
Foundations of Computer Science 1

Chapter 6

Turing Machines

Foundations of Computer Science 2

A General Model of Computation

• Both finite automata and pushdown automata are
models of computation
– Each receives an input string and executes an

algorithm to obtain an answer, following a set of rules
specific to the machine type

• It is easy to find examples of languages that cannot be
accepted because of the machine’s limitations:
– An FA cannot accept SimplePal {xcxr | x ∈ {a, b}*}
– A PDA cannot accept AnBnCn = {anbncn | n ≥ 0} or

XcX = {xcx | x ∈ {a,b}*}

Foundations of Computer Science 3

• A PDA-like machine with two stacks can accept AnBnCn

• What can be done with PDA model to accept AnBnCn?

Input: aaabbbccc

a

a

a

b

b

b

c

c

c

Foundations of Computer Science 4

• Let’s use a queue instead of a stack to accept XcX

Input: aabbcaabb

• What can be done with FA (or PDA) model to accept XcX?

a a a a a a b b c
a a a a b b c

b b b b c
b b c

c

a a b b c a a b b
Input:

XcX = {xcx | x ∈ {a,b}*}

Foundations of Computer Science 5

A General Model of Computation
(cont’d.)

• In both cases, it might seem that a machine is being
specifically developed to handle one language, but it
turns out that both these devices have substantially
more computing power than either an FA or a PDA

• Either one is a reasonable candidate for a model of
general-purpose computation

Foundations of Computer Science 6

A General Model of Computation
• The abstract model we will study instead is

the Turing machine
– It is not obtained by adding data structures

onto a finite automaton
– Rather, it predates the FA and PDA models

(Alan Turing’s contributions date from the
1930’s)

• A Turing machine is not just the next step
beyond a pushdown automaton
– According to the Church-Turing thesis, it is a

general model of computation, potentially
able to execute any algorithm

This is our main requirement for the new model

Alan Turing
1912-1954

Foundations of Computer Science 7

A General Model of Computation
(cont’d.)

• Turing’s objective was to demonstrate the inherent
limitations of algorithmic methods. This is why he
wanted his device to be able to execute any algorithm
that a human computer could

• To formulate his computational model, he considered
a human being working with a pencil and paper

• As a result, he postulated that the steps a computer
takes should include these:
– Examine an individual symbol on the paper
– Erase a symbol or replace it by another
– Transfer attention from one symbol to a nearby one

Foundations of Computer Science 8

• For simplicity, Turing specified a linear tape which has a left
end and is potentially infinite to the right
– The tape is marked off into squares
– Each square holds one symbol
– We can enumerate the squares, but that’s not part of the model

• We visualize the reading and writing as being done by a tape
head, which at any time is centered on a single square

• The tape serves as input, output, and memory

0 1 2 3 4 5 6

Computation

Tape

Tape head

-- a a b a b a

Left end Infinite to the right

Foundations of Computer Science 9

• One crucial difference between a Turing machine
and an FA or PDA is that a Turing machine is not
restricted to a single pass through the input

• We will focus on two primary objectives of a Turing
machine
– Accepting a language
– Computing a function

• The first is similar to what we’ve done so far

Foundations of Computer Science 10

A General Model of Computation
(cont’d.)

• A Turing machine will have two halt states, one
denoting acceptance and the other rejection
o More than two are unnecessary; unlike an FA, the

complete input string is on the tape initially, and a
separate answer for each prefix is not required

• Unlike FAs and PDAs (or at least PDAs without
Λ-transitions), Turing machines may never stop
o Very important for the analysis of algorithms, and

(in)tractable problems

hrha

Foundations of Computer Science 11

• Definition: A Turing Machine (TM) is a 5-tuple
T = (Q, Σ, Γ, q0, δ), where:
– Q is a finite set of states

• The two halt states ha and hr are not elements of Q
– The input alphabet Σ and the tape alphabet Γ are both finite

sets, with Σ ⊆ Γ
• The blank symbol ∆ is not an element of Γ

– q0, the initial state, is an element of Q
– The transition function is

δ : Q × (Γ ∪ {∆}) → (Q ∪ {ha, hr}) × (Γ ∪ {∆}) × {R, L, S}

Right Left StopAccept RejectCurrent state
Current
symbol on
tape Output symbol

New
state

Foundations of Computer Science 12

• We interpret δ(p, X) = (q, Y, D) to mean:
- when T is in state p and
- the symbol in the current square is X,
- the TM replaces X by Y in that square,
- changes to state q,
- and moves the tape head one square to the right, or moves

one square to the left, or doesn’t move (D)

