Chapter 8

Introduction to-
Computational Complexity

Introduction to Computational
Complexity

e A decision problem is decidable if there is an
algorithm that can answer it in principle

e We will try to identify the problems for which there
are practical algorithms

— Ones that can answer reasonable-size instances in a
reasonable amount of time

e For example, the Sudoku puzzle is decidable, but the
known algorithms aren’t much of an improvement on
the brute-force algorithm that takes exponential time
on general instances

e Our focus is the running time (not the problems
that cannot be solved!)

The Time Complexity of a Turing
Machine, and the Set P

The set P is the set of problems that can be decided
by a TM in polynomial time (number of moves), as a
function of the instance size.

NP is defined similarly, except that we allow the use
of a nondeterministic TM

Most people assume that NP is a larger set, but no
one has been able to demonstrate that P # NP

We will discuss different classes of hardness of
problems, and will learn how to compare algorithms.

In this chapter: Our focus is the running time (not
the problems that cannot be solved!)

The Time Complexity of a Turing Machine

e ATM deciding a language L — >* solves a decision problem:
Givenx € X*,isx € L?

— A measure of the size of the problem is the length of the input
string x

The Time Complexity of a Turing Machine

e ATM deciding a language L — >* solves a decision problem:
Givenx € X*,isx € L?
— A measure of the size of the problem is the length of the input
string x

e Definition: Suppose T'is a TM with input alphabet 2 that
eventually halts on every input string

— The time complexity of T is the function
N — N,

\ the number of moves T makes on

that string of length n before
halting, and letting t,(n) be the
maximum of these numbers

input string length n

TM with a certain time complexity halts on every input.

Example: TM for computing the remainder Mod 2

Moves the tape head to the end of the string, then makes a
pass from right to left in which the 1’s are counted and erased
by pairs. The final output is a single 1 if the input was odd and
nothing otherwise.

Input: 11...1 of length n where n is even.

1/1, R n/2
! 1 /A L
A/A R A/A L
/A L
A/A S| 1 A/A R

Y A/1, L
tr(n) forevennis 1+n+1+n/2+n/2+1 @*

t.(n) for general n is max(t(even n), t,(odd n))

The Time Complexity of a Turing Machine

e Definition: If fand g are partial functions from
N to R*; that is, both functions have values that are
nonnegative real numbers wherever they are defined
We say that
f € 0(g),or f(n) € O(g(n))
(which we read “fis big-oh of g”)
if, for some positive numbers C and N,
f(n) <Cg(n) for everyn=>N.

- For example, every polynomial of degree k with positive
leading coefficient is O(n*)

Example of Big-O proof

The number of steps of some TM is

D
f(n) =n? + == +4

For every n > 1
5 5n?
n2—|—7n—|—4§n2—|—%—|—4n2:7.5n2

Thus,
f(n) € O(n?)

because we found such C'= 7.5, and N =1 for g(n) = n”.

Example of Big-O proof

The number of steps of some TM is
fln)=n’>+2n+1

Does it belong to O(n)?
If it is true then there exist appropriate constants C' and IV, i.e.,

n>+2n+1<C-n
for every n > N. Let us take n =C + N
(C+N)*+3(C+N)+1<C(C+N)

C® +3C*N +3CN* + N> +3C+3N+1<C?*+CN
C3+3(N—-1)C?*+3CN?*+N*+3C+3N-CN+1<0

\ / \ false

Sum is positive

Fast way to obtain O(...) for some f(n) is to find its dominant term

Expression Dominant term)
5+ 0.001n2 + 0.025n 0.001n? n3)
500n + 100n'° 4+ 50nlogn 100n'” nt?)
‘n?logn + n(logn)? n*logn

10%n + 0.000000001 12

0.000000001n°

DO

10"nlog n + n(logn)?

n(logn)?

S| S

N

79" 10100?’L1000

72"

SIQIQI Q9
:w —
o)
o3
S

DO
S
—| [——ror
e,
09
S
~——
A\
~——

Properties of O(...)
* |s it true that O.5n + 8n? + 100n3 € O(n%)

True
* Whatis O(f+g) ?
O(f+g) = max(O(f), O(g))

* Isit true that O(fg) = O(f) O(g) ?
True
* Is it true thatif g € O(f) and h € O(f) then g €0(h)?

False
if g € O(f) and f € O(h) then g € O(h)

Logical connectives: reminder

Boolean variables

/\ AND OR

PNq PVvq

eSS IEEREEN s
es iSRS I S
T T T -
= =

The Time Complexity of a Turing Machine

e An instance of the satisfiability problem (SAT) is a Boolean
expression

- Itinvolves Boolean variables x;, x,, ..., X, and the logical
connectives A, v, and —

- Itisin conjunctive normal form (the conjunction of several
clauses, each of which is a disjunction).

