
Foundations of Computer Science 1

Chapter 8

Introduction to
Computational Complexity

Foundations of Computer Science 2

Introduction to Computational
Complexity

• A decision problem is decidable if there is an
algorithm that can answer it in principle

• We will try to identify the problems for which there
are practical algorithms
– Ones that can answer reasonable-size instances in a

reasonable amount of time
• For example, the Sudoku	puzzle is decidable, but the

known algorithms aren’t much of an improvement on
the brute-force algorithm that takes exponential time
on general	instances

• Our	focus	is	the	running	time	(not	the	problems	
that	cannot	be	solved!)

Foundations of Computer Science 3

The Time Complexity of a Turing
Machine, and the Set P

• The set P is the set of problems that can be decided
by a TM in polynomial	time	(number of moves), as a
function of the instance size.

• NP is defined similarly, except that we allow the use
of a nondeterministic	TM

• Most people assume that NP is a larger set, but no
one has been able to demonstrate that P  NP

• We will discuss different classes of hardness of
problems, and will learn how to compare algorithms.

• In this chapter: Our	focus	is	the	running	time	(not	
the	problems	that	cannot	be	solved!)

Foundations of Computer Science 4

The Time Complexity of a Turing Machine
• A TM deciding a language L  * solves a decision problem:

Given x  *, is x  L?
– A measure of the size of the problem is the length of the input

string x

Foundations of Computer Science 5

The Time Complexity of a Turing Machine
• A TM deciding a language L  * solves a decision problem:

Given x  *, is x  L?
– A measure of the size of the problem is the length of the input

string x

• Definition: Suppose T is a TM with input alphabet  that
eventually halts on every input string
– The time	complexity of T	is the function

T :  ,

input string length n

TM with a certain time complexity halts on every input.

the number of moves Tmakes on
that string of length n	before
halting, and letting T(n) be the
maximum of these numbers

Foundations of Computer Science 6

1
n

1

n/2

n/2

1

T(n) for even n	is 1+n+1+n/2+n/2+1
T(n) for general n	is max(T(even n), T(odd n))

Example: TM for computing the remainder Mod 2
Moves the tape head to the end of the string, then makes a
pass from right to left in which the 1’s are counted and erased
by pairs. The final output is a single 1 if the input was odd and
nothing otherwise.
Input: 11…1 of length n where n is even.

Foundations of Computer Science 7

The Time Complexity of a Turing Machine

• Definition: If f and g are partial functions from
to + ; that is, both functions have values that are

nonnegative real numbers wherever they are defined
We	say	that	

f  O(g),	or	f	(n)	 O(g(n))		
(which	we	read	“f is	big‐oh	of	g”)	

if,	for	some	positive	numbers	C and	N,	
f	(n)	 C	g(n)	for	every	n  N.

– For example, every polynomial of degree kwith positive
leading coefficient is O(nk)

Foundations of Computer Science 8

Example of Big-O	proof

Foundations of Computer Science 9

Example of Big-O	proof

Sum is positive
false

Foundations of Computer Science 10

Fast way to obtain O(…)	for some f(n)	is to find its dominant term

Foundations of Computer Science 11

Properties of O(…)

• What is O(f+g) ?
O(f+g) = max(O(f), O(g))

• Is it true that O(fg) = O(f) O(g) ?
True

• Is it true that if g  O(f) and h  O(f) then g O(h)?
False
if g  O(f) and f  O(h) then g  O(h)

• Is it true that O.5n + 8n2 + 100n3  O(n4)
True

Foundations of Computer Science 12

Logical connectives: reminder

ORAND

Boolean variables

Foundations of Computer Science 13

The Time Complexity of a Turing Machine
• An instance of the satisfiability	problem (SAT) is a Boolean

expression
– It involves Boolean variables x1, x2, … , xn and the logical

connectives , , and 
– It is in conjunctive normal form (the conjunction of several

clauses, each of which is a disjunction).
Example:	
Expression in CNF: (x1  x2   x5) (x1   x2   x6  x3  x4)

