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Chapter 7

Undecidable Problems

Is there a problem for which no algorithm can produce 
a correct answer for every input?
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not one-to-one

A            B

not onto

A            B

bijection

A            B
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bijection

Aℕ
Question: Is N countable? Answer: Yes. A corresponding bijection from N to N is f(x)=x.
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How to count it? In other words, how to find a bijection from N to NxN?
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1. order alphabetically
2. each of them is countable

Corollary 1: Languages are countable sets
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The set of all subsets of N.
Each element is a subset of N
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Georg Cantor
1845-1918
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Wait … maybe this subset is in the list?
Let’s check what happens in this case …
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Let us visualize the subsets, and the selection process of missing A

This subset contains 0, 2, 5, 9 …                each row is a characteristic (or                     
indicator)function of Ai

we obtain the sequence corresponding to the set A by reversing 
diagonal: 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, . . . Each entry we encounter as we 
make our way down the diagonal allows us to distinguish the set A 
from one more of the sets Ai . The missing subset A = {2, 3, 6, 8, 9, . . .}.
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Same argument works if we want to find a language that … 
cannot be accepted by a Turing machine - in other words, a language 
that is different from L(T ), for every Turing machine T with input 
alphabet {0, 1}, i.e.,

there are languages that are not accepted by Turing machines!
Set of TMs is countable. Set of all languages is uncountable.
List of TMs

A language of Turing machine  A0
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Another conclusion:

There are uncountably many languages because we know that S={0,1}* 
is equivalent to N and each subset of S is a language.
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Recursive and recursively enumerable languages

Only in the decision case there is a 
guaranteed answer to the question: Given a 
string x, is x an element of the language?

A TM T with input alphabet Σ …
accepts decides

a language L ⊆ Σ* if it accepts the 
strings in L and no others.

a language L ⊆ Σ* if T computes the 
characteristic function χL : Σ* → {0,1} 
that returns 1 on strings in L and 0 
otherwise.

In both cases, the issue is whether the input string is an element of L.  
However, the second approach may be more informative, because a TM 
accepting L may not return an answer if the string is not in L

Recursively enumerable (RE) 
languages are those that can be 
accepted by a TM

Recursive languages are those that 
can be decided by a TM
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Theorem: Every recursive language is recursively enumerable.

Theorem: If L ⊆ Σ* is accepted by a TM T that halts on every input 
string, then L is recursive.

Theorem: If L1 and L2 are both recursively enumerable languages 
over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively enumerable.

Theorem: If L1 and L2 are both recursive languages over Σ, then      
L1 ∪ L2 and L1 ∩ L2 are also recursive.

Theorem: If L is a recursive language over Σ, then its complement  
is also recursive.

Theorem: If L is a recursively enumerable language, and its 
complement is also recursively enumerable, then L is recursive.
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Theorem: Not all languages are recursively enumerable. In fact, the 
set of languages over {0,1} that are not recursively enumerable is 
uncountable.

Proof:
We know that 2N is uncountable and we observed that because 
{0,1}* is the same size as N, it follows that the set of languages over 
{0,1} is uncountable.

We know that the set of RE languages over {0,1} is countable 
(because the set of TM is countable).

If T is any countable subset of an uncountable set S then S-T is 
uncountable.
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A Language That Can’t Be Accepted, and 
a Problem That Can’t Be Decided

• Definition: Let
– NSA = {e(T) | T is a TM and e(T) ∉ L(T)}
– SA = {e(T) | T is a TM and e(T) ∈ L(T)}

• (“non-self-accepting” and “self-accepting”)
• Theorem:

– The language NSA is not recursively enumerable
– The language SA is recursively enumerable but not 

recursive
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• The statement of the theorem says that there is no 
algorithm to determine whether a given string 
represents a TM that accepts its own encoding
– It might seem that for a TM T, deciding whether T

accepts the string e(T) is particularly difficult, but this 
is not the right interpretation

– All we needed for the diagonal argument was a string 
associated with T; we chose e(T), but we could just as 
easily have used something else

• The more correct conclusion is that it’s hard to 
answer questions about TMs and the languages they 
accept
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Reductions

• We can often solve problems by reducing them to other, 
simpler ones

• We will reduce one decision problem P1 to another P2

• The two crucial features in a reduction F are:
– For every instance I of P1 we must be able to obtain an 

instance F(I) of P2  algorithmically
– The answer to P2  for the instance F(I) must be the same as the 

answer to P1 for I

For simplicity, binary
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Reductions
Definition: Suppose P1 and P2 are decision problems. 
We say P1 is reducible to P2 (P1 ≤ P2) if  there is an algorithm 
that finds, for an arbitrary instance I of P1,  an instance F(I) of 
P2 such that the two answers are the same, i.e., (the answer 
to P1 for the instance I, and the answer to P2 for the instance 
F(I)) 