Example:

Expression in CNF: (x; vXx, V=X) A(X{ V=X, VX, VX3 VX

Assignment: x,=1, x,=0, x;=1, x,=0, x.=1, x,=1
Result: (1vOv0) A(1v1vOv1iv0)=1A1 =1 (i.e, the expression
is satisfied)

The Time Complexity of a Turing Machine

e An instance of the satisfiability problem (SAT) is a Boolean
expression

- Itinvolves Boolean variables x;, x,, ..., X, and the logical
connectives A, v, and —

- Itisin conjunctive normal form (the conjunction of several
clauses, each of which is a disjunction).

Example: (x; VX, V=X)A(X{ V=X, VX VX VX
e SAT Problem: Is there an assignment of 1/0 to the variables
that satisfies the expression (makes it true)?

— Is this problem decidable? Yes.
- Decision algorithm? Try every possible assignment of values to

variables (total 2®assignments)

e The traveling salesman problem (TSP) considers n cities
that a salesman must visit, with a distance specified for
every pair of cities.

e TSP question: what is the shortest possible route that
visits each city exactly once and returns to the origin city?

— It’s easy to formulate this as an optimization problem

e Determine the order that minimizes the total distance traveled

e How to turn TSP into decision problem?

Introduce a variable k and ask whether there is an order in

which the cities could all be visited by traveling no more than
distance k

The traveling salesman problem (TSP) considers n cities
that a salesman must visit, with a distance specified for
every pair of cities.

Decision TSP question: is there a route that visits each
city exactly once and returns to the origin city that is not
longer than k ?

[s this problem decidable? Yes. What is the algorithm?

There’s a brute-force solution to the TSP problem too
— Consider all n! possible permutations of the cities

1 2 3 n 1
e O O @) O
n choices n-2 choices 1 choice

n-1 choices

e With current hardware we can solve very large problems, if
the problems require time 0O(n)

e We can still solve largish problems if they take time O(n?) or
even 0(n?)
 Exponential time algorithms are another story

— If the problem really requires time proportional to 2%, then
even doubling the speed of the machine doesn’t help much.

— Try to write a simple O(2") algorithm to satisfy a SAT formula.
Check if you will be able to run it for 12-20 variables.

e However, showing that a brute-force approach takes a

long time does not necessarily mean that the problem is
complex

— The SAT and TSP problems are assumed to be hard, not because the brute-
force approach takes exponential or factorial time, but because we don'’t

know a way of solving either problem that doesn’t take at least exponential
time

What problems are tractable?

e The most common answer is those that can be solved in
polynomial time on a TM or a comparable computer

e One reason for this characterization is that it is relatively
robust, as problems that can be solved in polynomial time
on any computer can be solved in polynomial time on a TM
as well, and vice-versa

e There are many theorems that look like

There is -time overhead to convert a code in to TM.
polynomial Python
linear C++

logarithmic electric circuit

The Set P

e Definition: P is the set of languages L such that

for some TM T deciding L and some k € N,
t+(n) € 0(n")

e Maybe the SAT and TSP problems seem to be good
candidates for real-life problems that are not in P?

The Set NP and Polynomial Verifiability

e TSP seems like a hard problem but testing a potential
answer is easy (and there are many potential answers)

e We can approach this problem nondeterministically

- We guess an answer (a particular route) and then test it
deterministically

— This can be done in polynomial time

\ Formulate problem Guess solution Verify solution /

f

O(poly(n))

The Set NP and Polynomial Verifiability

e Definition: If T'is an NTM with input alphabet X such that,
for every x € X*, every possible sequence of moves of T on
input x eventually halts, the time

complexity is defined as follows

T N—> N
/ \

Input length Number of moves

— Let t,(n) be the maximum number of moves T can possibly
make on any input string of length n before halting

(We are assuming implicitly that no input string can cause it to loop forever)

e Definition: NP is the set of languages L such that for some
NTM T that cannot loop forever on any input, and some
integer k, T accepts L and
t(n) = 0(n")

— We say that a language in NP can be accepted in
nondeterministic polynomial time

— [tis clear that P < NP
- But if you can prove or disprove that NP c P then you'll

get an A in this course, $1M from the Clay Institute, a full
professor position in any school, Turing award, etc.

— The SAT problem is in NP (the “guess-and-test” strategy is
typical of problems in NP, and we can formalize this by

constructing an appropriate NTM)

A\ DIGITAL ‘
ACM@LIBRARY @

Journals Magazines Proceedings Books SIGs Conferences People

Journal Home Just Accepted Latest Issue Archive Authors v~ Editors v Reviewers v About v Contact Us

— - 4

Search within JACM Q

Journal ot the ACM

Home > ACM journals > journal of the ACM > Other Information

Sections P/NP Policy

Important Note on P/NP: Some submissions purport to solve a long-standing open problem in complexity theory,
such as the P/NP problem. Many of these turn out to be mistaken, and such submissions tax JACM volunteer editors
and reviewers. JACM remains open to the possibility of eventual resolution of P/NP and related questions, and

ﬂb continues to welcome submissions on the subject. However, to mitigate the burden of repeated resubmissions due to
incremental corrections of errors identified during editorial review, no author may submit more than one such paper
to JACM, ACM Trans. on Algorithms, or ACM Trans. on Computation Theory in any 24-month period, except by invitation of
the Editor-in-Chief. This applies to resubmissions of previously rejected manuscripts. Please consider this policy
before submitting a such a paper.