Assignment: x1=1, x2=0, x3=1, x4=0, x5=1, x6=1
Result: (100) (11010) = 1  1 = 1 (i.e., the expression
is satisfied)

14

The Time Complexity of a Turing Machine
• An instance of the satisfiability	problem (SAT) is a Boolean

expression
– It involves Boolean variables x1, x2, … , xn and the logical

connectives , , and 
– It is in conjunctive normal form (the conjunction of several

clauses, each of which is a disjunction).
Example: (x1  x2   x5) (x1   x2   x6  x3  x4)

• SAT Problem: Is there an assignment of 1/0 to the variables
that satisfies the expression (makes it true)?

Try every possible assignment of values to
variables (total 2n assignments)

– Is this problem decidable? Yes.
– Decision algorithm?

Foundations of Computer Science 15

• The traveling	salesman	problem (TSP) considers n cities
that a salesman must visit, with a distance specified for
every pair of cities.

• TSP	question: what is the shortest possible route that
visits each city exactly once and returns to the origin city?
– It’s easy to formulate this as an optimization problem

• Determine the order that minimizes the total distance traveled

• How to turn TSP into decision problem?
Introduce a variable k and ask whether there is an order in
which the cities could all be visited by traveling no more than
distance k

Foundations of Computer Science 16

• The traveling	salesman	problem (TSP) considers n cities
that a salesman must visit, with a distance specified for
every pair of cities.

• Decision	TSP	question: is there a route that visits each
city exactly once and returns to the origin city that is not
longer than k	?

• Is this problem decidable? Yes. What is the algorithm?

• There’s a brute-force solution to the TSP problem too
– Consider all n! possible permutations of the cities

1 2 3 n 1

n choices
n‐1 choices

n‐2 choices …….. 1 choice

Foundations of Computer Science 17

• With current hardware we can solve very large problems, if
the problems require time O(n)

• We can still solve largish problems if they take time O(n2) or
even O(n3)

• Exponential time algorithms are another story
– If the problem really requires time proportional to 2n, then

even doubling the speed of the machine doesn’t help much.
– Try	to	write	a	simple	O(2n)	algorithm	to	satisfy	a	SAT	formula.	
Check	if	you	will	be	able	to	run	it	for	12‐20	variables.

• However,	showing	that	a	brute‐force	approach	takes	a	
long	time	does	not	necessarily	mean	that	the	problem	is	
complex

– The SAT and TSP problems are assumed to be hard, not because the brute-
force approach takes exponential or factorial time, but because we	don’t	
know	a	way	of	solving	either	problem	that	doesn’t	take	at	least	exponential	
time

Foundations of Computer Science 18

What problems are tractable?

• The most common answer is those that can be solved in
polynomial	time on a TM or a comparable computer

• One reason for this characterization is that it is relatively
robust, as problems that can be solved in polynomial time
on any computer can be solved in polynomial time on a TM
as well, and vice-versa

• There are many theorems that look like
There	is	______‐time	overhead	to	convert	a	code	in	______	to	TM.

polynomial
linear
logarithmic
…

Python
C++
electric circuit
…

Foundations of Computer Science 19

• Definition: P is the set of languages L such that
for some TM T deciding L and some k  ,

T(n)  O(nk)

• Maybe the SAT and TSP problems seem to be good
candidates for real-life problems that are not in P?

