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Introduction to Computational 
Complexity

• A decision problem is decidable if there is an 
algorithm that can answer it in principle

• We will try to identify the problems for which there 
are practical algorithms
– Ones that can answer reasonable-size instances in a 

reasonable amount of time
• For example, the Sudoku	puzzle is decidable, but the 

known algorithms aren’t much of an improvement on 
the brute-force algorithm that takes exponential time 
on general	instances

• Our	focus	is	the	running	time	(not	the	problems	
that	cannot	be	solved!)
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The Time Complexity of a Turing 
Machine, and the Set P

• The set P is the set of problems that can be decided 
by a TM in polynomial	time	(number of moves), as a 
function of the instance size.  

• NP is defined similarly, except that we allow the use 
of a nondeterministic	TM

• Most people assume that NP is a larger set, but no 
one has been able to demonstrate that P  NP

• We will discuss different classes of hardness of 
problems, and will learn how to compare algorithms.

• In this chapter: Our	focus	is	the	running	time	(not	
the	problems	that	cannot	be	solved!)
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The Time Complexity of a Turing Machine
• A TM deciding a language L  * solves a decision problem: 

Given x  *, is x  L?
– A measure of the size of the problem is the length of the input 

string x
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The Time Complexity of a Turing Machine
• A TM deciding a language L  * solves a decision problem: 

Given x  *, is x  L?
– A measure of the size of the problem is the length of the input 

string x

• Definition: Suppose T is a TM with input alphabet  that 
eventually halts on every input string
– The time	complexity of T	is the function 

T :  ,              

input string length n

TM with a certain time complexity halts on every input.

the number of moves Tmakes on 
that string of length n	before 
halting, and letting T(n) be the 
maximum of these numbers
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1
n

1

n/2

n/2

1

T(n)  for even n	is 1+n+1+n/2+n/2+1
T(n) for general n	is max(T(even n), T(odd n))

Example: TM for computing the remainder Mod 2
Moves the tape head to the end of the string, then makes a 
pass from right to left in which the 1’s are counted and erased 
by pairs. The final output is a single 1 if the input was odd and 
nothing otherwise.
Input: 11…1 of length n where n is even.
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The Time Complexity of a Turing Machine

• Definition:  If f and g are partial functions from 
to + ; that is, both functions have values that are 

nonnegative real numbers wherever they are defined
We	say	that	

f  O(g),	or	f	(n)	 O(g(n))		
(which	we	read	“f is	big‐oh	of	g”)	

if,	for	some	positive	numbers	C and	N,	
f	(n)	 C	g(n)	for	every	n  N.

– For example, every polynomial of degree kwith positive 
leading coefficient is O(nk)
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Example of Big-O	proof
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Example of Big-O	proof

Sum is positive
false
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Fast way to obtain O(…)	for some f(n)	is to find its dominant term
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Properties of  O(…)

• What is O(f+g) ?
O(f+g) = max(O(f), O(g))

• Is it true that O(fg) = O(f) O(g) ?
True

• Is it true that if g  O(f) and h  O(f) then g O(h)?
False
if g  O(f) and f  O(h) then g  O(h)

• Is it true that O.5n + 8n2 + 100n3  O(n4)
True
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Logical connectives: reminder

ORAND

Boolean variables
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The Time Complexity of a Turing Machine
• An instance of the satisfiability	problem (SAT) is a Boolean 

expression  
– It involves Boolean variables x1, x2, … , xn and the logical 

connectives , , and 
– It is in conjunctive normal form (the conjunction of several 

clauses, each of which is a disjunction). 
Example:	
Expression in CNF: (x1  x2   x5	) ( x1   x2   x6  x3  x4)

Assignment: x1=1, x2=0, x3=1, x4=0, x5=1, x6=1
Result: (100) (11010) = 1  1 = 1 (i.e., the expression 
is satisfied)
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The Time Complexity of a Turing Machine
• An instance of the satisfiability	problem (SAT) is a Boolean 

expression  
– It involves Boolean variables x1, x2, … , xn and the logical 

connectives , , and 
– It is in conjunctive normal form (the conjunction of several 

clauses, each of which is a disjunction). 
Example: (x1  x2   x5	) ( x1   x2   x6  x3  x4)

• SAT Problem: Is there an assignment of 1/0 to the variables 
that satisfies the expression (makes it true)?