Foundations of Computer Science

-- a a X a b a -- a a Y a b a

D = Left

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Foundations of Computer Science 13

• We interpret δ(p, X) = (q, Y, D) to mean:
- when T is in state p and
- the symbol in the current square is X,
- the TM replaces X by Y in that square,
- changes to state q,
- and moves the tape head one square to the right, or moves

one square to the left, or doesn’t move (D)

• If the state q is either ha or hr then T halts forever
• If T attempts to move left when it is on square 0, we will say

that it halts in state hr , leaving the tape head in square 0 and
leaving the tape unchanged

Foundations of Computer Science 14

• Normally a TM begins with an input string starting in
square 1 and all other squares (square 0 and all the ones
following the input string) blank

• In any case, the set of nonblank squares on the tape must
always be finite

0 1 2 3 4 5

∆ a b a ∆ ∆ ∆ …

input

Foundations of Computer Science 15

The current configuration of a TM is described by a single
string xqy, where

– q is the current state

– x is the string of symbols to the left of the current cell (may
be null)

– y starts in the current cell, includes everything to the right,
and everything after xy on the tape is blank

xqy = xqy ∆ = xqy ∆ ∆ = xqy ∆ ∆ ∆ = … same configuration
If the head points to ∆, and all following cells are ∆ then the
configuration is written as xq ∆

х y

current cell

Foundations of Computer Science 16

• We trace a sequence of moves by specifying the
configuration at each step

• If q is a non-halting state and r is any state, we write
xqy ⊢T zrw or xqy ⊢T* zrw

to mean that T moves from the first configuration to the
second in one move, or in zero or more moves, respectively
Example: T is in nonhalting state q, and the configuration is
aabqa ∆ a, and δ(q, a)=(r, ∆ , L) we could write

aabqa ∆ a ⊢T aarb ∆ ∆a

• The initial configuration corresponding to input x is given
by q0∆x (if not defined otherwise)

∆ a a b a ∆ a … ∆ a a b ∆ ∆ a …

q r
a/∆, L

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Foundations of Computer Science 17

Turing Machines as Language Acceptors

• Definition: If T = (Q, Σ, Γ, q0, δ) is a TM and x ∈ Σ*, x is accepted by
T if q0 ∆ x ⊢ T* whay for some w, y ∈ (Γ ∪ {∆})*

• A language L ⊆ Σ* is accepted by T if
L = L(T) = {x ∈ Σ* | x is accepted by T}

Foundations of Computer Science 18

TM simulating FA

• The following transition diagrams show an FA and a TM that
accept the same language

L = {a,b}*{ab}{a,b}* ∪{a,b}*{ba}

hr

Foundations of Computer Science 19

• We don’t simulate non-deterministic PDA for Pal (however, there
exist non-deterministic TMs).

• Basic idea:
– Compare the first σ1 with the last σn.
– If they match, compare the σ2 with σn-1 and so on …
– For a palindrome, we will end up with 0 or 1 unmatched letter

• Comparison:
1) read σ and replace it with ∆;
2) move across the tape to first ∆;
3) check the character to the left and replace it with ∆ if it matches.

• Halting condition: If when you moved left/right after finding the first
blank, the character found is a blank, the string is a palindrome.

Example: TM for Palindromes

Foundations of Computer Science 20

Add hr and transitions to it from q3 and q6

Foundations of Computer Science 21

Demo of AnBnCn in JFLAP

Foundations of Computer Science 22

• Basic idea:
– Find and mark the middle of the string
– Compare characters starting from the start of the string with

characters starting from the middle of the string.

Example: TM for L={xx} (not CFL)

• Finding the middle: similar to palindromes but now replace lower
case letters with the corresponding upper case letters

• Once we have found the middle,
– convert the 1st half of the string to lower case letters, and
– match lower case letters (1st half of xx) to the upper case letters (2nd half

of xx).
• Matching will be done by replacing letters with blanks.