The Set P

Foundations of Computer Science 20

The Set NP and Polynomial Verifiability

• TSP seems like a hard problem but testing a potential
answer is easy (and there are many potential answers)

• We can approach this problem nondeterministically
– We guess an answer (a particular route) and then test it

deterministically
– This can be done in polynomial time

Formulate problem Guess solution Verify solution

O(poly(n))

Foundations of Computer Science 21

• Definition: If T is an NTM with input alphabet  such that,
for every x  *, every possible sequence of moves of T on
input x eventually halts, the time
complexity is defined as follows

T : 

– Let T(n) be the maximum number of moves T can possibly
make on any input string of length n before halting

(We are assuming implicitly that no input string can cause it to loop forever)

Input length Number of moves

The Set NP and Polynomial Verifiability

Foundations of Computer Science 22

• Definition: NP is the set of languages L such that for some
NTM T that cannot loop forever on any input, and some
integer k, T accepts L and
T(n) = O(nk)

– We say that a language in NP can be accepted in
nondeterministic	polynomial	time

– It is clear that P  NP	
– But	if	you	can	prove	or	disprove	that	NP  P	then	you’ll	
get	an	A	in	this	course,	$1M	from	the	Clay	Institute,	a	full	
professor	position	in	any	school,	Turing	award,	etc.

– The SAT problem is in NP (the “guess-and-test” strategy is
typical of problems in NP, and we can formalize this by
constructing an appropriate NTM)

Foundations of Computer Science 23

Important Note on P/NP: Some submissions purport to solve a long‐standing open problem in
complexity theory, such as the P/NP problem. Many of these turn out to be mistaken, and such
submissions tax JACM volunteer editors and reviewers. JACM remains open to the possibility of
eventual resolution of P/NP and related questions and continues to welcome submissions on
the subject. However, to mitigate the burden of repeated resubmissions due to incremental
corrections of errors identified during editorial review, no author may submit more than one
such paper to JACM, ACM Trans. on Algorithms, or ACM Trans. on Computation Theory in any
24‐month period, except by invitation of the Editor‐in‐Chief. This applies to resubmissions of
previously rejected manuscripts. Please consider this policy before submitting a such a paper.

Foundations of Computer Science 24

Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in tc steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

• Precision ‐ TM’s compute with discrete symbols, whereas physical
quantities may be real numbers in R. TM computations may only be
able to approximately simulate the real world.

Foundations of Computer Science 25

Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in tc steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

• Randomness: The TM as defined is deterministic. If randomness
exists in the world, one can conceive of computational models that
use a source of random bits (i.e., ”coin tosses”).

Foundations of Computer Science 26

Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in tc steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

• Quantum mechanics: A computational model might use some of the
counterintuitive features of quantum mechanics. However, it is not
yet clear whether a scalable quantum system is truly physically
realizable. Also, quantum computers currently seem only able to
efficiently solve only very few “well‐structured” problems that are
(presumed to be) not in P.

Foundations of Computer Science 27

Strong Church‐Turing Thesis

Every physically realizable computation model can be simulated by a
TM with polynomial overhead (i.e., t steps on the model can be
simulated in tc steps on the TM, where c is a constant that depends
upon the model).

What are the possible objections to accept it?

• Other exotic physics, such as string theory. Though an intriguing
possibility, it hasn’t yet had the same scrutiny as use of quantum
mechanics.

• Energy considerations: how much energy is consumed during the
computation?

Foundations of Computer Science 28

• Definition: If L  *, we say that a TM T is a verifier
for L	if:
– T accepts a language L1  *$*
– T halts on every input, and
– L = {x  * | for some a  *, x$a  L1} (we will call

such a value a a certificate	for x)
• A verifier T is a polynomial‐time	verifier if:

– There is a polynomial p such that for every x and every
a in *, the number of moves Tmakes on the input
string x$a is no more than p(|x|)

some special symbol

The Set NP and Polynomial Verifiability

Foundations of Computer Science 29

• Theorem: For every language L  *
L  NP if	and	only	if	L is polynomially verifiable

i.e., there is a polynomial-time deterministic TM that is a
verifier for L

• Proof: See book
For example:
• A verifier for SAT could take a specific truth

assignment as a certificate;
• A verifier for TSP could take a permutation of the

cities as a certificate

The Set NP and Polynomial Verifiability

Foundations of Computer Science 30

• A graph G=(V,E) is a pair, where V is a set of nodes, and E is a
set of edges. Each edge connects a pair of nodes (i,j),	where i,
and j are in V.	In undirected graphs the order of i, and j is
not important. (However, it is important in directed graphs.)