Try every possible assignment of values to 
variables (total 2n assignments)

– Is this problem decidable? Yes.
– Decision algorithm?



Foundations of Computer Science 15

• The traveling	salesman	problem (TSP) considers n cities 
that a salesman must visit, with a distance specified for 
every pair of cities.

• TSP	question: what is the shortest possible route that 
visits each city exactly once and returns to the origin city?
– It’s easy to formulate this as an optimization problem

• Determine the order that minimizes the total distance traveled

• How to turn TSP into decision problem?
Introduce a variable k and ask whether there is an order in 
which the cities could all be visited by traveling no more than 
distance k
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• The traveling	salesman	problem (TSP) considers n cities 
that a salesman must visit, with a distance specified for 
every pair of cities.

• Decision	TSP	question: is there a route that visits each 
city exactly once and returns to the origin city that is not 
longer than k	?

• Is this problem decidable? Yes. What is the algorithm?

• There’s a brute-force solution to the TSP problem too
– Consider all n! possible permutations of the cities

1               2                 3                                                     n               1

n choices
n‐1 choices

n‐2 choices            ……..                 1 choice
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• With current hardware we can solve very large problems, if 
the problems require time O(n)

• We can still solve largish problems if they take time O(n2) or 
even O(n3)

• Exponential time algorithms are another story
– If the problem really requires time proportional to 2n, then 

even doubling the speed of the machine doesn’t help much.
– Try	to	write	a	simple	O(2n)	algorithm	to	satisfy	a	SAT	formula.	
Check	if	you	will	be	able	to	run	it	for	12‐20	variables.

• However,	showing	that	a	brute‐force	approach	takes	a	
long	time	does	not	necessarily	mean	that	the	problem	is	
complex

– The SAT and TSP problems are assumed to be hard, not because the brute-
force approach takes exponential or factorial time, but because we	don’t	
know	a	way	of	solving	either	problem	that	doesn’t	take	at	least	exponential	
time
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What problems are tractable?

• The most common answer is those that can be solved in 
polynomial	time on a TM or a comparable computer

• One reason for this characterization is that it is relatively 
robust, as problems that can be solved in polynomial time 
on any computer can be solved in polynomial time on a TM 
as well, and vice-versa

• There are many theorems that look like
There	is	______‐time	overhead	to	convert	a	code	in	______	to	TM.

polynomial
linear
logarithmic
…

Python
C++
electric circuit
…
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• Definition:  P is the set of languages L such that 
for some TM T deciding L and some k  ,        

T(n)  O(nk) 

• Maybe the SAT and TSP problems seem to be good 
candidates for real-life problems that are not in P?

The Set P
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The Set NP and Polynomial Verifiability

• TSP seems like a hard problem but testing a potential 
answer is easy (and there are many potential answers)

• We can approach this problem nondeterministically
– We guess an answer (a particular route) and then test it 

deterministically 
– This can be done in polynomial time

Formulate  problem Guess solution Verify solution 

O(poly(n))
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• Definition: If T is an NTM with input alphabet  such that, 
for every x  *, every possible sequence of moves of T on 
input x eventually halts, the time 
complexity is defined as follows

T : 

– Let T(n) be the maximum number of moves T can possibly 
make on any input string of length n before halting

(We are assuming implicitly that no input string can cause it to loop forever)

Input length Number of moves

The Set NP and Polynomial Verifiability
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• Definition: NP is the set of languages L such that for some 
NTM T that cannot loop forever on any input, and some 
integer k,  T accepts L and 
T(n) = O(nk)  

– We say that a language in NP can be accepted in 
nondeterministic	polynomial	time

– It is clear that P  NP	
– But	if	you	can	prove	or	disprove	that	NP  P	then	you’ll	
get	an	A	in	this	course,	$1M	from	the	Clay	Institute,	a	full	
professor	position	in	any	school,	Turing	award,	etc.

