

Undecidable Problems

Is there a problem for which no algorithm can produce a correct answer for every input?

Definition (bijection)

- A function $f: A \to B$ is one-to-one if f never assigns the same value to two different elements of its domain.
- It is *onto* if its range is the entire set B.
- A function from A to B that is both one-to-one and onto is called a bijection from A to B.

Definition A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f : \mathbb{N} \to A$, or a list a_0, a_1, \ldots of elements of A such that every element of A appears exactly once in the list. A is countable if A is either finite or countably infinite.

Theorem Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

bijection

Question: Is N countable? Answer: Yes. A corresponding bijection from N to N is f(x)=x.

The set $\mathbb{N} \times \mathbb{N}$ is countable.

. . .

We can describe the set by drawing a two-dimensional array:

(0,0)	(0,1)	(0,2)	(0,3)	
(1,0)	(1,1)	(1,2)	(1,3)	
(2,0)	(2,1)	(2,2)	(2,3)	
(3,0)	(3,1)	(3,2)	(3,3)	

How to count it? In other words, how to find a bijection from N to NxN?

• The countable union of countable sets is countable. If S_i is countable for every $i \in \mathbb{N}$ then

$$S = \bigcup_{i=1}^{\infty} S_i$$

is countable.

Proof: This is a generalization of the previous example. This time the ordered pair (i, j) in the figure stands for the *j*th element of S_i , so that the *i*th row of the two-dimensional array represents the elements of S_i .

• For a finite alphabet Σ (such as $\{a, b\}$), the set Σ^* of all strings over Σ is countable.

Proof: This follows from previous example, because

and each of the sets
$$\Sigma^i$$
 is countable.

 $\Sigma^* = \cup_{i=0}^{\infty} \Sigma^i$ 1. order alphabetically

2. each of them is countable

Corollary 1: Languages are countable sets

• The set of Turing machines is countable.

Let $\mathbb T$ represent the set of Turing machines.

- A TM T can be represented by the string $e(T) \in \{0, 1\}^*$, and a string can represent at most one TM.
- Therefore, the resulting function e is one-to-one, and we may think of it as a bijection from \mathbb{T} to a subset of $\{0, 1\}^*$.
- Because $\{0,1\}^*$ is countable, every subset is, and we can conclude that \mathbb{T} is countable.

• What about the set $2^{\mathbb{N}}$?

Theorem

Georg Cantor 1845-1918

9

• The set $2^{\mathbb{N}}$ is uncountable.

We wish to show that there can be no list of subsets of \mathbb{N} containing every subset of \mathbb{N} that can be enumerated as \mathbb{N} . In other words, every list A_0, A_1, A_2, \ldots of subsets of \mathbb{N} must leave out at least one.

A diagonal argument and construction are provided by Cantor. Here is a subset, constructed from the ones in the list, that cannot possibly be in the list:

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

The reason that A must be different from A_i for every i is that A and A_i differ because of the number i, which is in one but not both of the two sets: if $i \in A_i$, then by definition of A, i does not satisfy the defining condition of A, and so $i \notin A$; and if $i \notin A_i$, then (by definition of A) $i \in A$.

Given $S = \{1, 2, 3, 4, 5, 6\}$ and its subsets $A_1 = \{1, 3, 4, 5\}, A_2 = \{2, 4, 5, 6\}, A_3 = \{1, 2, 3, 4\}, and A_4 = \{5\}.$

S	1	2	3	4	5	6
Characteristic function of A_1	1	0	1	1	1	0
Characteristic function of A_2	0	1	0	1	1	1
Characteristic function of A_3	1	1	1	1	0	0
Characteristic function of A_4	0	0	0	0	1	0

Flip the diagonal indicators

S	1	2	3	4	5	6
Characteristic function of A_1	0	0	1	1	1	0
Characteristic function of A_2	0	0	0	1	1	1
Characteristic function of A_3	1	1	0	1	0	0
Characteristic function of A_4	0	0	0	1	1	0