• A path is a sequence of edges leading from one node to
another. A Hamiltonian	path is a path that visits every node
exactly once.

• Example: there are paths for all pairs of nodes, but there is
no Hamiltonian path from a	to c.

a

c

b d

e

f

Foundations of Computer Science 31

• PATH={<G,a,b>	|	G is	a	graph	with	path	from	a to	b}
This	language	is	in	P. You can check if there is a a‐b path
by running BFS from a.
In general, the complexity of running BFS is linear in n+m,
the number of nodes+edges, i.e., it is O(n+m). However,	the	
actual	running	time	depends	on	the	representation	of	G.

• HAMPATH={<G,a,b>	|	G is	a	graph	with	Hamiltonian	
path	from	a to	b}

This	language	is	in	NP.	 Trivial algorithm for finding HP
has to check an exponential number of possibilities but
there is a fast nondeterministic algorithm for it because
we can guess the path (this will be a certificate for
verifier).

Foundations of Computer Science 32

• PRIME={all prime numbers in binary format}
• COMPOSITE={all composite numbers in binary format}
If m is an input for an algorithm that decides PRIME, its
length is log2m, i.e., we	want	an	algorithm	that	runs	in	
polynomial	time	in	a	number	of bits!	Not in time that is
proportional to m.

It is easy to define a certificate for COMPOSITE (two factors).
Number theory gives a certificate for PRIME.

For many years it has been assumed that PRIME is in NP.
In 2002 it was shown that PRIME is in P, and so is the
complementary problem COMPOSITE but there	is	still	no	
polynomial‐time	algorithm	known	for	the	factorization.

Foundations of Computer Science 33

Space Complexity

• The space used by a TM corresponds to the memory used
by a computer

• When we compute the space used by a TM, we don’t count
the input space

• Definition: TM runs in space S(n) is for all inputs of length
n. M uses at most S(n) cells in total on its work tapes.

• Example: SAT can be decided in …

Foundations of Computer Science 34

Space Complexity

• The space used by a TM corresponds to the memory used
by a computer

• When we compute the space used by a TM, we don’t count
the input space

• Definition: TM runs in space S(n) is for all inputs of length
n. M uses at most S(n) cells in total on its work tapes.

• Example: SAT can be decided in linear space. We need a
space for 1 assignment and some more space to keep
track.

• Can space complexity exceed time complexity? No

• Theorem: If a TM runs in time T(n) then it runs in space
at most T(n)

Foundations of Computer Science 35

Space Complexity
• Theorem: If a TM runs in time T(n) then it runs in space

at most T(n)
• Theorem: Suppose a deterministic TM runs in S(n) space

with |=g letters in the tape alphabet and |Q|=q. If this
TM runs for longer than qngS(n) steps on an input of length
n, then it stuck in an infinite loop.

• Consequence: If L is accepted by TM T running in space
S(n), where S(n)> log n, then L is accepted by a TM T’ that
runs in space O(S(n)) but always halts.

• The nondeterministic space is defined similarly for NTMs.

Foundations of Computer Science 36

Polynomial and Logarithmic Spaces
PSPACE = all languages that can be decided in polynomial
space by deterministic TM.
NPSPACE = all languages that can be decided in polynomial
space by nondeterministic TM.