– The SAT problem is in NP (the “guess-and-test” strategy is 
typical of problems in NP, and we can formalize this by 
constructing an appropriate NTM)
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Important Note on P/NP: Some submissions purport to solve a long‐standing open problem in 
complexity theory, such as the P/NP problem. Many of these turn out to be mistaken, and such 
submissions tax JACM volunteer editors and reviewers. JACM remains open to the possibility of 
eventual resolution of P/NP and related questions and continues to welcome submissions on 
the subject. However, to mitigate the burden of repeated resubmissions due to incremental 
corrections of errors identified during editorial review, no author may submit more than one 
such paper to JACM, ACM Trans. on Algorithms, or ACM Trans. on Computation Theory in any 
24‐month period, except by invitation of the Editor‐in‐Chief. This applies to resubmissions of 
previously rejected manuscripts. Please consider this policy before submitting a such a paper.
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Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a 
TM with polynomial overhead (i.e., t steps on the model can be 
simulated in tc steps on the TM, where c is a constant that depends 
upon the model). 

What are the possible objections to accept it?

• Precision ‐ TM’s compute with discrete symbols, whereas physical 
quantities may be real numbers in R. TM computations may only be 
able to approximately simulate the real world.
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Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a 
TM with polynomial overhead (i.e., t steps on the model can be 
simulated in tc steps on the TM, where c is a constant that depends 
upon the model). 

What are the possible objections to accept it?

• Randomness: The TM as defined is deterministic. If randomness 
exists in the world, one can conceive of computational models that 
use a source of random bits (i.e., ”coin tosses”).
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Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a 
TM with polynomial overhead (i.e., t steps on the model can be 
simulated in tc steps on the TM, where c is a constant that depends 
upon the model). 

What are the possible objections to accept it?

• Quantum mechanics: A computational model might use some of the 
counterintuitive features of quantum mechanics. However, it is not 
yet clear whether a scalable quantum system is truly physically 
realizable. Also, quantum computers currently seem only able to 
efficiently solve only very few “well‐structured” problems that are 
(presumed to be) not in P.
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Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a 
TM with polynomial overhead (i.e., t steps on the model can be 
simulated in tc steps on the TM, where c is a constant that depends 
upon the model). 

What are the possible objections to accept it?

• Other exotic physics, such as string theory. Though an intriguing 
possibility, it hasn’t yet had the same scrutiny as use of quantum 
mechanics.

• Energy considerations: how much energy is consumed during the 
computation?
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• Definition: If L  *, we say that a TM T is a verifier
for L	if: 
– T accepts a language L1  *$*
– T halts on every input, and 
– L = {x  * | for some a  *, x$a  L1}  (we will call 

such a value a a certificate	for x)
• A verifier T is a polynomial‐time	verifier if:

– There is a polynomial p such that for every x and every 
a in  *, the number of moves Tmakes on the input 
string x$a is no more than p(|x|)

some special symbol

The Set NP and Polynomial Verifiability
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• Theorem: For every language L  *
L  NP if	and	only	if	L is polynomially verifiable

i.e., there is a polynomial-time deterministic TM that is a 
verifier for L

• Proof: See book
For example:
• A verifier for SAT could take a specific truth 

assignment as a certificate; 
• A verifier for TSP could take a permutation of the 

cities as a certificate

The Set NP and Polynomial Verifiability



Foundations of Computer Science 30

• A graph G=(V,E) is a pair, where V is a set of nodes, and E is a 
set of edges. Each edge connects a pair of nodes (i,j),	where i, 
and j are in V.	In undirected graphs the order of i, and j is 
not important. (However, it is important in directed graphs.)

• A path is a sequence of edges leading from one node to 
another. A Hamiltonian	path is a path that visits every node 
exactly once.

• Example: there are paths for all pairs of nodes, but there is 
no Hamiltonian path from a	to c.

a

c

b d

e

f
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• PATH={<G,a,b>	|	G is	a	graph	with	path	from	a to	b}
This	language	is	in	P. You can check if there is a a‐b path 
by running BFS from a.
In general, the complexity of running BFS is linear in n+m, 
the number of nodes+edges, i.e., it is O(n+m). However,	the	
actual	running	time	depends	on	the	representation	of	G.