Foundations of Computer Science 23

Find middle of string

q1 ∆ a b a b ∆

q3 ∆ A b a b ∆

q1 ∆ A b a B ∆

q3 ∆ A B a B ∆

q1 ∆ A B A B ∆

Foundations of Computer Science 24

First half to lower case

q1 ∆ A B A B ∆

q5 ∆ A b A B ∆

q5 ∆ a b A B ∆

Foundations of Computer Science 25

Matching of characters

q6 ∆ a b A B ∆

q8 ∆ A b A B ∆

q6 ∆ A b ∆ B ∆

q7 ∆ A B ∆ B ∆

∆ A B ∆ ∆ ∆add hr for the opposite capital letters

Foundations of Computer Science 26

Foundations of Computer Science 27

Turing Machines that Compute Partial
Functions

• A Turing machine that produces an output string for
every legal input string is said to compute a partial
function on Σ*

A

B

f

f is not defined on all elements of A

Foundations of Computer Science 28

Turing Machines that Compute Partial
Functions

• A Turing machine that produces an output string for
every legal input string is said to compute a partial
function on Σ*

• We consider TMs that compute partial functions on
(Σ*)k, i.e., functions of k variables

• The most important issue is what output strings are
produced for input strings in the domain of f

• However, we want the TM to accept only inputs in
the domain of f, in order to be able to say that it
computes f and not some other function with larger
domain

Foundations of Computer Science 29

• Definition:
– Let T = (Q, Σ, Γ, q0, δ) be a Turing machine, k a natural number,

and f a partial function from (Σ*)k to Γ*
– We say that T computes f if for every (x1, x2, …, xk) in

the domain of f,
q0 ∆ x1 ∆ x2 ∆… ∆ xk ⊢T* ha ∆f(x1, x2,… xk)

and no other input that is a k-tuple of strings is accepted by T
• A partial function f is Turing-computable if there is a TM that

computes f

T

∆ x1 ∆ x2 ∆ x3 ∆ ∆ ∆

T

∆ …… f(…..) ……… ∆ ∆ ∆

⊢T*

strings

Foundations of Computer Science 30

• For our purposes, it will be sufficient to consider
partial functions on ℕk with values in ℕ

• We will use unary notation for numbers
• The official definition is similar to the previous definition,

except that the input alphabet is {1}, and the initial
configuration looks like q0∆1n1∆1n2∆…∆1nk

• Example: f(x,y,z) = x+y+z

2+1+1 = 4

T

∆ 1 1 ∆ 1 ∆ 1 ∆ ∆ ∆

T

∆ 1 1 1 1 ∆ ∆ ∆

⊢T*

Foundations of Computer Science 31

Example: TM for computing the remainder Mod 2

q2

q4

q3q1

Moves the tape head to the end of the string, then makes a
pass from right to left in which the 1’s are counted and
simultaneously erased. The final output is a single 1 if the
input was odd and nothing otherwise.

Foundations of Computer Science 32

Example: TM for copying a string

∆ab∆∆
∆ab∆∆
∆Ab∆∆
∆Ab∆∆
∆Ab∆∆
∆Ab∆a
∆Ab∆a
…

Foundations of Computer Science 33

Example: TM for computing reverse function

Foundations of Computer Science 34

Example: TM that never halts on input 01

Foundations of Computer Science 35

Combining Turing Machines

• Just as a large algorithm can be described as a
number of subalgorithms working in combination,
we can combine several Turing machines into a
larger composite TM

• If T1 and T2 are TMs, we can consider the composition
T1T2: “first execute T1, then execute T2 on the result”
– The set of states of T1T2 is the union of the sets of

states of T1 and T2 (relabeled if necessary)
– The initial state is the initial state of T1

Foundations of Computer Science 36

• The transitions of T1T2 include all of those of T2 and all of
those of T1 that don’t go to ha

• A transition in T1 that goes to ha is replaced by a similar
transition that goes to the start state of T2

• The output of T1 must be a valid input configuration for T2

• We may use transition diagrams containing notations such
as T1 → T2 , in order to avoid showing all the states.