After all the uncertainty about P, and NP it is surprising that
Theorem: PSPACE = NPSPACE (not hard to prove)

L = all problems solvable in O(log n) space.
NL = all problems solvable in O(log n) space by NTM.
This is what we know about these six classes:
L NL P NP PSPACE = NPSPACE and L≠PSPACE

Foundations of Computer Science

37

Reduction
Definition: Suppose P1 and P2 are decision problems.
We say P1 is reducible to P2 (P1  P2) if there is an algorithm
that finds, for an arbitrary instance I of P1, an instance F(I) of
P2 such that the two	answers	are	the	same, i.e., (the answer
to P1 for the instance I, and the answer to P2 for the instance
F(I))

Inputs
of P1

I

Foundations of Computer Science

Inputs
of P2F(I)

P1(I) = P2(F(I))

F

Idea 1: For example, I don’t know how to solve P1 but I can solve P2 and know how
to map the instances to preserve answers. Then I can solve P1

Foundations of Computer Science

38

Reduction
Definition: Suppose P1 and P2 are decision problems.
We say P1 is reducible to P2 (P1  P2) if there is an algorithm
that finds, for an arbitrary instance I of P1, an instance F(I) of
P2 such that the two	answers	are	the	same, i.e., (the answer
to P1 for the instance I, and the answer to P2 for the instance
F(I))

Inputs
of P1

I

Foundations of Computer Science

Inputs
of P2F(I)

P1(I) = P2(F(I))

F

Idea 2: Say, P1 is computationally difficult, and I don’t know the difficulty of P2. If I
know how to map the instances, then I can state that P2 is at least as difficult as P1

Foundations of Computer Science 39

Polynomial-Time Reductions and
NP-Completeness

• Just as we can show that a problem is decidable by
reducing it to another one that is also decidable, we
can show that a language is in P by reducing it to
another that is.

• To see whether x L1, all we have to do is compute f (x)
and see whether it is in L2; and f is computable.
– In the case of decidability (i.e., we need to decide y/n,

not to compute something), we only needed the
reduction to be computable

– Here	we	need	the	reduction	function	to	be	computable	
in	polynomial	time

Foundations of Computer Science 40

• Definition: If L1 and L2 are languages over respective
alphabets 1 and 2, a polynomial‐time	reduction from L1
to L2 is a function f : 1* 2* satisfying two conditions
1) for every x  1*, x  L1 if	and	only	if	f	(x)  L2

2) f can be computed in polynomial time, i.e., there is a TM
with polynomial time complexity that computes f

• If there is a polynomial-time reduction from L1 to L2, we
write L1 p L2 and say that L1 is polynomial-time
reducible to L2.

• In this case, we said that deciding L1 is no harder than
deciding L2, because we considered only two degrees of
hardness, decidable and undecidable.

Foundations of Computer Science 41

Polynomial -Time Reductions and
NP-Completeness

• Theorem:
– Polynomial-time reducibility is transitive:

• If L1 p L2 and L2 p L3 then L1 p L3

– If L1 p L2 and L2  P, then L1  P
• Proof sketch:

– For the first statement, simply use the composition of
the reduction functions

– For the second statement, simply combine the TM that
accepts L2 and the one that computes the reduction f

Foundations of Computer Science 42

A clique of size 4Not a clique of size 3

Foundations of Computer Science 43

4

1

2

4

3

1

5 1 4

C1
C2

C3

C1 C2 C3

Foundations of Computer Science 44

4

1

2

4

3

1

5 1 4

C1
C2

C3

C1 C2 C3

Foundations of Computer Science 45

4

1

2

4

3

1

5 1 4

C1
C2

C3

C1 C2 C3

Foundations of Computer Science 46

Foundations of Computer Science 47

Polynomial-Time Reductions and NP-Completeness
• Definition: A language L is NP‐hard

if L1 p L for every L1  NP
• Definition: A language L is NP‐complete

if L  NP and L is NP-hard
• Theorem:

– If L and L1 are languages such that L is NP-hard and L p L1,
then L1 is also NP-hard

– If L is any NP-complete language, then L  P if and only if P	=
NP

• There are many NP‐complete	problems. The standard
method to prove NP-completeness is to take a problem
that is known to be NP-complete and reduce it to your
problem.