• HAMPATH={<G,a,b>	|	G is	a	graph	with	Hamiltonian	
path	from	a to	b}

This	language	is	in	NP.	 Trivial algorithm for finding HP 
has to check an exponential number of possibilities but 
there is a fast nondeterministic algorithm for it because 
we can guess the path (this will be a certificate for 
verifier).
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• PRIME={all prime numbers in binary format}
• COMPOSITE={all composite numbers in binary format}
If m is an input for an algorithm that decides PRIME, its 
length is log2m, i.e., we	want	an	algorithm	that	runs	in	
polynomial	time	in	a	number	of bits!	Not in time that is 
proportional to m.

It is easy to define a certificate for COMPOSITE (two factors).
Number theory gives a certificate for PRIME.

For many years it has been assumed that PRIME is in NP.
In 2002 it was shown that PRIME is in P, and so is the 
complementary problem COMPOSITE but there	is	still	no	
polynomial‐time	algorithm	known	for	the	factorization.



Foundations of Computer Science 33

Space Complexity

• The space used by a TM corresponds to the memory used 
by a computer

• When we compute the space used by a TM, we don’t count 
the input space

• Definition: TM runs in space S(n) is for all inputs of length 
n. M uses at most S(n) cells in total on its work tapes.

• Example: SAT can be decided in …
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Space Complexity

• The space used by a TM corresponds to the memory used 
by a computer

• When we compute the space used by a TM, we don’t count 
the input space

• Definition: TM runs in space S(n) is for all inputs of length 
n. M uses at most S(n) cells in total on its work tapes.

• Example: SAT can be decided in linear space. We need a 
space for 1 assignment and some more space to keep 
track.

• Can space complexity exceed time complexity? No

• Theorem: If  a TM runs in time T(n) then it runs in space 
at most T(n)
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Space Complexity
• Theorem: If  a TM runs in time T(n) then it runs in space 

at most T(n)
• Theorem: Suppose a deterministic TM runs in S(n) space 

with |=g letters in the tape alphabet and |Q|=q. If this 
TM runs for longer than qngS(n) steps on an input of length 
n, then it stuck in an infinite loop.

• Consequence: If L is accepted by TM T running in space 
S(n), where S(n)> log n, then L is accepted by a TM T’ that 
runs in space O(S(n)) but always halts.

• The nondeterministic space is defined similarly for NTMs.
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Polynomial and Logarithmic Spaces
PSPACE = all languages that can be decided in polynomial 
space by deterministic TM.
NPSPACE = all languages that can be decided in polynomial 
space by nondeterministic TM.

After all the uncertainty about P, and NP it is surprising that
Theorem: PSPACE = NPSPACE (not hard to prove)

L = all problems solvable in O(log n) space. 
NL = all problems solvable in O(log n) space by NTM.
This is what we know about these six classes:
L NL P NP PSPACE = NPSPACE and L≠PSPACE
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Reduction
Definition: Suppose P1 and P2 are decision problems. 
We say P1 is reducible to P2 (P1  P2) if  there is an algorithm 
that finds, for an arbitrary instance I of P1,  an instance F(I) of 
P2 such that the two	answers	are	the	same, i.e., (the answer 
to P1 for the instance I, and the answer to P2 for the instance 
F(I)) 

Inputs 
of P1

I

Foundations of Computer Science

Inputs 
of P2F(I)

P1(I) = P2(F(I))

F

Idea 1: For example, I don’t know how to solve P1 but I can solve P2 and know how 
to map the instances to preserve answers. Then I can solve P1
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Reduction
Definition: Suppose P1 and P2 are decision problems. 
We say P1 is reducible to P2 (P1  P2) if  there is an algorithm 
that finds, for an arbitrary instance I of P1,  an instance F(I) of 
P2 such that the two	answers	are	the	same, i.e., (the answer 
to P1 for the instance I, and the answer to P2 for the instance 
F(I)) 

Inputs 
of P1

I

Foundations of Computer Science

Inputs 
of P2F(I)

P1(I) = P2(F(I))

F

Idea 2: Say, P1 is computationally difficult, and I don’t know the difficulty of  P2. If I 
know how to map the instances, then I can state that P2 is at least as difficult as P1
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Polynomial-Time Reductions and       
NP-Completeness

• Just as we can show that a problem is decidable by 
reducing it to another one that is also decidable, we 
can show that a language is in P by reducing it to 
another that is.