The new set is $A_5 = \{4\}$ Wait ... maybe this subset is in the list? Let's check what happens in this case ... Given $S = \{1, 2, 3, 4, 5, 6\}$ and its subsets $A_1 = \{1, 3, 4, 5\}, A_2 = \{2, 4, 5, 6\}, A_3 = \{1, 2, 3, 4\}, and A_4 = \{5\}.$

S	1	2	3	4	5	6
Characteristic function of A_1	1	0	1	1	1	0
Characteristic function of A_2	0	1	0	1	1	1
Characteristic function of A_3	1	1	1	1	0	0
Characteristic function of A_4	0	0	0	0	1	0
New characteristic function	0	0	0	1	0	0

Flip the diagonal once again. The missing subset is $\{4, 5\}$.

S	1	2	3	4	5	6
Characteristic function of A_1	0	0	1	1	1	0
Characteristic function of A_2	0	0	0	1	1	1
Characteristic function of A_3	1	1	0	1	0	0
Characteristic function of A_4	0	0	0	1	1	0
New characteristic function	0	0	0	1	1	0

Let us visualize the subsets, and the selection process of missing A

This s	subset	conta	ains O,	each	row is	a cha	racter	istic (or			
				/ _			ir	ndicato	or)fun	ction	of A_i
A_0^{\checkmark} :	1	0	1	0	0	1	0	0	0	1	
A_1 :	<mark>0</mark>	<u>1</u>	1	1	<mark>0</mark>	Q	0	0	1	Q	
<i>A</i> ₂ :	1	0	<u>0</u>	1	0	0	1	0	0	0	
A_3 :	·0	0	0	<u>0</u>	0	0	0	0	0	0	• • •
A_4 :	0	0	0	0	1	0	0	0	0	0	
A_5 :	0	0	1	1	0	1	0	1	0	0	
A_6 :	0	0	0	0	0	0	0	0	1	0	
A_7 :	1	1	1	1	1	1	1	1	1	1	
A_8 :	0	1	0	1	0	1	0	1	0	1	
A_9 :	0	0	0	0	0	0	0	0	0	0	

we obtain the sequence corresponding to the set A by reversing diagonal: 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, . . . Each entry we encounter as we make our way down the diagonal allows us to distinguish the set A from one more of the sets A_i . The missing subset $A = \{2, 3, 6, 8, 9, ...\}$. Same argument works if we want to find a language that ... cannot be accepted by a Turing machine - in other words, a language that is different from L(T), for every Turing machine T with input alphabet {0, 1}, i.e.,

there are languages that are not accepted by Turing machines! Set of TMs is countable. Set of all languages is uncountable.

List of TMs

Ļ	A language of Turing machine A ₀										
A_0 :	1	0	1	0	0	1	0	0	0	1	
<i>A</i> ₁ :	0	<u>1</u>	1	1	0 -	0	0	<u>ō</u> -:	1	0	
<i>A</i> ₂ :	1	0	<u>0</u>	1	0	0	1	0	0	0	
<i>A</i> ₃ :	0	0	0	0	0	0	0	0	0	0	
<i>A</i> ₄ :	0	0	0	0	1	0	0	0	0	0	
A_5 :	0	0	1	1	0	1	0	1	0	0	
A_6 :	0	0	0	0	0	0	0	0	1	0	
<i>A</i> ₇ :	1	1	1	1	1	1	1	1	1	1	
A_8 :	0	1	0	1	0	1	0	1	0	1	
A_9 :	0	0	0	0	0	0	0	0	0	0	

Another conclusion:

There are uncountably many languages because we know that S={0,1}* is equivalent to N and each subset of S is a language.