Foundations of Computer Science 48

Foundations of Computer Science 49

Foundations of Computer Science 50

The Cook-Levin Theorem

• Theorem:
– The language Satisfiable (or the corresponding

decision problem SAT) is NP-complete
• Proof:

– We know that Satisfiable is in NP, so we need to show
that every language L  NP is reducible to Sat

– We do this by using a TM T that accepts L; the
reduction considers the details of T and takes a string x
to a Boolean formula that is satisfiable if and only if x	is
accepted by T

– The details are complex and can be found in the book

Foundations of Computer Science 51

Some Other NP-Complete Problems

• Theorem:
– The clique problem (Given a graph G and an integer k,

does G have a complete subgraph with k vertices?) is
NP-complete.

• Proof sketch:
– By reduction from SAT	or 3‐SAT

+ show that the language is in NP.

Foundations of Computer Science 52

Reduction is a tool for demonstrating the hardness
• We want to demonstrate that a problem X is NP‐complete (i.e., it is

currently computationally difficult because we don’t know if there is
a polynomial algorithm for it)

• We find a problem Y that is NP‐complete and check:

Can we solve Y using X (having in mind that hopefully X is at least as
hard as Y) ?

i.e., we reduce X to Y. In other words, given a black box that solves Y,
can we solve Y?

• To answer this question, we need to find a bijection
f : Inputs(X)  Inputs(Y) such that X(i) = Y(f(i)), i.e. solutions are equal

• The bijection f should be of polynomial time complexity

input of X
input of Y

Foundations of Computer Science 53

Reduction is a tool for demonstrating the hardness

• If X can be reduced to Y it is denoted by Xp Y

• It means that X is at least as hard as Y because if we can solve X, we
can solve Y, i.e., we need to reduce to the problem we want to show
is the harder problem.

y  instance of X
x  f(y) // f is a bijection
d  solve Y with input x // decision problem d=0/1
d is a solution of X with input y

• If we could find hard problem Y, we could prove that another
problem X is hard by reducing Y to X.

Foundations of Computer Science 54

Reduction is a tool for demonstrating the hardness

• We can prove that SAT is NP‐complete

• We can construct a reduction from SAT to 3‐SAT and show that 3‐SAT
is in NP, i.e., 3‐SAT is also NP‐complete

• We want to prove that Clique problem is NP‐complete

Foundations of Computer Science 55

Clique of size 4Not a clique of size 3

Foundations of Computer Science 56

Reduction is a tool for demonstrating the hardness

1) Clique is in NP. This is because for a given size of the set |S|
we can enumerate all | | solutions, i.e., non‐deterministic TM can
guess the solution and we can verify it in polynomial time.

2) Prove that there is a polynomial reduction from 3‐SAT to
Clique

Foundations of Computer Science 57

Clique of size 4Not a clique of size 3

Foundations of Computer Science 58

4

1

2

4

3

1

5 1 4

C1
C2

C3

C1 C2 C3

Foundations of Computer Science 59

4

1

2

4

3

1

5 1 4

C1
C2

C3

C1 C2 C3

Foundations of Computer Science 60

4

1

2

4

3

1

5 1 4

C1
C2

C3

C1 C2 C3

Foundations of Computer Science 61

Foundations of Computer Science 62

NP‐complete

SAT

3‐CNF‐SAT

Clique

Foundations of Computer Science 63

• Independent set (IS) decision problem: Given graph G and
integer k, does G contain a subgraph H of k nodes such that H
has no edges.

• Prove that IS is NP‐complete

Independent
set of size 3

64

Part I of the NP‐completeness proof: Independent set is in NP.

Given a certificate (i..e, a subset of nodes) can we verify if the
corresponding subgraph contains edges in polynomial time?