1 P/NP Policy

Important Note on P/NP: Some submissions purport to solve a long-standing open problem in
complexity theory, such as the P/NP problem. Many of these turn out to be mistaken, and such
submissions tax JACM volunteer editors and reviewers. JACM remains open to the possibility of
eventual resolution of P/NP and related questions and continues to welcome submissions on
the subject. However, to mitigate the burden of repeated resubmissions due to incremental
corrections of errors identified during editorial review, no author may submit more than one
such paper to JACM, ACM Trans. on Algorithms, or ACM Trans. on Computation Theory in any
24-month period, except by invitation of the Editor-in-Chief. This applies to resubmissions of
previously rejected manuscripts. Please consider this policy before submitting a such a paper.

Strong Church-Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in t¢ steps on the TM, where c is a constant that depends

upon the model).

What are the possible objections to accept it?

* Precision - TM’s compute with discrete symbols, whereas physical
guantities may be real numbers in R. TM computations may only be
able to approximately simulate the real world.

Strong Church-Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in t¢ steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

e Randomness: The TM as defined is deterministic. If randomness
exists in the world, one can conceive of computational models that
use a source of random bits (i.e., “coin tosses”).

Strong Church-Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in t¢ steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

* Quantum mechanics: A computational model might use some of the
counterintuitive features of quantum mechanics. However, it is not
vet clear whether a scalable quantum system is truly physically
realizable. Also, quantum computers currently seem only able to
efficiently solve only very few “well-structured” problems that are
(presumed to be) notin P.

Strong Church-Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in t¢ steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

* Other exotic physics, such as string theory. Though an intriguing
possibility, it hasn’t yet had the same scrutiny as use of quantum
mechanics.

* Energy considerations: how much energy is consumed during the
computation?

The Set NP and Polynomial Verifiability

o Definition: If L € 2*, we say that a TM T is a verifier
for L if: some special symbol

- T accepts a language L, < Z*$Z*
— T halts on every input, and

- L={x e X*| for some a € * x$a € L,} (we will call
such a value a a certificate for x)

e Averifier T is a polynomial-time verifier if:

— There is a polynomial p such that for every x and every
a in X* the number of moves T makes on the input
string x$a is no more than p(|x|)

The Set NP and Polynomial Verifiability

e Theorem: For every language L € *

L € NP if and only if L is polynomially verifiable

i.e., there is a polynomial-time deterministic TM that is a
verifier for L

e Proof: See book
For example:

e Averifier for SAT could take a specific truth
assignment as a certificate;

e Averifier for TSP could take a permutation of the
cities as a certificate

e A graph G=(V,E) is a pair, where V is a set of nodes, and E is a
set of edges. Each edge connects a pair of nodes (i,j), where |,
and j are in V. In undirected graphs the order of i, and j is
not important. (However, it is important in directed graphs.)

A pathisasequence of edges leading from one node to
another. A Hamiltonian path is a path that visits every node
exactly once.

 Example: there are paths for all pairs of nodes, but there is
no Hamiltonian path from a to c.

e PATH={<G,a,b> | G is a graph with path from a to b}
This language is in P. You can check if there is a a-b path
by running BFS from a.

In general, the complexity of running BFS is linear in n+m,

the number of nodes+edges, i.e., it is O(n+m). However, the
actual running time depends on the representation of G.

« HAMPATH={<G,a,b> | G is a graph with Hamiltonian
path from a to b}

This language is in NP. Trivial algorithm for finding HP

has to check an exponential number of possibilities but

there is a fast nondeterministic algorithm for it because

we can guess the path (this will be a certificate for

verifier).

e PRIME={all prime numbers in binary format}
e COMPOSITE={all composite numbers in binary format}

[f m is an input for an algorithm that decides PRIME, its
length is log,m, i.e., we want an algorithm that runs in
polynomial time in a number of bits! Not in time that is
proportional to m.

[t is easy to define a certificate for COMPOSITE (two factors).
Number theory gives a certificate for PRIME.

For many years it has been assumed that PRIME is in NP.

In 2002 it was shown that PRIME is in P, and so is the
complementary problem COMPOSITE but there is still no
polynomial-time algorithm known for the factorization.

Space Complexity

The space used by a TM corresponds to the memory used
by a computer

When we compute the space used by a TM, we don’t count
the input space

Definition: TM runs in space S(n) is for all inputs of length
n. M uses at most S(n) cells in total on its work tapes.

Example: SAT can be decided in ...

Space Complexity

The space used by a TM corresponds to the memory used
by a computer

When we compute the space used by a TM, we don’t count
the input space

Definition: TM runs in space S(n) is for all inputs of length
n. M uses at most S(n) cells in total on its work tapes.

Example: SAT can be decided in linear space. We need a
space for 1 assignment and some more space to keep
track.

