
Foundations of Computer Science 1

Chapter 7

Undecidable Problems

Is there a problem for which no algorithm can produce
a correct answer for every input?

Foundations of Computer Science 2

not one-to-one

A B

not onto

A B

bijection

A B

Foundations of Computer Science 3

bijection

Aℕ
Question: Is N countable? Answer: Yes. A corresponding bijection from N to N is f(x)=x.

Foundations of Computer Science 4

How to count it? In other words, how to find a bijection from N to NxN?

Foundations of Computer Science 5

Foundations of Computer Science 6

1. order alphabetically
2. each of them is countable

Corollary 1: Languages are countable sets

Foundations of Computer Science 7

Foundations of Computer Science 8

The set of all subsets of N.
Each element is a subset of N

Foundations of Computer Science 9

Georg Cantor
1845-1918

Foundations of Computer Science
10

Wait … maybe this subset is in the list?
Let’s check what happens in this case …

Foundations of Computer Science
11

Foundations of Computer Science 12

Let us visualize the subsets, and the selection process of missing A

This subset contains 0, 2, 5, 9 … each row is a characteristic (or
indicator)function of Ai

we obtain the sequence corresponding to the set A by reversing
diagonal: 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, . . . Each entry we encounter as we
make our way down the diagonal allows us to distinguish the set A
from one more of the sets Ai . The missing subset A = {2, 3, 6, 8, 9, . . .}.

Foundations of Computer Science 13

Same argument works if we want to find a language that …
cannot be accepted by a Turing machine - in other words, a language
that is different from L(T), for every Turing machine T with input
alphabet {0, 1}, i.e.,

there are languages that are not accepted by Turing machines!
Set of TMs is countable. Set of all languages is uncountable.
List of TMs

A language of Turing machine A0

Foundations of Computer Science 14

Another conclusion:

There are uncountably many languages because we know that S={0,1}*
is equivalent to N and each subset of S is a language.

Foundations of Computer Science 15

Recursive and recursively enumerable languages

Only in the decision case there is a
guaranteed answer to the question: Given a
string x, is x an element of the language?

A TM T with input alphabet Σ …
accepts decides

a language L ⊆ Σ* if it accepts the
strings in L and no others.

a language L ⊆ Σ* if T computes the
characteristic function χL : Σ* → {0,1}
that returns 1 on strings in L and 0
otherwise.

In both cases, the issue is whether the input string is an element of L.
However, the second approach may be more informative, because a TM
accepting L may not return an answer if the string is not in L

Recursively enumerable (RE)
languages are those that can be
accepted by a TM

Recursive languages are those that
can be decided by a TM

Foundations of Computer Science 16

Theorem: Every recursive language is recursively enumerable.

Theorem: If L ⊆ Σ* is accepted by a TM T that halts on every input
string, then L is recursive.

Theorem: If L1 and L2 are both recursively enumerable languages
over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively enumerable.

Theorem: If L1 and L2 are both recursive languages over Σ, then
L1 ∪ L2 and L1 ∩ L2 are also recursive.

Theorem: If L is a recursive language over Σ, then its complement
is also recursive.

Theorem: If L is a recursively enumerable language, and its
complement is also recursively enumerable, then L is recursive.

Foundations of Computer Science 17

Theorem: Not all languages are recursively enumerable. In fact, the
set of languages over {0,1} that are not recursively enumerable is
uncountable.

Proof:
We know that 2N is uncountable and we observed that because
{0,1}* is the same size as N, it follows that the set of languages over
{0,1} is uncountable.

We know that the set of RE languages over {0,1} is countable
(because the set of TM is countable).

If T is any countable subset of an uncountable set S then S-T is
uncountable.

Foundations of Computer Science 18

A Language That Can’t Be Accepted, and
a Problem That Can’t Be Decided

• Definition: Let
– NSA = {e(T) | T is a TM and e(T) ∉ L(T)}
– SA = {e(T) | T is a TM and e(T) ∈ L(T)}

• (“non-self-accepting” and “self-accepting”)
• Theorem:

– The language NSA is not recursively enumerable
– The language SA is recursively enumerable but not

recursive

Foundations of Computer Science 19

• The statement of the theorem says that there is no
algorithm to determine whether a given string
represents a TM that accepts its own encoding
– It might seem that for a TM T, deciding whether T

accepts the string e(T) is particularly difficult, but this
is not the right interpretation

– All we needed for the diagonal argument was a string
associated with T; we chose e(T), but we could just as
easily have used something else

• The more correct conclusion is that it’s hard to
answer questions about TMs and the languages they
accept

Foundations of Computer Science 23

Reductions

• We can often solve problems by reducing them to other,
simpler ones

• We will reduce one decision problem P1 to another P2

• The two crucial features in a reduction F are:
– For every instance I of P1 we must be able to obtain an

instance F(I) of P2 algorithmically
– The answer to P2 for the instance F(I) must be the same as the

answer to P1 for I

For simplicity, binary

Foundations of Computer Science

24

Reductions
Definition: Suppose P1 and P2 are decision problems.
We say P1 is reducible to P2 (P1 ≤ P2) if there is an algorithm
that finds, for an arbitrary instance I of P1, an instance F(I) of
P2 such that the two answers are the same, i.e., (the answer
to P1 for the instance I, and the answer to P2 for the instance
F(I))