S

Foundations of Computer Science 65

Part II of the NP‐completeness proof: Reduction from Clique to IS

• Reverse the graph: remove all existing edges, add non‐edges
• A clique in G will correspond to the independent set in the

reversed graph
• This process takes polynomial number of steps. The maximum

possible number of edges is n(n‐1)/2, where n is the number of
nodes

A clique of size 3 is converted into independent set of size 3.

Foundations of Computer Science 66

Applications of the maximum independent set

1. Biology: Identify clusters of proteins or genes that are not functionally
related. This helps in understanding the structure of complex biological
systems.

2. Operations Research: Optimize the placement of wireless communication
devices or sensors in a network.

3. Image Processing: Segment images into different regions. The vertices in
the graph represent pixels, and edges represent the similarity between pixels.
Finding the MIS helps to identify regions of the image that are not related to
each other.

4. Social Sciences: Used in social network analysis to identify groups of
people who are not connected to each other in a social network. This helps to
understand the structure of social networks and the dynamics of social
interactions.

Foundations of Computer Science 67

NP‐complete

SAT

3‐CNF‐SAT

Clique

Independent set

Foundations of Computer Science 68

• A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S.

• Decision problem: Given a graph G and integer k, does G contain a
vertex cover of size at most k. Is it NP‐complete?

Vertex cover nodes

69

Foundations of Computer Science 70

Foundations of Computer Science 71

Foundations of Computer Science 72

NP‐complete

SAT

3‐CNF‐SAT

Clique

Independent set

Vertex cover

73

Part I of the NP‐completeness proof: Vertex cover is in NP.

Given a certificate (i..e, a subset of nodes) can we verify if the
corresponding subgraph touches all edges in polynomial time?

S

Foundations of Computer Science 74

Applications of the minimum vertex cover

1. Quantum Computing: The MVC arises in the study of entanglement. The
MVC corresponds to the minimum set of qubits that need to be measured to
fully characterize the entanglement of a quantum state.

2. Operations Research: Determine the placement of expensive surveillance
cameras or sensors in a network of streets.

3. Biology: The MVC problem can be used to identify the minimum set of
genetic markers required to predict an individual's risk of developing a
particular disease.

4. Chemistry: In chemical graph theory, the MVC problem arises in the study
of molecular graphs. The MVC corresponds to the minimum set of atoms that
need to be included to represent the entire molecule.

Foundations of Computer Science 75

Set Cover (SC) Problem

Foundations of Computer Science 76

Set Cover (SC) Problem

• Is this problem NP‐complete?

• We will show that SC is in NP and

• Vertex Cover is reducible to Set Cover

Subsets that form a
set cover of size 3

Foundations of Computer Science 77

a

b

c

d

e

f

af
ab

bc

be

fc

de
cd

Foundations of Computer Science 78

a

b

c

d

e

f

af
ab

bc

be

fc

de
cd

Foundations of Computer Science 79

Don’t forget 2: Why the problem is in NP? The certificate is a list of k
subsets. We can check the coverage in polynomial time.

Don’t forget 1: Why it is polynomial time reduction?

Foundations of Computer Science 80

NP‐complete

SAT

3‐CNF‐SAT

Clique

Independent set

Vertex cover

Set cover

Foundations of Computer Science 81

Applications of the minimum set cover

1. Facility Location: The Set Cover problem arises in the selection of locations
for facilities, such as hospitals or schools, to serve a given population. The Set
Cover problem can be used to identify the minimum set of facilities that can
serve the population.

2. Broadcasting: The Set Cover problem arises in the selection of a minimum
number of expensive broadcast channels to reach a given audience.

3. Image Processing: The Set Cover problem arises in the selection of a
minimum set of patches to represent an image with high accuracy.

4. Healthcare Resource Allocation: The Set Cover problem arises in the
selection of a minimum set of healthcare services or interventions to provide
to a population in order to improve health outcomes.

Foundations of Computer Science 82

Some Other NP-Complete Problems

• A k‐coloring of G is an assignment to each vertex of
one of the k colors so that no two adjacent vertices
are colored the same

• The k‐colorability problem: Given G and k, is there a
k-coloring of G?