• To see whether x  L1, all we have to do is compute f (x) 
and see whether it is in L2; and f is computable.
– In the case of decidability (i.e., we need to decide y/n, 

not to compute something), we only needed the 
reduction to be computable

– Here	we	need	the	reduction	function	to	be	computable	
in	polynomial	time
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• Definition: If L1 and L2 are languages over respective 
alphabets 1 and 2, a polynomial‐time	reduction from L1
to L2 is a function f : 1* 2* satisfying two conditions
1) for every x  1*,    x  L1 if	and	only	if	f	(x)  L2

2) f can be computed in polynomial time, i.e., there is a TM 
with polynomial time complexity that computes f

• If there is a polynomial-time reduction from L1 to L2, we 
write L1 p L2 and say that L1 is polynomial-time 
reducible to L2. 

• In this case, we said that deciding L1  is no harder than 
deciding L2, because we considered only two degrees of 
hardness, decidable and undecidable.



Foundations of Computer Science 41

Polynomial -Time Reductions and      
NP-Completeness

• Theorem:  
– Polynomial-time reducibility is transitive:

• If L1 p L2 and L2 p L3 then L1 p L3

– If L1 p L2 and L2  P, then L1  P
• Proof sketch: 

– For the first statement, simply use the composition of 
the reduction functions

– For the second statement, simply combine the TM that 
accepts L2 and the one that computes the reduction f
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A clique of size 4Not a clique of size 3
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Polynomial-Time Reductions and NP-Completeness
• Definition: A language L is NP‐hard

if L1 p L for every L1  NP
• Definition: A language L is NP‐complete

if L  NP and L is NP-hard
• Theorem:

– If L and L1 are languages such that L is NP-hard and L p L1, 
then L1 is also NP-hard

– If L is any NP-complete language, then L  P if and only if  P	= 
NP

• There are many NP‐complete	problems. The standard 
method to prove NP-completeness is to take a problem 
that is known to be NP-complete and reduce it to your 
problem.
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The Cook-Levin Theorem

• Theorem: 
– The language Satisfiable (or the corresponding 

decision problem SAT) is NP-complete
• Proof: 

– We know that Satisfiable is in NP, so we need to show 
that every language L  NP is reducible to Sat

– We do this by using a TM T that accepts L; the 
reduction considers the details of T and takes a string x
to a Boolean formula that is satisfiable if and only if x	is 
accepted by T

– The details are complex and can be found in the book
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Some Other NP-Complete Problems

• Theorem: 
– The clique problem (Given a graph G and an integer k, 

does G have a complete subgraph with k vertices?) is 
NP-complete.

• Proof sketch: 
– By reduction from SAT	or 3‐SAT

+ show that the language is in NP.
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Reduction is a tool for demonstrating the hardness
• We want to demonstrate that a problem X is NP‐complete (i.e., it is 

currently computationally difficult because we don’t know if there is 
a polynomial algorithm for it) 

• We find a problem Y that is NP‐complete and check:

Can we solve Y using X (having in mind that hopefully X is at least as 
hard as Y) ?

i.e., we reduce X to Y. In other words, given a black box that solves Y, 
can we solve Y?

• To answer this question, we need to find a bijection 
f : Inputs(X)  Inputs(Y) such that X(i) = Y(f(i)), i.e. solutions are equal

• The bijection f should be of polynomial time complexity

input of X
input of Y
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Reduction is a tool for demonstrating the hardness

• If X can be reduced to Y it is denoted by Xp Y

• It means that X is at least as hard as Y because  if we can solve X, we 
can solve Y, i.e., we need to reduce to the problem we want to show 
is the harder problem.

y  instance of X
x  f(y) // f is a bijection
d  solve Y with input x // decision problem d=0/1
d is a solution of X with input y

• If we could find hard problem Y, we could prove that another 
problem X is hard by reducing Y to X.
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Reduction is a tool for demonstrating the hardness

• We can prove that SAT is NP‐complete

• We can construct a reduction from SAT to 3‐SAT and show that 3‐SAT 
is in NP, i.e., 3‐SAT is also NP‐complete

• We want to prove that Clique problem is NP‐complete
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Clique of size 4Not a clique of size 3
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Reduction is a tool for demonstrating the hardness

1) Clique is in NP. This is because for a given size of the set |S| 
we can enumerate all  | | solutions, i.e., non‐deterministic TM can 
guess the solution and we can verify it in  polynomial time.