• We might use any of the above notations to mean “in
state p, if the current symbol is a, then execute T ”

• We might use any of the following to mean “execute
T1, and if T1 halts in ha with current symbol a, then
execute T2”

Foundations of Computer Science 37

Example: Accepting the language of palindromes

Copy→NB → R → PB → Equal

A Copy TM starts with tape
∆x, where x is a string of
nonblank symbols, and
ends up with ∆x∆x.

NB (PB) denotes the Turing
machine that moves the
tape head to the next
(previous) blank

R denotes the Turing
machine that computes
the reverse of a string

Equal denotes the Turing
machine that starts with
∆x∆y and determines
whether x=y.

Foundations of Computer Science 38

Multitape Turing Machines

• Some algorithms can be unwieldy to implement on a TM,
because of the bookkeeping necessary

• A way of simplifying them is to have multiple tapes with
independent heads

• This is a different model of computation, a multitape TM

Foundations of Computer Science 39

Multitape Turing Machines

• A 2-tape TM can also be described by a 5-tuple
T = (Q, Σ, Γ, q0, δ), where this time
δ : Q × (Γ ∪ {∆})2 → (Q ∪ {ha, hr}) × (Γ ∪ {∆})2 × {R, L, S}2

• A single move can change the state, the symbols in
the current squares on both tapes, and the positions
of the two tape heads

• We will represent a configuration by a 3-tuple
(q, x1 a1 y1, x2 a2 y2) where q is the current state, xi ai yi
is the contents of tape i, and ai is in the current
square of tape i

• The input configuration for input x will be (q0, ∆ x, ∆)

Foundations of Computer Science 40

Current cell
on tape 1

Current cell
on tape 2

Output for
cell on tape 1

Output for
cell on tape 2

Directions for
tapes 1 and 2

Foundations of Computer Science 41

Multitape Turing Machines
• It turns out that that, just as nondeterminism and Λ-

transitions do not increase the power of FAs, allowing a
Turing machine multiple tapes does not increase its power

• We can prove that for every multitape TM T there is a single-
tape TM that accepts exactly the same strings as T, rejects the
same strings, and produces exactly the same output for every
input string it accepts

• To simplify, we will only consider two-tape machines
• We need to simulate 2 tapes using 1 tape only. This can be

done by enumerating the cells and using even squares for
tape 2, and odd for tape 1.

• Another approach: use a separator symbol to concatenate
the contents of two tapes on one tape.

Foundations of Computer Science 42

The Church-Turing Thesis

• To say that the TM is a general model of computation
implies that any algorithmic procedure that can be
carried out at all, by a human computer or a team of
humans or an electronic computer, can be carried out
by a TM
– The statement was formulated by Alonzo Church in

the 30’s
– It is referred to as Church’s thesis or the Church-

Turing thesis
– It is not a statement that can be proved (i.e., you

cannot use it to prove something else), but there is a
lot of evidence for it

Foundations of Computer Science 43

The Church-Turing Thesis
• The nature of the model makes it seem that a TM can

execute any algorithm a human can
• Enhancements to the TM (stacks, queues, multi-tape,

multi-head, etc.) have been shown not to increase its
power

• Other theoretical models (even those that are faster)
of computation proposed have been shown to be
equivalent to a TM

• No one has ever suggested any kind of computation
that cannot be implemented on a TM

• From now on, we will consider that by definition,
an “algorithmic procedure” is what a TM can do

Foundations of Computer Science 44

Nondeterministic Turing Machines
• We can add nondeterminism to Turing machines: as usual,

δ(q, a) becomes a subset, not an element

• Theorem: For every nondeterministic TM (NTM) T there is
an ordinary (deterministic) TM T1 with L(T1) = L(T)

• Proof: The idea is to use an algorithm that can test, if necessary,
every possible sequence of moves of T on an input string x

For example, we can simulate T by scanning all its possible steps
using the tree of all possible configurations, i.e., the nodes are
configurations, the children of a node are all possible steps of T.
T accepts the input iff there is a finite branch from its root to an
accepting configuration.
In the simulation use BFS (not DFS!). Running time explodes but this
simulator will reach all accepting configurations.

Foundations of Computer Science 45

Equivalence of models

• In order to show that two TM models (e.g., ordinary
deterministic TM T and double-head deterministic TM
DHT) are equivalent, you need to prove that each model
can be simulated with another (e.g., given T for some
problem, you can design DHT for the same problem and
vice versa).