Can space complexity exceed time complexity? No

Theorem: If a TM runs in time T(n) then it runs in space
at most T(n)

Space Complexity

Theorem: If a TM runs in time T(n) then it runs in space
at most T(n)

Theorem: Suppose a deterministic TM runs in S(n) space
with |/7|=g letters in the tape alphabet and |Q|=q. If this
TM runs for longer than gng°("V steps on an input of length
n, then it stuck in an infinite loop.

Consequence: If L is accepted by TM T running in space
S(n), where S(n)>log n, then L is accepted by a TM T that
runs in space O(S(n)) but always halts.

The nondeterministic space is defined similarly for NTMs.

Polynomial and Logarithmic Spaces
PSPACE = all languages that can be decided in polynomial
space by deterministic TM.

NPSPACE = all languages that can be decided in polynomial
space by nondeterministic TM.

After all the uncertainty about P, and NP it is surprising that
Theorem: PSPACE = NPSPACE (not hard to prove)

L = all problems solvable in O(log n) space.

NL = all problems solvable in O(log n) space by NTM.

This is what we know about these six classes:

LS NL S P < NPCS PSPACE = NPSPACE and L#ZPSPACE

Reduction

Definition: Suppose P, and P, are decision problems.

We say P, is reducible to P, (P, <P,) if there is an algorithm
that finds, for an arbitrary instance I of P;, an instance F([) of
P, such that the two answers are the same, i.e., (the answer
to P, for the instance [, and the answer to P, for the instance

F(1)

P Inputs
of P,
Inputs

of P,
Pi(1) = P,(F(1))

Idea 1: For example, | don’t know how to solve P, but | can solve P,and know how
to map the instances to preserve answers. Then | can solve P,

Reduction

Definition: Suppose P, and P, are decision problems.

We say P, is reducible to P, (P, <P,) if there is an algorithm
that finds, for an arbitrary instance I of P;, an instance F([) of
P, such that the two answers are the same, i.e., (the answer
to P, for the instance [, and the answer to P, for the instance

F(1)

P Inputs
of P,
Inputs

of P,
Pi(1) = P,(F(1))

Idea 2: Say, P, is computationally difficult, and | don’t know the difficulty of P,. If |
know how to map the instances, then | can state that P, is at least as difficult as P,

Polynomial-Time Reductions and
NP-Completeness

e Just as we can show that a problem is decidable by
reducing it to another one that is also decidable, we
can show that a language is in P by reducing it to
another that is.

e To see whether x € L,, all we have to do is compute f (x)
and see whether itisin L,; and fis computable.
— In the case of decidability (i.e., we need to decide y/n,

not to compute something), we only needed the
reduction to be computable

— Here we need the reduction function to be computable
in polynomial time

e Definition: If L, and L, are languages over respective
alphabets 2, and X,, a polynomial-time reduction from L,
to L, is a function f: X, * — 2.* satistfying two conditions

1) foreveryx € X,*, xeL,ifandonlyiff(x) € L,
2) f can be computed in polynomial time, i.e., there isa TM
with polynomial time complexity that computes f

e Ifthereis a polynomial-time reduction from L, to L,, we
write L, <) L, and say that L; is polynomial-time
reducible to L,,.

e In this case, we said that deciding L, is no harder than

deciding L,, because we considered only two degrees of
hardness, decidable and undecidable.

Polynomial -Time Reductions and
NP-Completeness

e Theorem:
— Polynomial-time reducibility is transitive:
e IfL;<,Lyand L, <, Lythen L, <) L,
- IfL;<,L,and L, € P,thenL; € P
e Proof sketch:

— For the first statement, simply use the composition of
the reduction functions

— For the second statement, simply combine the TM that
accepts L, and the one that computes the reduction f

Example: Reduction from 3-SAT to Clique (3-SAT <, Clique)
The Clique decision problem:

Input: Graph G = (V, F) and an integer k

Output: “yes” if there is a clique of size k in GG, “no” otherwise.

Not a clique of size 3 - Aclique of size 4

gusuEE
\j *
.
*
*
*
*
*

clique of size £ = complete subgraph of size k

Reduction

Given a 3-SAT formula ¢ we want to create G = (V, E).

Cl C2 C3
¢ = (11 VgV T9) Ay VI Vas) Az VgV as)

For every clause in ¢, we create 3 vertices corresponding to the lit-
erals (variable or its negation) in that clause. Add an edge between
vertices from different clauses if and only if those two literals are
consistent (one is not the negation of the other).

We will show that G has a clique
of size m iff ¢ is satisfiable, so
the reduction maps ¢ to (G, m).

1 2 C3
¢ = (x1 VgV —xs) A

~

Ty Vx1Vag) A(xyV-oxyVTs)

1. We show “yes” for 3-SAT = “yes” for clique.

If the 3-SAT instance is a “yes” then there is a truth assignment
(T/F values assigned to the variables) such that every clause has a
true literal. By selecting a corresonding vertex to a true literal in

each clause, then we see that we have a clique in G of size m (where
m is the number of clauses).