2) Prove that there is a polynomial reduction from 3‐SAT to 
Clique
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Clique of size 4Not a clique of size 3
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NP‐complete

SAT

3‐CNF‐SAT

Clique
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• Independent set (IS) decision problem: Given graph G and 
integer k, does G contain a subgraph H of k nodes such that H
has no edges.

• Prove that IS is NP‐complete

Independent 
set of size 3
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Part I of the NP‐completeness proof: Independent set is in NP. 

Given a certificate (i..e, a subset of nodes) can we verify if the 
corresponding subgraph contains edges in polynomial time?

S
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Part II of the NP‐completeness proof: Reduction from Clique to IS

• Reverse the graph: remove all existing edges, add non‐edges
• A clique in G will correspond to the independent set in the 

reversed graph
• This process takes polynomial number of steps. The maximum 

possible number of edges is n(n‐1)/2, where n is the number of 
nodes

A clique of size 3 is converted into independent set of size 3.
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Applications of the maximum independent set

1. Biology: Identify clusters of proteins or genes that are not functionally 
related. This helps in understanding the structure of complex biological 
systems.

2. Operations Research: Optimize the placement of wireless communication 
devices or sensors in a network.

3. Image Processing: Segment images into different regions. The vertices in 
the graph represent pixels, and edges represent the similarity between pixels. 
Finding the MIS helps to identify regions of the image that are not related to 
each other.

4. Social Sciences: Used in social network analysis to identify groups of 
people who are not connected to each other in a social network. This helps to 
understand the structure of social networks and the dynamics of social 
interactions.
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NP‐complete

SAT

3‐CNF‐SAT

Clique

Independent set
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• A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S.

• Decision problem: Given a graph G and integer k, does G contain a 
vertex cover of size at most k. Is it NP‐complete?

Vertex cover nodes
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NP‐complete

SAT

3‐CNF‐SAT

Clique

Independent set

Vertex cover
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Part I of the NP‐completeness proof: Vertex cover is in NP. 

Given a certificate (i..e, a subset of nodes) can we verify if the 
corresponding subgraph touches all edges in polynomial time?

S
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Applications of the minimum vertex cover

1. Quantum Computing: The MVC arises in the study of entanglement. The 
MVC corresponds to the minimum set of qubits that need to be measured to 
fully characterize the entanglement of a quantum state.

2. Operations Research: Determine the placement of expensive surveillance 
cameras or sensors in a network of streets.

3. Biology: The MVC problem can be used to identify the minimum set of 
genetic markers required to predict an individual's risk of developing a 
particular disease.

4. Chemistry: In chemical graph theory, the MVC problem arises in the study 
of molecular graphs. The MVC corresponds to the minimum set of atoms that 
need to be included to represent the entire molecule.
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Set Cover (SC) Problem



Foundations of Computer Science 76

Set Cover (SC) Problem

• Is this problem NP‐complete?

• We will show that SC is in NP and

• Vertex Cover is reducible to Set Cover

Subsets that form a 
set cover of size 3
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Don’t forget 2: Why the problem is in NP? The certificate is a list of k
subsets. We can check the coverage in polynomial time.

Don’t forget 1: Why it is polynomial time reduction?
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NP‐complete

SAT

3‐CNF‐SAT

Clique

Independent set

Vertex cover

Set cover
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Applications of the minimum set cover

1. Facility Location: The Set Cover problem arises in the selection of locations 
for facilities, such as hospitals or schools, to serve a given population. The Set 
Cover problem can be used to identify the minimum set of facilities that can 
serve the population.

2. Broadcasting: The Set Cover problem arises in the selection of a minimum 
number of expensive broadcast channels to reach a given audience. 