Recursive and recursively enumerable languages

A TM T with input alphabet Σ								
accepts	decides							
a language $L \subseteq \Sigma^*$ if it accepts the strings in L and no others.	a language $L \subseteq \Sigma^*$ if T computes the characteristic function $\chi_L : \Sigma^* \to \{0,1\}$ that returns 1 on strings in L and 0 otherwise.							
In both cases, the issue is whether the input string is an element of <i>L</i> . However, the second approach may be more informative, because a TM <i>accepting L</i> may not return an answer if the string is not in <i>L</i>								
<i>Recursively enumerable</i> (RE) languages are those that can be <i>accepted</i> by a TM	<i>Recursive</i> languages are those that can be <i>decided</i> by a TM							
	Only in the decision case there is a guaranteed answer to the question: Given a string <i>x</i> , is <i>x</i> an element of the language?							

Theorem: Every recursive language is recursively enumerable.

Theorem: If $L \subseteq \Sigma^*$ is accepted by a TM *T* that halts on every input string, then *L* is recursive.

Theorem: If L_1 and L_2 are both recursively enumerable languages over Σ , then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable.

Theorem: If L_1 and L_2 are both recursive languages over Σ , then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursive.

Theorem: If *L* is a recursive language over Σ , then its complement is also recursive.

Theorem: If *L* is a recursively enumerable language, and its complement is also recursively enumerable, then *L* is recursive.

Theorem: Not all languages are recursively enumerable. In fact, the set of languages over {0,1} that are not recursively enumerable is uncountable.

Proof:

We know that 2^N is uncountable and we observed that because $\{0,1\}^*$ is the same size as N, it follows that the set of languages over $\{0,1\}$ is uncountable.

We know that the set of RE languages over {0,1} is countable (because the set of TM is countable).

If *T* is any countable subset of an uncountable set S then *S*-*T* is uncountable.

A Language That Can't Be Accepted, and a Problem That Can't Be Decided

- Definition: Let
 - $NSA = \{e(T) \mid T \text{ is a TM and } e(T) \notin L(T)\}$
 - $SA = \{e(T) \mid T \text{ is a TM and } e(T) \in L(T)\}$
 - ("non-self-accepting" and "self-accepting")
- Theorem:
 - The language *NSA* is not recursively enumerable
 - The language SA is recursively enumerable but not recursive

- The statement of the theorem says that there is no algorithm to determine whether a given string represents a TM that accepts its own encoding
 - It might seem that for a TM *T*, deciding whether *T* accepts the string e(T) is particularly difficult, but this is not the right interpretation
 - All we needed for the diagonal argument was a string associated with *T*; we chose *e*(*T*), but we could just as easily have used something else
- The more correct conclusion is that it's hard to answer questions about TMs and the languages they accept

- We can often solve problems by reducing them to other, simpler ones
- We will reduce one decision problem P_1 to another P_2
- The two crucial features in a reduction *F* are:
 - For every instance I of P_1 we must be able to obtain an instance F(I) of P_2 algorithmically
 - The answer to P_2 for the instance F(I) must be the same as the answer to P_1 for I

Definition: Suppose P_1 and P_2 are decision problems.

We say P_1 is reducible to P_2 ($P_1 \le P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 such that the **two answers are the same**, i.e., (the answer to P_1 for the instance I, and the answer to P_2 for the instance F(I))

Idea 1: For example, I don't know how to solve P_1 but I can solve P_2 and know how to map the instances to preserve answers. Then I can solve P_1

24

Definition: Suppose P_1 and P_2 are decision problems.

We say P_1 is reducible to P_2 ($P_1 \le P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 such that the **two answers are the same**, i.e., (the answer to P_1 for the instance I, and the answer to P_2 for the instance F(I))

Idea 2: Say, P_1 is computationally difficult, and I don't know the difficulty of P_2 . If I know how to map the instances then I can state that P_2 is at least as difficult as P_1

Example

- Problem $P_2(x, y)$ decides x < y for $x, y \in \{1, \dots, 5\}$.
- Problem $P_1(a^2, b^2)$ decides $a^2 < b^2$ for $a^2, b^2 \in \{1, ..., 25\}$.
- Imagine that P_1 is hard (or unknown how) to compute but P_2 is not, and let us assume that we can compute a positive $\sqrt{x^2}$.
- For each instance I of P_1 we can compute an instance F(I) of P_2 , and the answers to P_1 , and P_2 are the same.