Cl C2 C3
¢ = ($1V$4\/—'$2) A (213'4\/331 \/5133) A (371 \/ﬁLC4\/:U5)

2. “yes” for clique = “yes” for 3-SAT.

Assume there is a clique of size m, where m is the number of
clauses. The truth assignment induced by the labels of the vertices
satisfies ¢ because (1) every pair of vertices in the clique has an edge,
i.e., no both T and F for the same variable, (2) every trio of vertices
corresponding to a clause has no edges between those vertices, and
we must have a vertex from every clause.

Example: Reduction from 3-SAT to Clique (3-SAT <, Clique)
The decision problem clique:

Input: Graph G = (V, F) and an integer k

Output: “yes” if there is a clique of size k in G, “no” otherwise.

We have a poly-time reduction from 3-SAT to Clique because
o “ves’ for 3-SAT = “yes” for Clique
o “yes” for 3-SAT <« “yes” for Clique

e creating G from ¢ takes polynomial time

Polynomial-Time Reductions and NP-Completeness

e Definition: A language L is NP-hard
if L, <, L for every L; € NP

e Definition: A language L is NP-complete
if L € NP and L is NP-hard

e Theorem:

- If L and L, are languages such that L is NP-hard and L < L,
then L, is also NP-hard

- If L is any NP-complete language, then L € Pif and only if P =
NP

e There are many NP-complete problems. The standard
method to prove NP-completeness is to take a problem
that is known to be NP-complete and reduce it to your
problem.

NP-Hard

NP-Hard

NP-Complete

P=NP =
NP-Complete

Complexity

Hamilton cycle
Steiner tree
Graph 3-coloring
Satisfiability
Maximum clique

Matrix permanent
Halting problem

Y/ complete

Factoring
Graph isomorphism

Graph connectivity
Primality testing

Matrix determinant
Linear programming

The Cook-Levin Theorem

e Theorem:

— The language Satisfiable (or the corresponding
decision problem SAT) is NP-complete

e Proof:

- We know that Satisfiable is in NP, so we need to show
that every language L € NP is reducible to Sat

— We do this by using a TM T that accepts L; the
reduction considers the details of T and takes a string x
to a Boolean formula that is satisfiable if and only if x is
accepted by T

— The details are complex and can be found in the book

Some Other NP-Complete Problems

e Theorem:

— The clique problem (Given a graph ¢ and an integer k,
does G have a complete subgraph with k vertices?) is
NP-complete.

e Proof sketch:
- By reduction from SAT or 3-SAT
+ show that the language is in NP.

Reduction is a tool for demonstrating the hardness

 We want to demonstrate that a problem X is NP-complete (i.e., it is
currently computationally difficult because we don’t know if there is
a polynomial algorithm for it)

 We find a problem Y that is NP-complete and check:

Can we solve Y using X (having in mind that hopefully X is at least as
hardas Y) ?

i.e., we reduce X to Y. In other words, given a black box that solves Y,
can we solve Y?

 To answer this question, we need to find a bijection
f : Inputs(X) =2 Inputs(Y) such that X(i) = Y(f(i)), i.e. solutions are equal
- \
input of Y
* The bijection f should be of polynomial time complexity

input of X

Reduction is a tool for demonstrating the hardness

e If Xcan bereducedtoY itis denoted by X<, Y

* |t means that X is at least as hard as Y because if we can solve X, we
can solveY, i.e., we need to reduce to the problem we want to show
is the harder problem.

y €< instance of X

X < fy) // f is a bijection
d €< solve Y with input x // decision problem d=0/1
d is a solution of X with input y

* If we could find hard problem Y, we could prove that another
problem X is hard by reducing Y to X.

Reduction is a tool for demonstrating the hardness

* We can prove that SAT is NP-complete

* We can construct a reduction from SAT to 3-SAT and show that 3-SAT
isin NP, i.e., 3-SAT is also NP-complete

* We want to prove that Clique problem is NP-complete

The Clique decision problem:
Input: Graph G = (V, F) and an integer k
Output: “yes” if there is a clique of size k in (G, “no” otherwise.

.........
.* e
. ~
. .
* L4
. .
o ‘e

. N

.

Not a clique of size 3 - Clique of size 4

gusuEE
\
*
*
*
*
*

clique of size £ = complete subgraph of size k

Reduction is a tool for demonstrating the hardness

1) Clique is in NP. This is because for a given size of the set |S|

we can enumerate all (I?I) solutions, i.e., non-deterministic TM can

guess the solution and we can verify it in polynomial time.

2) Prove that there is a polynomial reduction from 3-SAT to
Clique

Example: Reduction from 3-SAT to Clique (3-SAT <, Clique)
The Clique decision problem:

Input: Graph G = (V, F) and an integer k

Output: “yes” if there is a clique of size k in GG, “no” otherwise.