3. Image Processing: The Set Cover problem arises in the selection of a 
minimum set of patches to represent an image with high accuracy.

4. Healthcare Resource Allocation: The Set Cover problem arises in the 
selection of a minimum set of healthcare services or interventions to provide 
to a population in order to improve health outcomes. 
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Some Other NP-Complete Problems

• A k‐coloring of G is an assignment to each vertex of 
one of the k colors so that no two adjacent vertices 
are colored the same

• The k‐colorability problem: Given G and k, is there a  
k-coloring of G?
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Some Other NP-Complete Problems

• We now have five problems that are NP-complete
• There are hundreds of others that are also known to 

be NP-complete
• Many real-life decision problems require some kind 

of solution
– If a polynomial-time algorithm does not present itself, 

it is worth checking whether the problem is NP-
complete

– If so, finding such an algorithm will be as hard as 
proving that  P = NP
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We still do not know the status of some problems
Example: Graph Isomorphism

An Isomorphism of graphs G and H is a bijection between the 
vertex sets of G and H

f(V(G))  V(H)

such that any two vertices u and v of G are adjacent in G if and only 
if ƒ(u) and ƒ(v) are adjacent in H.

We still don’t know the status 
of this problem!
Clearly, it is in NP but we don’t 
know whether this problem is 
NP‐complete or in P.
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NP‐Hard: These are at least as hard as any problem in NP. If we can solve these problems in 
polynomial time, we can solve any NP problem that can possibly exist. Note that these problems 
are not necessarily in NP, i.e., we may/may‐not verify the solution in polynomial time.

NP‐Complete: These are the problems which are both NP and NP‐Hard. That means, if we can 
solve these problems, we can solve any other NP problem and the solutions to these problems 
can be verified in polynomial time.
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Well … the decision problem is NP‐complete, the corresponding 
optimization problem is NP‐hard. What now?

• Can we hope for a fast algorithm that guarantees a “pretty 
good” solution?

• In many cases, the answer is “yes”.

• Approximation algorithms (for example, greedy algorithms, 
probabilistic algorithms, …)

• Heuristics (do not produce provably good solutions on all 
instances but have been proven to be good in practice on many 
instances)
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Approximation Algorithms

• A minimization problem is an optimization problem, where we look 
for a valid (or feasible) solution that minimizes a certain target 
function. 

• For example: in the minimum vertex cover problem, we are looking 
of a minimum size subset of nodes that is a vertex cover; in the 
minimum coloring problem, we are looking for the minimum number 
of colors, and the coloring itself.

• Let Opt(I) denote the value of the target function for the optimal 
solution. 

• Algorithm Alg for a minimization problem Min achieves an 
approximation factor α ≥ 1 if for all inputs I, we have Alg(I)/Opt(I) ≤ α.
We will refer to Alg as an α‐approximation algorithm for Min
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Approximation Algorithm for the Minimum Vertex Cover

The MVC problem has many applications. Example: what is the 
fewest number of cameras we need to install in a bank in order to 
cover all its corridors. So, it is important to have a fast algorithm that 
produces good solutions.

Algorithm 1: Pick an arbitrary vertex with at least one uncovered 
edge incident to it, put it into the cover, and repeat.
Is it good or bad?
It is bad. An example of bad behavior: a star graph.
Algorithm 2: Pick a vertex that covers most uncovered edges.
Is it good or bad?
It is bad. An example is complicated but it produces an 
approximation with a factor of log(n)
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Approximation Algorithm for the Minimum Vertex Cover

Algorithm 3: Pick an arbitrary edge. Add both of its endpoints to 
the vertex cover. Then, throw out all edges covered and repeat.

Is it good or bad?

It is not as bad as previous examples. 
It gives an approximation factor 2.

Proof: The algorithm finds a matching (a set of edges no two of 
which share an endpoint) that is “maximal” (meaning that you can’t 
add any more edges to it and keep it a matching). 
This means if we take both endpoints of those edges, we must have a 
vertex cover. In particular, if the algorithm picked k edges, the vertex 
cover found has size 2k. But, any vertex cover must have size at least 
k since it needs to have at least one endpoint of each of these edges. 
So the algorithm is a 2‐approximation.
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