Chapter 7

Undecidable Problems

Is there a problem for which no algorithm can produce a correct answer for every input?
Definition (bijection)

- A function $f : A \rightarrow B$ is *one-to-one* if f never assigns the same value to two different elements of its domain.

- It is *onto* if its range is the entire set B.

- A function from A to B that is both one-to-one and onto is called a bijection from A to B.
Definition A set A is *countably infinite* (the same size as \mathbb{N}) if there is a bijection $f : \mathbb{N} \rightarrow A$, or a list a_0, a_1, \ldots of elements of A such that every element of A appears exactly once in the list. A is countable if A is either finite or countably infinite.

Theorem Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

Question: Is \mathbb{N} countable? Answer: Yes. A corresponding bijection from \mathbb{N} to \mathbb{N} is $f(x) = x$.
Example
The set $\mathbb{N} \times \mathbb{N}$ is countable.

We can describe the set by drawing a two-dimensional array:

$\begin{array}{cccccc}
(0,0) & (0,1) & (0,2) & (0,3) & \ldots \\
(1,0) & (1,1) & (1,2) & (1,3) & \ldots \\
(2,0) & (2,1) & (2,2) & (2,3) & \ldots \\
(3,0) & (3,1) & (3,2) & (3,3) & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array}$

How to count it? In other words, how to find a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$?
Examples

- The countable union of countable sets is countable. If S_i is countable for every $i \in \mathbb{N}$ then

$$S = \bigcup_{i=1}^{\infty} S_i$$

is countable.

Proof: This is a generalization of the previous example. This time the ordered pair (i, j) in the figure stands for the jth element of S_i, so that the ith row of the two-dimensional array represents the elements of S_i.
Examples

• For a finite alphabet Σ (such as $\{a, b\}$), the set Σ^* of all strings over Σ is countable.

Proof: This follows from previous example, because

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$$

and each of the sets Σ^i is countable.

Corollary 1: Languages are countable sets
Examples

- The set of Turing machines is countable.

Let \mathcal{T} represent the set of Turing machines.

- A TM T can be represented by the string $e(T) \in \{0,1\}^*$, and a string can represent at most one TM.

- Therefore, the resulting function e is one-to-one, and we may think of it as a bijection from \mathcal{T} to a subset of $\{0,1\}^*$.

- Because $\{0,1\}^*$ is countable, every subset is, and we can conclude that \mathcal{T} is countable.
Examples

- What about the set $2^\mathbb{N}$?

The set of all subsets of \mathbb{N}. Each element is a subset of \mathbb{N}.
Theorem

- The set $2^\mathbb{N}$ is uncountable.

We wish to show that there can be no list of subsets of \mathbb{N} containing every subset of \mathbb{N} that can be enumerated as \mathbb{N}. In other words, every list A_0, A_1, A_2, \ldots of subsets of \mathbb{N} must leave out at least one.

A diagonal argument and construction are provided by Cantor. Here is a subset, constructed from the ones in the list, that cannot possibly be in the list:

$$A = \{ i \in \mathbb{N} \mid i \notin A_i \}$$

The reason that A must be different from A_i for every i is that A and A_i differ because of the number i, which is in one but not both of the two sets: if $i \in A_i$, then by definition of A, i does not satisfy the defining condition of A, and so $i \notin A$; and if $i \notin A_i$, then (by definition of A) $i \in A$.
Given $S = \{1, 2, 3, 4, 5, 6\}$ and its subsets $A_1 = \{1, 3, 4, 5\}$, $A_2 = \{2, 4, 5, 6\}$, $A_3 = \{1, 2, 3, 4\}$, and $A_4 = \{5\}$.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic function of A_1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_2</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Characteristic function of A_3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Flip the diagonal indicators

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic function of A_1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Characteristic function of A_3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The new set is $A_5 = \{4\}$

Wait ... maybe this subset is in the list? Let’s check what happens in this case ...
Given $S = \{1, 2, 3, 4, 5, 6\}$ and its subsets $A_1 = \{1, 3, 4, 5\}$, $A_2 = \{2, 4, 5, 6\}$, $A_3 = \{1, 2, 3, 4\}$, and $A_4 = \{5\}$.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Characteristic function of A_1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_2</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Characteristic function of A_3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>New characteristic function</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Flip the diagonal once again. The missing subset is $\{4, 5\}$.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Characteristic function of A_1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Characteristic function of A_3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Characteristic function of A_4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>New characteristic function</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Let us visualize the subsets, and the selection process of missing A

This subset contains 0, 2, 5, 9 ... each row is a characteristic (or indicator) function of A_i

\[\begin{array}{cccccccccc}
A_0: & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
A_1: & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
A_2: & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
A_3: & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A_4: & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
A_5: & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
A_6: & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
A_7: & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
A_8: & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
A_9: & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\ldots
\end{array}\]

we obtain the sequence corresponding to the set A by reversing diagonal: 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, \ldots. Each entry we encounter as we make our way down the diagonal allows us to distinguish the set A from one more of the sets A_i. The missing subset $A = \{2, 3, 6, 8, 9, \ldots\}$.
Same argument works if we want to find a language that cannot be accepted by a Turing machine - in other words, a language that is different from \(L(T) \), for every Turing machine \(T \) with input alphabet \{0, 1\}, i.e.,

there are languages that are not accepted by Turing machines!