Not a clique of size 3 - Clique of size 4

gusuEE
\j *
.
*
*
*
*
*

clique of size £ = complete subgraph of size k

Reduction

Given a 3-SAT formula ¢ we want to create G = (V, E).

Cl C2 C3
¢ = (11 VgV T9) Ay VI Vas) Az VgV as)

For every clause in ¢, we create 3 vertices corresponding to the lit-
erals (variable or its negation) in that clause. Add an edge between
vertices from different clauses if and only if those two literals are
consistent (one is not the negation of the other).

We will show that G has a clique
of size m iff ¢ is satisfiable, so
the reduction maps ¢ to (G, m).

Cl C2 C3
¢ = ($1V$4\/—'$2) A (213'4\/231 \/5133) A (371 \/ﬁLC4\/:U5)

1. We show “yes” for 3-SAT = “yes” for clique. If the 3-SAT
instance is a “yes” then there is a truth assignment (T/F values
assigned to the variables) such that every clause has a true literal.
By selecting a corresonding vertex to a true literal in each clause,
then we see that we have a clique in G of size m (where m is the

number of clauses).

C1 C2 C3
¢: ($1V$4\/—'$2)/\ 213'4\/$1\/5133)/\(371\/ﬁ334\/5135)

~

2. “yes” for clique = “yes” for 3-SAT. Assume there is a clique of
size m, where m is the number of clauses. The truth assignment
induced by the labels of the vertices satisfies ¢ because (1) every
pair of vertices in the clique has an edge, i.e., no both T and F for
the same variable, (2) every trio of vertices corresponding to a clause
has no edges between those vertices, and we must have a vertex from
every clause.

Example: Reduction from 3-SAT to Clique (3-SAT <, Clique)
The decision problem clique:

Input: Graph G = (V, F) and an integer k

Output: “yes” if there is a clique of size k in G, “no” otherwise.

We have a poly-time reduction from 3-SAT to Clique because
o “ves’ for 3-SAT = “yes” for Clique
o “yes” for 3-SAT <« “yes” for Clique

e creating G from ¢ takes polynomial time

-
-

SAT

-

—_—_~

o —_y

NP-complete

3-CNF-SAT

* Independent set (IS) decision problem: Given graph G and
integer k, does G contain a subgraph H of k nodes such that H
has no edges.

Independent
set of size 3

* Prove that IS is NP-complete

Part | of the NP-completeness proof: Independent set is in NP.

Given a certificate (i..e, a subset of nodes) can we verify if the
corresponding subgraph contains edges in polynomial time?

How many edges we need to check?”

STASI=1)

At most c O(n?)

Time to check one edge?

AR .- Depends on the data structure,
S """" e.g., linear in the number of edges in GG

Part Il of the NP-completeness proof: Reduction from Clique to IS

* Reverse the graph: remove all existing edges, add non-edges

* Aclique in G will correspond to the independent set in the
reversed graph

* This process takes polynomial number of steps. The maximum
possible number of edges is n(n-1)/2, where n is the number of

nodes
C
p @)

A clique of size 3 is converted into independent set of size 3.

Applications of the maximum independent set

1. Biology: Identify clusters of proteins or genes that are not functionally
related. This helps in understanding the structure of complex biological
systems.

2. Operations Research: Optimize the placement of wireless communication
devices or sensors in a network.

3. Image Processing: Segment images into different regions. The vertices in
the graph represent pixels, and edges represent the similarity between pixels.
Finding the MIS helps to identify regions of the image that are not related to
each other.

4. Social Sciences: Used in social network analysis to identify groups of
people who are not connected to each other in a social network. This helps to
understand the structure of social networks and the dynamics of social
interactions.

o

-
-

-~

SAT

Independent set

mm B e
= ~~

NP-complete

3-CNF-SAT

* Avertex cover of a graph is a set S of nodes such that every

edge has at least one endpointin S.
O Vertex cover nodes

e Decision problem: Given a graph G and integer k, does G contain a
vertex cover of size at most k. Is it NP-complete?

Theorem. If G = (V, F) is a graph, then S is an independent set
iff V. — S s a vertex cover.

Proot of =

It S is an independent set, and let 77 € E is an edge then only
one of ¢ and j can be in S. Hence, at least one of 7 and j isin V'\ S,
1.e., 1t 1s a vertex cover.

Proof of «

Suppose V' — S is a vertex cover, and let 2 and 5 be in .S. There
cannot be an edge between ¢ and j (otherwise that edge wouldn’t
be covered in V' — S), so S is an independent set.

Theorem. Independent Set <p Vertex Cover.

Proof. Given an instance of IS, namely, G and integer k, we convert
it into the instance of vertex cover, i.e.,

e we ask the vertex cover black box solver if there is a vertex

cover (V — 9) of size < |V| — k.

By previous theorem, S is an IS iff V' — S is a vertex cover, i.e.,
if the black box VC solver says

e ves: then S must be an independent set of size > k.

e no: then, there is no vertex cover V' — .S of size < |V| —k, hence
there is no IS of size > k.