 \rightarrow Now we need solve P_2 instead of P_1

- Definition:
 - Suppose P_1 and P_2 are decision problems
 - We say P_1 is reducible to P_2 ($P_1 \le P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 such that the two answers (the answer to P_1 for the instance I, and the answer to P_2 for the instance F(I) are the same
 - If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2
 - We say L_1 is reducible to L_2 $(L_1 \le L_2)$ if there is a Turingcomputable function $f: \Sigma_1^* \to \Sigma_2^*$ such that for every $x \in \Sigma_1^*$, $x \in L_1$ if and only if $f(x) \in L_2$

• Theorem:

- Suppose $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, and $L_1 \leq L_2$

• If L_2 is recursive, then L_1 is recursive (Proof: we can decide whether a string is in L_1 by using the reduction and deciding whether the resulting string is in L_2)

– Suppose P_1 and P_2 are decision problems, and $P_1 \le P_2$

• If P_2 is decidable, then P_1 is decidable (Proof: we can decide whether an instance of P_1 is a yes-instance by using the reduction and deciding whether the resulting instance of P_2 is a yes-instance)

- We will be interested in the contrapositive statement: If P_1 is undecidable, then P_2 is also.

- Consider two decision problems:
 - *Accepts*: Given a TM *T* and a string w, is $w \in L(T)$?
 - Halts: Given a TM T and a string w, does T halt (either by accepting or by rejecting) on input w? (This is called the halting problem)
- **Theorem**: Both *Accepts* and *Halts* are undecidable
- For the first statement, we just need to show that *Selfaccepting* ≤ *Accepts*
 - A reduction from *Self-accepting* to *Accepts* is F(T) = (T, e(T))
 - We can compute this algorithmically.
- For the second statement, we can reduce *Accepts* to *Halts* (see the book for the details). *Accepts* is undecidable; therefore, *Halts* is undecidable

- Theorem: The following five decision problems are undecidable:
 - *1. Accepts*- Λ : Given a TM *T*, is $\Lambda \in L(T)$?
 - 2. AcceptsEverything: Given a TM *T* with input alphabet Σ , is $L(T) = \Sigma^*$?
 - *3. Subset*: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?
 - *4. Equivalent*: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$?
 - *5. WritesSymbol*: Given a TM *T* and a symbol *a* in the tape alphabet of *T*, does *T* ever write an *a* if it starts with an empty tape?

- *WritesNonblank* problem: Given a TM *T* with *n* nonhalting states, does *T* ever write a nonblank symbol on its tape, if it starts with a blank tape?
- Theorem:
 - The decision problem *WritesNonblank* is decidable.
- Proof sketch:
 - An algorithm to decide *WritesNonblank* is to trace *T* for *n* moves, or until it halts, whichever comes first
 - within n moves, either it halts or it enters some nonhalting state *q* for the second time
 - If by that time no nonblank symbol has been written, none ever will be

- It's now clear that it's difficult to answer questions about Turing machines and the strings they accept
- A few more undecidable problems about a TM *T*:
 - 1. (For some language *L*) *AcceptsL*: Given a TM *T*, is L(T) = L?
 - *2. AcceptsSomething*: Is there at least one string in L(T)?
 - *3. AcceptsTwoOrMore*: Does *L*(*T*) have at least two elements?
 - *4. AcceptsFinite*: is *L*(*T*) finite?
 - 5. AcceptsRecursive: is L(T) recursive?

Homework: Read Chapter 8!