Set of TMs is countable. Set of all languages is uncountable.

List of TMs

<table>
<thead>
<tr>
<th>(A_0)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
<th>(A_6)</th>
<th>(A_7)</th>
<th>(A_8)</th>
<th>(A_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Another conclusion:

There are uncountably many languages because we know that $S=\{0,1\}^*$ is equivalent to N and each subset of S is a language.
Recursive and recursively enumerable languages

A TM T with input alphabet Σ ...

<table>
<thead>
<tr>
<th>accepts</th>
<th>decides</th>
</tr>
</thead>
<tbody>
<tr>
<td>a language $L \subseteq \Sigma^*$ if it accepts the strings in L and no others.</td>
<td>a language $L \subseteq \Sigma^$ if T computes the characteristic function $\chi_L : \Sigma^ \to {0,1}$ that returns 1 on strings in L and 0 otherwise.</td>
</tr>
</tbody>
</table>

In both cases, the issue is whether the input string is an element of L. However, the second approach may be more informative, because a TM accepting L may not return an answer if the string is not in L.

Recurrsively enumerable (RE) languages are those that can be *accepted* by a TM.

Recursive languages are those that can be *decided* by a TM.

Only in the decision case there is a guaranteed answer to the question: Given a string x, is x an element of the language?
Theorem: Every recursive language is recursively enumerable.

Theorem: If $L \subseteq \Sigma^*$ is accepted by a TM T that halts on every input string, then L is recursive.

Theorem: If L_1 and L_2 are both recursively enumerable languages over Σ, then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable.

Theorem: If L_1 and L_2 are both recursive languages over Σ, then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursive.

Theorem: If L is a recursive language over Σ, then its complement is also recursive.

Theorem: If L is a recursively enumerable language, and its complement is also recursively enumerable, then L is recursive.
Theorem: *Not all languages are recursively enumerable. In fact, the set of languages over \{0,1\} that are not recursively enumerable is uncountable.*

Proof:
We know that \(2^\mathbb{N}\) is uncountable and we observed that because \(\{0,1\}^*\) is the same size as \(\mathbb{N}\), it follows that the set of languages over \(\{0,1\}\) is uncountable.

We know that the set of RE languages over \(\{0,1\}\) is countable (because the set of TM is countable).

If \(T\) is any countable subset of an uncountable set \(S\) then \(S-T\) is uncountable.
A Language That Can’t Be Accepted, and a Problem That Can’t Be Decided

• Definition: Let
 – $NSA = \{e(T) | T \text{ is a TM and } e(T) \notin L(T)\}$
 – $SA = \{e(T) | T \text{ is a TM and } e(T) \in L(T)\}$
 • ("non-self-accepting" and "self-accepting")

• Theorem:
 – The language NSA is not recursively enumerable
 – The language SA is recursively enumerable but not recursive
• The statement of the theorem says that there is no algorithm to determine whether a given string represents a TM that accepts its own encoding
 – It might seem that for a TM \(T \), deciding whether \(T \) accepts the string \(e(T) \) is particularly difficult, but this is not the right interpretation
 – All we needed for the diagonal argument was a string associated with \(T \); we chose \(e(T) \), but we could just as easily have used something else
• The more correct conclusion is that it’s hard to answer questions about TMs and the languages they accept
Reductions

- We can often solve problems by reducing them to other, simpler ones
- We will reduce one decision problem \(P_1 \) to another \(P_2 \)
- The two crucial features in a reduction \(F \) are:
 - For every instance \(I \) of \(P_1 \) we must be able to obtain an instance \(F(I) \) of \(P_2 \) algorithmically
 - The answer to \(P_2 \) for the instance \(F(I) \) must be the same as the answer to \(P_1 \) for \(I \)

For simplicity, binary
Reductions

Definition: Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 ($P_1 \leq P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1, an instance $F(I)$ of P_2 such that the two answers are the same, i.e., (the answer to P_1 for the instance I, and the answer to P_2 for the instance $F(I)$)

\[P_1(I) = P_2(F(I)) \]