[]

o

-
-

-~

SAT

Independent set

mm B e
= ~~

NP-complete

3-CNF-SAT

Vertex cover

Part | of the NP-completeness proof: Vertex cover is in NP.

Given a certificate (i..e, a subset of nodes) can we verify if the
corresponding subgraph touches all edges in polynomial time?

How many edges we need to check?”
VIidAv]-1)
2
Time to check one edge?

At most c O(n?)

AR .- Depends on the data structure,
S """" e.g., linear in the number of edges in GG

Applications of the minimum vertex cover

1. Quantum Computing: The MVC arises in the study of entanglement. The
MVC corresponds to the minimum set of qubits that need to be measured to
fully characterize the entanglement of a quantum state.

2. Operations Research: Determine the placement of expensive surveillance
cameras or sensors in a network of streets.

3. Biology: The MVC problem can be used to identify the minimum set of
genetic markers required to predict an individual's risk of developing a
particular disease.

4. Chemistry: In chemical graph theory, the MVC problem arises in the study
of molecular graphs. The MVC corresponds to the minimum set of atoms that
need to be included to represent the entire molecule.

Set Cover (SC) Problem

Given a set U of elements and a collection 51, ..., .S, of subsets of
U, is there a collection of at most k of these sets whose union equals

U?

Set Cover (SC) Problem

Given a set U of elements and a collection 51, ..., .S, of subsets of
U, is there a collection of at most k of these sets whose union equals

U
I 4
|
* |s this problem NP-complete? \ /
rrbAdR
 We will show that SCisin NP and / _L \\ '
. | [o \ o |
 Vertex Cover is reducible to Set Cover \ \ /
.o © 77
\\~_ S
-
/ ’ Subsets that form a

m~m ws® set cover of size 3

Theorem 1. Vertex Cover <p Set Cover

Proof. Let G = (V, E) and k be an instance of VC. We create an
instance of SC

e U=F
e Create S, for each u € V', where .S, contains the edges adjacent
to u.
d
f b
e C

d
U can be covered by < k sets iff G has a vertex cover of size < k.

Theorem 1. Vertex Cover <p Set Cover

Proof. Let G = (V, E) and k be an instance of VC. We create an
instance of SC

e U=F
e Create S, for each u € V', where .S, contains the edges adjacent
to u.
f
e C

U can be covered by < k sets iff G has a vertex cover of size < k.

Theorem 1. Vertex Cover <p Set Cover

Proof. Let G = (V, E) and k be an instance of VC. We create an
instance of SC

o / = F

e Create S, for each u € V', where S, contains the edges adjacent
to u.

U can be covered by < k sets iff G has a vertex cover of size < k.

Because it k sets Sy, ..., 9y, cover U then every edge is adjacent
to at least one of the vertices uq, ..., u;, yealding a vertex cover of
size k.

If uy,...,u is a vertex cover then S,,, ..., 5,, cover U.
]

Don’t forget 1: Why it is polynomial time reduction?

Don’t forget 2: Why the problem is in NP? The certificate is a list of k
subsets. We can check the coverage in polynomial time.

o

-
-

-~

SAT

Independent set

mm B e
= ~~

NP-complete ~ ~

3-CNF-SAT

Set cover

Vertex cover

Applications of the minimum set cover

1. Facility Location: The Set Cover problem arises in the selection of locations
for facilities, such as hospitals or schools, to serve a given population. The Set
Cover problem can be used to identify the minimum set of facilities that can
serve the population.

2. Broadcasting: The Set Cover problem arises in the selection of a minimum
number of expensive broadcast channels to reach a given audience.

3. Image Processing: The Set Cover problem arises in the selection of a
minimum set of patches to represent an image with high accuracy.

4. Healthcare Resource Allocation: The Set Cover problem arises in the
selection of a minimum set of healthcare services or interventions to provide
to a population in order to improve health outcomes.

Some Other NP-Complete Problems

e A k-coloring of G is an assignment to each vertex of
one of the k colors so that no two adjacent vertices
are colored the same

e The k-colorability problem: Given G and k, is there a
k-coloring of G?

Some Other NP-Complete Problems

We now have five problems that are NP-complete

There are hundreds of others that are also known to
be NP-complete

Many real-life decision problems require some kind
of solution

— If a polynomial-time algorithm does not present itself,

it is worth checking whether the problem is NP-
complete

- If so, finding such an algorithm will be as hard as
proving that P= NP

-) \Xf
0°,]KIPEDIA Q_ Ssearch Wikipedia Create account Login eee

¥ .
» o 'The Free Encyclopedia
-

List of NP-complete problems %A 3 languages v

Contents [hide] Article Talk Read Edit View history Tools v
(Top) From Wikipedia, the free encyclopedia Vext
Graphs and hypergraphs Vex —0US] Inge
i Xt: 1 Nde, o3
This is a dynamic list and may never be % . ~~lataness. You can help by adding missing

Mathematical programming L.!Qg_\-

items with reliable sources.