Inputs 
of P1

I
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Inputs 
of P2F(I)

P1(I) = P2(F(I))

F

Idea 1: For example, I don’t know how to solve P1 but I can solve P2 and know how 
to map the instances to preserve answers. Then I can solve P1
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Reductions
Definition: Suppose P1 and P2 are decision problems. 
We say P1 is reducible to P2 (P1 ≤ P2) if  there is an algorithm 
that finds, for an arbitrary instance I of P1,  an instance F(I) of 
P2 such that the two answers are the same, i.e., (the answer 
to P1 for the instance I, and the answer to P2 for the instance 
F(I)) 

Inputs 
of P1

I
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Inputs 
of P2F(I)

P1(I) = P2(F(I))

F

Idea 2: Say, P1 is computationally difficult, and I don’t know the difficulty of  P2. If I 
know how to map the instances then I can state that P2 is at least as difficult as P1
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Reductions

 Now we need solve P2  instead of P1

Foundations of Computer Science

Inputs 
of P1

I
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Inputs 
of P2

F(I)

P1(I) = P2(F(I))

F
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Reductions

• Definition: 
– Suppose P1 and P2 are decision problems

• We say P1 is reducible to P2 (P1 ≤ P2) if  there is an 
algorithm that finds, for an arbitrary instance I of P1,  an 
instance F(I) of P2 such that the two answers (the 
answer to P1 for the instance I, and the answer to P2 for 
the instance F(I)) are the same

– If L1 and L2 are languages over alphabets Σ1 and Σ2
• We say L1 is reducible to L2 (L1 ≤ L2) if there is a Turing-

computable function f : Σ1* →Σ2* such that for every      
x ∈ Σ1*,  x ∈ L1 if and only if f (x) ∈ L2
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Reductions

• Theorem: 
– Suppose L1 ⊆ Σ1*, L2 ⊆ Σ2*, and L1 ≤ L2

• If L2 is recursive, then L1 is recursive (Proof: we can 
decide whether a string is in L1 by using the reduction 
and deciding whether the resulting string is in L2)

– Suppose P1 and P2 are decision problems, and P1 ≤ P2
• If P2 is decidable, then P1 is decidable (Proof: we can 

decide whether an instance of P1 is a yes-instance by 
using the reduction and deciding whether the resulting 
instance of P2 is a yes-instance)

– We will be interested in the contrapositive statement:  
If P1 is undecidable, then P2 is also.
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• Consider two decision problems:
– Accepts: Given a TM T and a string w, is w ∈ L(T)?
– Halts: Given a TM T and a string w, does T halt (either 

by accepting or by rejecting) on input w? (This is called 
the halting problem)

• Theorem: Both Accepts and Halts are undecidable
• For the first statement, we just need to show that Self-

accepting ≤ Accepts
– A reduction from Self-accepting to Accepts is F(T) = (T, e(T))
– We can compute this algorithmically.

• For the second statement, we can reduce Accepts to Halts 
(see the book for the details).  Accepts is undecidable; 
therefore, Halts is undecidable
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• Theorem: The following five decision problems are 
undecidable:
1. Accepts-Λ: Given a TM T, is Λ ∈ L(T)?
2. AcceptsEverything: Given a TM T with input alphabet 

Σ,  is L(T) = Σ*?
3. Subset: Given two TMs T1 and T2,  is L(T1) ⊆ L(T2)?
4. Equivalent: Given two TMs T1 and T2,  is L(T1) = L(T2)?
5. WritesSymbol: Given a TM T and a symbol a in the tape 

alphabet of T, does T ever write an a if it starts with an 
empty tape?
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• WritesNonblank problem: Given a TM T with n nonhalting
states, does T ever write a nonblank symbol on its tape, if 
it starts with a blank tape?

• Theorem: 
– The decision problem WritesNonblank is decidable.

• Proof sketch: 
– An algorithm to decide WritesNonblank is to trace T for 

n moves, or until it halts, whichever comes first
– within n moves, either it halts or it enters some 

nonhalting state q for the second time
– If by that time no nonblank symbol has been written, 

none ever will be
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• It’s now clear that it’s difficult to answer questions 
about Turing machines and the strings they accept

• A few more undecidable problems about a TM T:
1. (For some language L) AcceptsL: Given a TM T, is   

L(T) = L?
2. AcceptsSomething:  Is there at least one string in L(T)?
3. AcceptsTwoOrMore: Does L(T) have at least two 

elements?
4. AcceptsFinite: is L(T) finite?
5. AcceptsRecursive: is L(T) recursive? 

Homework: Read Chapter 8!
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