Idea 1: For example, I don’t know how to solve P_1 but I can solve P_2 and know how to map the instances to preserve answers. Then I can solve P_1
Reductions

Definition: Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 ($P_1 \leq P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1, an instance $F(I)$ of P_2 such that the two answers are the same, i.e., (the answer to P_1 for the instance I, and the answer to P_2 for the instance $F(I)$)

Idea 2: Say, P_1 is computationally difficult, and I don’t know the difficulty of P_2. If I know how to map the instances then I can state that P_2 is at least as difficult as P_1.
Example

- Problem $P_2(x, y)$ decides $x < y$ for $x, y \in \{1, \ldots, 5\}$.
- Problem $P_1(a^2, b^2)$ decides $a^2 < b^2$ for $a^2, b^2 \in \{1, \ldots, 25\}$.
- Imagine that P_1 is hard (or unknown how) to compute but P_2 is not, and let us assume that we can compute a positive $\sqrt{x^2}$.
- For each instance I of P_1 we can compute an instance $F(I)$ of P_2, and the answers to P_1, and P_2 are the same.

\rightarrow Now we need solve P_2 instead of P_1
Reductions

• Definition:
 – Suppose P_1 and P_2 are decision problems
 • We say P_1 is reducible to P_2 ($P_1 \leq P_2$) if there is an algorithm that finds, for an arbitrary instance I of P_1, an instance $F(I)$ of P_2 such that the two answers (the answer to P_1 for the instance I, and the answer to P_2 for the instance $F(I)$) are the same
 – If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2
 • We say L_1 is reducible to L_2 ($L_1 \leq L_2$) if there is a Turing-computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ such that for every $x \in \Sigma_1^*$, $x \in L_1$ if and only if $f(x) \in L_2$
Reductions

• Theorem:
 – Suppose $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, and $L_1 \leq L_2$
 • If L_2 is recursive, then L_1 is recursive (Proof: we can decide whether a string is in L_1 by using the reduction and deciding whether the resulting string is in L_2)
 – Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$
 • If P_2 is decidable, then P_1 is decidable (Proof: we can decide whether an instance of P_1 is a yes-instance by using the reduction and deciding whether the resulting instance of P_2 is a yes-instance)
 – We will be interested in the contrapositive statement: If P_1 is undecidable, then P_2 is also.
• Consider two decision problems:
 – *Accepts*: Given a TM T and a string w, is $w \in L(T)$?
 – *Halts*: Given a TM T and a string w, does T halt (either by accepting or by rejecting) on input w? (This is called the *halting problem*)

• **Theorem**: Both *Accepts* and *Halts* are undecidable

• For the first statement, we just need to show that *Self-accepting* \leq *Accepts*
 – A reduction from *Self-accepting* to *Accepts* is $F(T) = (T, e(T))$
 – We can compute this algorithmically.

• For the second statement, we can reduce *Accepts* to *Halts* (see the book for the details). *Accepts* is undecidable; therefore, *Halts* is undecidable
• Theorem: The following five decision problems are undecidable:

1. **Accepts-Λ**: Given a TM T, is $\Lambda \in L(T)$?
2. **AcceptsEverything**: Given a TM T with input alphabet Σ, is $L(T) = \Sigma^*$?
3. **Subset**: Given two TMs T_1 and T_2, is $L(T_1) \subseteq L(T_2)$?
4. **Equivalent**: Given two TMs T_1 and T_2, is $L(T_1) = L(T_2)$?
5. **WriteSymbol**: Given a TM T and a symbol a in the tape alphabet of T, does T ever write an a if it starts with an empty tape?
• \textit{WritesNonblank} problem: Given a TM T with n nonhalting states, does T ever write a nonblank symbol on its tape, if it starts with a blank tape?

• Theorem:
 – The decision problem \textit{WritesNonblank} is decidable.

• Proof sketch:
 – An algorithm to decide \textit{WritesNonblank} is to trace T for n moves, or until it halts, whichever comes first
 – within n moves, either it halts or it enters some nonhalting state q for the second time
 – If by that time no nonblank symbol has been written, none ever will be
• It’s now clear that it’s difficult to answer questions about Turing machines and the strings they accept
• A few more undecidable problems about a TM T:
 1. (For some language L) *AcceptsL*: Given a TM T, is $L(T) = L$?
 2. *AcceptsSomething*: Is there at least one string in $L(T)$?
 3. *AcceptsTwoOrMore*: Does $L(T)$ have at least two elements?
 4. *AcceptsFinite*: is $L(T)$ finite?
 5. *AcceptsRecursive*: is $L(T)$ recursive?

Homework: Read Chapter 8!