Inputs
of P1

I

Foundations of Computer Science

Inputs
of P2F(I)

P1(I) = P2(F(I))

F

Idea 1: For example, I don’t know how to solve P1 but I can solve P2 and know how
to map the instances to preserve answers. Then I can solve P1

Foundations of Computer Science

25

Reductions
Definition: Suppose P1 and P2 are decision problems.
We say P1 is reducible to P2 (P1 ≤ P2) if there is an algorithm
that finds, for an arbitrary instance I of P1, an instance F(I) of
P2 such that the two answers are the same, i.e., (the answer
to P1 for the instance I, and the answer to P2 for the instance
F(I))

Inputs
of P1

I

Foundations of Computer Science

Inputs
of P2F(I)

P1(I) = P2(F(I))

F

Idea 2: Say, P1 is computationally difficult, and I don’t know the difficulty of P2. If I
know how to map the instances then I can state that P2 is at least as difficult as P1

Foundations of Computer Science
26

Reductions

 Now we need solve P2 instead of P1

Foundations of Computer Science

Inputs
of P1

I

Foundations of Computer Science

Inputs
of P2

F(I)

P1(I) = P2(F(I))

F

Foundations of Computer Science 27

Reductions

• Definition:
– Suppose P1 and P2 are decision problems

• We say P1 is reducible to P2 (P1 ≤ P2) if there is an
algorithm that finds, for an arbitrary instance I of P1, an
instance F(I) of P2 such that the two answers (the
answer to P1 for the instance I, and the answer to P2 for
the instance F(I)) are the same

– If L1 and L2 are languages over alphabets Σ1 and Σ2
• We say L1 is reducible to L2 (L1 ≤ L2) if there is a Turing-

computable function f : Σ1* →Σ2* such that for every
x ∈ Σ1*, x ∈ L1 if and only if f (x) ∈ L2

Foundations of Computer Science 28

Reductions

• Theorem:
– Suppose L1 ⊆ Σ1*, L2 ⊆ Σ2*, and L1 ≤ L2

• If L2 is recursive, then L1 is recursive (Proof: we can
decide whether a string is in L1 by using the reduction
and deciding whether the resulting string is in L2)

– Suppose P1 and P2 are decision problems, and P1 ≤ P2
• If P2 is decidable, then P1 is decidable (Proof: we can

decide whether an instance of P1 is a yes-instance by
using the reduction and deciding whether the resulting
instance of P2 is a yes-instance)

– We will be interested in the contrapositive statement:
If P1 is undecidable, then P2 is also.

Foundations of Computer Science 29

• Consider two decision problems:
– Accepts: Given a TM T and a string w, is w ∈ L(T)?
– Halts: Given a TM T and a string w, does T halt (either

by accepting or by rejecting) on input w? (This is called
the halting problem)

• Theorem: Both Accepts and Halts are undecidable
• For the first statement, we just need to show that Self-

accepting ≤ Accepts
– A reduction from Self-accepting to Accepts is F(T) = (T, e(T))
– We can compute this algorithmically.

• For the second statement, we can reduce Accepts to Halts
(see the book for the details). Accepts is undecidable;
therefore, Halts is undecidable

Foundations of Computer Science 30

• Theorem: The following five decision problems are
undecidable:
1. Accepts-Λ: Given a TM T, is Λ ∈ L(T)?
2. AcceptsEverything: Given a TM T with input alphabet

Σ, is L(T) = Σ*?
3. Subset: Given two TMs T1 and T2, is L(T1) ⊆ L(T2)?
4. Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)?
5. WritesSymbol: Given a TM T and a symbol a in the tape

alphabet of T, does T ever write an a if it starts with an
empty tape?

Foundations of Computer Science 31

• WritesNonblank problem: Given a TM T with n nonhalting
states, does T ever write a nonblank symbol on its tape, if
it starts with a blank tape?

• Theorem:
– The decision problem WritesNonblank is decidable.

• Proof sketch:
– An algorithm to decide WritesNonblank is to trace T for

n moves, or until it halts, whichever comes first
– within n moves, either it halts or it enters some

nonhalting state q for the second time
– If by that time no nonblank symbol has been written,

none ever will be

Foundations of Computer Science 32

• It’s now clear that it’s difficult to answer questions
about Turing machines and the strings they accept

• A few more undecidable problems about a TM T:
1. (For some language L) AcceptsL: Given a TM T, is

L(T) = L?
2. AcceptsSomething: Is there at least one string in L(T)?
3. AcceptsTwoOrMore: Does L(T) have at least two

elements?
4. AcceptsFinite: is L(T) finite?
5. AcceptsRecursive: is L(T) recursive?

Homework: Read Chapter 8!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