• Same idea works if you need to show equivalence of any
models

• You cannot use Church-Turing thesis to say that these
models are equivalent.

Foundations of Computer Science 46

Universal Turing Machines

• The TMs we have studied so far have been special-
purpose computers capable of executing a single
algorithm

• We need a “universal” Turing machine, which can
execute a program stored in its memory
– It receives an input string that specifies
1. the algorithm it is to execute, i.e., another TM, and
2. the input that is to be provided to the algorithm

∆ TM T to run ∆ Input for T

Foundations of Computer Science 48

Universal Turing Machines
• Definition: A universal Turing machine is a Turing

machine Tu that works as follows
– It is assumed to receive an input string of the form

e(T) e(z)

e is an encoding function whose values are strings in {0,1}*
– The computation performed by Tu on this input string

satisfies these two properties
• Tu accepts e(T)e(z) iff T accepts z
• If T accepts z and produces output y, then Tu produces output

e(y)

T is an arbitrary TM z is an input string

Foundations of Computer Science 49

Universal Turing Machines

• We discuss a simple encoding function e, and then
sketch one approach to constructing a universal TM

• What are the crucial features of the encoding function:

– It is possible to decide algorithmically, for an arbitrary
string w ∈ {0,1}*, whether w is a legitimate value of e

– A string w should represent at most one TM, or at most
one string

– There should be an algorithm for decoding strings of
the form e(T) or e(z) and reconstructing the TM or
string it represents

Foundations of Computer Science 51

Universal Turing Machines: Encoding

• State labels will be replaced by numbers, and we will
base the encoding on these numbers

• We also enumerate all possible symbols including blank

• The idea of the encoding is to represent a TM as a set of
moves and each move is associated with a 5-tuple of
numbers
– Each number is in unary representation followed by a 0

Foundations of Computer Science 52

Universal Turing Machines
• Definition: If T=(Q, Σ, Γ, q0, δ) is a TM and z is a string,

define the strings e(T) and e(z) as follows
– First assign numbers to each state, tape symbol, and tape

head direction of T; n(ha) = 1, n(hr) = 2, and n(q0) = 3
– The other elements of Q get distinct numbers ≥ 4
– n(R) = 1, n(L) = 2, n(S) = 3

q0
ha

hr

1

11

111

Right: 1
Left: 11
Stop: 111

∆ : 1
a: 11
b: 111
c: 1111

q1

q2

1111

11111

Foundations of Computer Science 53

Universal Turing Machines

– For each move m of the form δ(p, σ) = (q, τ, D),
e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

– List the moves of T as m1, …, mk (the order is arbitrary), and let
e(T) = e(m1)0e(m2)0…0e(mk)0

– If z = z1 z2 … zj is a string over Γ*, then
e(z) = 0 1n(z1) 0 1n(z2) 0 … 0 1n(zj)0

So, e(T) e(z) = e(m1)0e(m2)0…0e(mk)0 0 1n(z1) 0 1n(z2) 0 … 0 1n(zj)0

Foundations of Computer Science 54

Example of encoding

1111

Foundations of Computer Science 55

• Theorem: Let E = {e(T) | T is a TM}
– Then for every x ∈ {0,1}*, x ∈ E if and only if :

• x matches the regular expression (11*0)50((11*0)50)*,
so that it is a sequence of 5-tuples

• No two substrings of x representing 5-tuples have the
same first two parts (no move can appear twice)

• None of the 5-tuples have first part 1 or 11 (no moves
from halting states)

• The last part of each 5-tuple must be 1, 11, or 111 (it
must represent a direction)

• Those conditions don’t guarantee that the string represents
a TM that carries out a meaningful computation
– But they do ensure that we can draw a transition diagram

corresponding to the encoded TM

Foundations of Computer Science 56

• Testing a string to determine whether it satisfies these
conditions is straightforward, so we have verified that e
satisfies the minimal requirements for such a function

• The simplest idea for a universal TM is to have 3 tapes: the
first for the input, the second is the working tape, and the
third remembers the state the input TM is currently
simulated.

• Homework: read the chapter about universal TM, and
the details of simulation.

input tape

working tape

current state of
simulation

Foundations of Computer Science 57

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 48
	Slide Number 49
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57