Formal languages and string

processing This is a list of some of the more commont

hundreds of such problems known, this lisf
Games and puzzles (1979

A
Other Com Pen di

See also Graphs and hypergraphs Mizay
) 1o
Notes Graphs occur frequently in everyday a &g_j,_,,gi Cr Editoy. p' Oblem
et . Lescen,: -
References even billions of nodes in some cases |/ Grapy, Dheop, ~ . unz.: nd Vigg,, 1-
¥ (-Ovm'ﬂg - Magp;s editor,, — -o¢Kany
an, P) .
External links o 1-planarityl!] . Graph 7, Pa"mo;[,:n 'uH‘ dérssoy,
- is ¢g) 200y, Mo s 28laphs .
« 3-dimensional matchingl2I?l-$P1 Pendiumy o, ¥ Vertex Ordef\“,i'fil\;a_mme; A Supergr,.
21:6T40 e cop, bpro_\-,'mab.'_ ng, "’Z’Mo,.,?"" Phs, Soyp and p,
« Bandwidth problem[®) "Pending, ;. ” ey regy g for N Gerharg v, s : Cut, U lition,
< dlso r Segy, Oe, 3 s and
» Bipartiteifiension-| GT18 here 18 g s bart Of'the booy ¢~ Opt"mzﬂﬂon . /"Hrz;;g i Sep, s e ‘}fﬂlecgjwh’
= ~2Der descyjy,: % Comple Probjep, “Chilin .
S spannin Ve hay T —=Clbing how the ~sAty and Apy . Wag lasg y,
e Ve Coﬂeol‘ed . W}m, 5 . \LI% Prfaled in 2000

(als

We still do not know the status of some problems
Example: Graph Isomorphism

An Isomorphism of graphs G and H is a bijection between the
vertex sets of Gand H

e

fv(G)) =2 V(H)

such that any two vertices u and v of G are adjacent in G if and only
if f(u) and f(v) are adjacent in H.

anisomorphism . We still don’t know the status

"E“”:)'ff"“” of this problem!

w=6 Clearly, itis in NP but we don’t
=2 know whether this problem is

fld) =3 .
w-s NP-complete orinP.

fih) =2
=4
fp=1

Graph G Graph H

NP-Hard: These are at least as hard as any problem in NP. If we can solve these problems in
polynomial time, we can solve any NP problem that can possibly exist. Note that these problems

are not necessarily in NP, i.e., we may/may-not verify the solution in polynomial time.

A
NP-Hard NP-Hard
NP-Complete
P=NP=
NP-Complete
P = NP P =NP

NP-Complete: These are the problems which are both NP and NP-Hard. That means, if we can
solve these problems, we can solve any other NP problem and the solutions to these problems

can be verified in polynomial time.

Well ... the decision problem is NP-complete, the corresponding
optimization problem is NP-hard. What now?

* Can we hope for a fast algorithm that guarantees a “pretty
good” solution?
* In many cases, the answer is “yes”.

* Approximation algorithms (for example, greedy algorithms,
probabilistic algorithms, ...)

* Heuristics (do not produce provably good solutions on all
instances but have been proven to be good in practice on many
instances)

Approximation Algorithms

* A minimization problem is an optimization problem, where we look
for a valid (or feasible) solution that minimizes a certain target
function.

* For example: in the minimum vertex cover problem, we are looking
of a minimum size subset of nodes that is a vertex cover; in the
minimum coloring problem, we are looking for the minimum number
of colors, and the coloring itself.

* Let Opt(l) denote the value of the target function for the optimal
solution.

e Algorithm Alg for a minimization problem Min achieves an
approximation factor a > 1 if for all inputs I, we have Alg(l)/Opt(l) < a.
We will refer to Alg as an a-approximation algorithm for Min

Approximation Algorithm for the Minimum Vertex Cover

The MVC problem has many applications. Example: what is the
fewest number of cameras we need to install in a bank in order to

cover all its corridors. So, it is important to have a fast algorithm that
produces good solutions.

Algorithm 1: Pick an arbitrary vertex with at least one uncovered
edge incident to it, put it into the cover, and repeat.
Is it good or bad?

It is bad. An example of bad behavior: a star graph.

Algorithm 2: Pick a vertex that covers most uncovered edges.
Is it good or bad?

It is bad. An example is complicated but it produces an
approximation with a factor of log(n)

Approximation Algorithm for the Minimum Vertex Cover

Algorithm 3: Pick an arbitrary edge. Add both of its endpoints to
the vertex cover. Then, throw out all edges covered and repeat.

Is it good or bad?

It is not as bad as previous examples.
It gives an approximation factor 2.

Proof: The algorithm finds a matching (a set of edges no two of
which share an endpoint) that is “maximal” (meaning that you can’t
add any more edges to it and keep it a matching).

This means if we take both endpoints of those edges, we must have a
vertex cover. In particular, if the algorithm picked k edges, the vertex
cover found has size 2k. But, any vertex cover must have size at least
k since it needs to have at least one endpoint of each of these edges.
So the algorithm is a 2-approximation.

91