Foundations of Computer Science 83

Some Other NP-Complete Problems

• We now have five problems that are NP-complete
• There are hundreds of others that are also known to

be NP-complete
• Many real-life decision problems require some kind

of solution
– If a polynomial-time algorithm does not present itself,

it is worth checking whether the problem is NP-
complete

– If so, finding such an algorithm will be as hard as
proving that P = NP

Foundations of Computer Science 84

Foundations of Computer Science 85

We still do not know the status of some problems
Example: Graph Isomorphism

An Isomorphism of graphs G and H is a bijection between the
vertex sets of G and H

f(V(G))  V(H)

such that any two vertices u and v of G are adjacent in G if and only
if ƒ(u) and ƒ(v) are adjacent in H.

We still don’t know the status
of this problem!
Clearly, it is in NP but we don’t
know whether this problem is
NP‐complete or in P.

Foundations of Computer Science 86

NP‐Hard: These are at least as hard as any problem in NP. If we can solve these problems in
polynomial time, we can solve any NP problem that can possibly exist. Note that these problems
are not necessarily in NP, i.e., we may/may‐not verify the solution in polynomial time.

NP‐Complete: These are the problems which are both NP and NP‐Hard. That means, if we can
solve these problems, we can solve any other NP problem and the solutions to these problems
can be verified in polynomial time.

Foundations of Computer Science 87

Well … the decision problem is NP‐complete, the corresponding
optimization problem is NP‐hard. What now?

• Can we hope for a fast algorithm that guarantees a “pretty
good” solution?

• In many cases, the answer is “yes”.

• Approximation algorithms (for example, greedy algorithms,
probabilistic algorithms, …)

• Heuristics (do not produce provably good solutions on all
instances but have been proven to be good in practice on many
instances)

Foundations of Computer Science 88

Approximation Algorithms

• A minimization problem is an optimization problem, where we look
for a valid (or feasible) solution that minimizes a certain target
function.

• For example: in the minimum vertex cover problem, we are looking
of a minimum size subset of nodes that is a vertex cover; in the
minimum coloring problem, we are looking for the minimum number
of colors, and the coloring itself.

• Let Opt(I) denote the value of the target function for the optimal
solution.

• Algorithm Alg for a minimization problem Min achieves an
approximation factor α ≥ 1 if for all inputs I, we have Alg(I)/Opt(I) ≤ α.
We will refer to Alg as an α‐approximation algorithm for Min

Foundations of Computer Science 89

Approximation Algorithm for the Minimum Vertex Cover

The MVC problem has many applications. Example: what is the
fewest number of cameras we need to install in a bank in order to
cover all its corridors. So, it is important to have a fast algorithm that
produces good solutions.

Algorithm 1: Pick an arbitrary vertex with at least one uncovered
edge incident to it, put it into the cover, and repeat.
Is it good or bad?
It is bad. An example of bad behavior: a star graph.
Algorithm 2: Pick a vertex that covers most uncovered edges.
Is it good or bad?
It is bad. An example is complicated but it produces an
approximation with a factor of log(n)

Foundations of Computer Science 90

Approximation Algorithm for the Minimum Vertex Cover

Algorithm 3: Pick an arbitrary edge. Add both of its endpoints to
the vertex cover. Then, throw out all edges covered and repeat.

Is it good or bad?

It is not as bad as previous examples.
It gives an approximation factor 2.

Proof: The algorithm finds a matching (a set of edges no two of
which share an endpoint) that is “maximal” (meaning that you can’t
add any more edges to it and keep it a matching).
This means if we take both endpoints of those edges, we must have a
vertex cover. In particular, if the algorithm picked k edges, the vertex
cover found has size 2k. But, any vertex cover must have size at least
k since it needs to have at least one endpoint of each of these edges.
So the algorithm is a 2‐approximation.

Foundations of Computer Science 91

