

• d2(i, j) := second shortest path 
between two neighbors

• Estimate P[d2(i, j) = k]

1. Sample x from the estimated 
distribution

2. Randomly select u and find v within 
distance x 

3. Create edge uv with edge weight 
from a given distribution



Toy Example: Mesh 33x33 by 
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Example: Power Grid by 
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Example: Power Grid by 
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Example: Barabasi-Albert Model by 
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SEIR cascade on Colorado Springs Network
susceptible  exposed  recovered  susceptible
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Multilevel Methods for Network Visualization

http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
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Finding Minimum Vertex Separators

Bilinear Quadratic Program

Hager, Hungerford “A Continuous Quadratic Programming Formulation of the Vertex Separator Problem”
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Finding Minimum Vertex Separators in Heavy Tailed Networks
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0.99 1.02 1.06 1.07 1.07 1.12 1.18 1.19 1.33
1.65

8.09

0.99 1.08 1.06 1.04 1.07 1.12 0.97 1.17 1.38
0.93

10.70

Average ratio Maximum ratio

METIS (KL/FM Refinement) vs AMG+Bilinear QP
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Dimensionality Reduction

[FSS] ”Multilevel Nonlinear 
Dimensionality Reduction for 
Manifold Learning”
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Segmentation

[SGSBB] ”Hierarchy and adaptivity in segmenting visual scenes”, Nature, 2006
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Segmentation: The pixel graph
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Segmentation: Multiscale Approach
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Two-dimensional layout problem
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Two-dimensional layout problem
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Material movement problem
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Constraints

Variables

Two-dimensional layout problem: coarsening
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Two-dimensional layout problem: example
Mesh 64x64 + Random Edges
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Original

Multiscale Solver
By Brandt, Ron

Two-dimensional layout problem: VLSI Chip
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• Ron, S, Brandt “Relaxation-based Coarsening and Multiscale Graph 
Organization”, 2011

• Chen, S “Algebraic Distance on Graphs”, 2011

• Leyffer, S “Fast Response to Infection Spread and Cyber Attacks on Large-scale 
Networks”, 2013

• S, Sanders, Schulz “Advanced Coarsening Schemes for Graph Partitioning”, 2013 

• Gutfraind, Meyers, S “Multiscale Network Generator”, 2013
http://www.cs.clemson.edu/~isafro/musketeer
(can be used to generate networks for your tests!)

Surveys
• Brandt, Ron “Multigrid Solvers and Multilevel Optimization Strategies”, 2003
• Walshaw “Multilevel Refinement for Combinatorial Optimization”, 2008
• Buluc, Meyerhenke, S, Sanders, Schulz “Recent Advances in Graph Partitioning”, 2013
• Bartel et al. “An Experimental Evaluation of Multilevel Layout Methods”, 2011

http://www.cs.clemson.edu/%7Eisafro/musketeer
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The Minimum Workbound Problem

Multiscale Me thods  for  
Ne tworks
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Large-scale graphs

Ratios
between
multilevel
and spectral
algorithms

Experimental Results: Minimum Workbound
[SRB] ”Multilevel algorithms for linear ordering problems”, 2008

Multiscale Me thods  for  
Ne tworks



80Multiscale Methods for Large Networks

Susceptible-Infected-Susceptible Model



81Multiscale Methods for Large Networks

Physical system
large system of equations
partially disordered

large system of equations
completely disordered

large system of equations
ordered to optimize calculations
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Multiscale Me thods  for  
Ne tworks
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Uncoarsening: Interpolation, Minimum p-sum Problem

Multiscale Me thods  for  
Ne tworks
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Relaxation

Multiscale Me thods  for  
Ne tworks
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Uncoarsening: Local Refinement, p=2

Multiscale Me thods  for  
Ne tworks
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Uncoarsening: Local Refinement, p=2

Multiscale Me thods  for  
Ne tworks
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Linear Arrangement: Spectral Approach

Multiscale Me thods  for  
Ne tworks
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Large-scale graphs

Ratios
between
multilevel
and spectral
algorithms

Experimental Results: Linear Arrangement, p=2
[SRB] ”Multilevel algorithm for the minimum 2-sum problem”, 2006

Multiscale Me thods  for  
Ne tworks
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Linear Arrangement, Larger powers

Multiscale Me thods  for  
Ne tworks
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Linear Arrangement, Larger powers

Multiscale Me thods  for  
Ne tworks
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Large-scale graphs

Ratios
between
multilevel
and spectral
algorithms

Experimental Results: Linear Arrangement, p=∞
[SRB] ”Multilevel algorithms for linear ordering problems”, 2008

Multiscale Me thods  for  
Ne tworks
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