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Chapter 6

Turing Machines
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A General Model of Computation

• Both finite automata and pushdown automata are 
models of computation
– Each receives an input string and executes an 

algorithm to obtain an answer, following a set of rules 
specific to the machine type

• It is easy to find examples of languages that cannot be 
accepted because of the machine’s limitations:
– An FA cannot accept SimplePal {xcxr | x ∈ {a, b}*}
– A PDA cannot accept  AnBnCn = {anbncn | n ≥ 0} or                     

XcX = {xcx | x ∈ {a,b}*}
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• A PDA-like machine with two stacks can accept AnBnCn

• What can be done with PDA model to accept AnBnCn?

Input: aaabbbccc

a

a

a

b

b

b

c

c

c
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• Let’s use a queue instead of a stack to accept XcX

Input: aabbcaabb

• What can be done with FA (or PDA) model to accept XcX?

a a a a a a b b c
a a a a b b c

b b b b c
b b c

c

a a b b c a a b b
Input:

XcX = {xcx | x ∈ {a,b}*}
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A General Model of Computation 
(cont’d.)

• In both cases, it might seem that a machine is being 
specifically developed to handle one language, but it 
turns out that both these devices have substantially 
more computing power than either an FA or a PDA

• Either one is a reasonable candidate for a model of 
general-purpose computation



Foundations of Computer Science 6

A General Model of Computation
• The abstract model we will study instead is 

the Turing machine
– It is not obtained by adding data structures 

onto a finite automaton
– Rather, it predates the FA and PDA models 

(Alan Turing’s contributions date from the 
1930’s)

• A Turing machine is not just the next step 
beyond a pushdown automaton
– According to the Church-Turing thesis, it is a 

general model of computation, potentially 
able to execute any algorithm

This is our main requirement for the new model

Alan Turing
1912-1954
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A General Model of Computation 
(cont’d.)

• Turing’s objective was to demonstrate the inherent 
limitations of algorithmic methods.  This is why he 
wanted his device to be able to execute any algorithm 
that a human computer could 

• To formulate his computational model, he considered 
a human being working with a pencil and paper

• As a result, he postulated that the steps a computer 
takes should include these:
– Examine an individual symbol on the paper
– Erase a symbol or replace it by another
– Transfer attention from one symbol to a nearby one
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• For simplicity, Turing specified a linear tape which has a left 
end and is potentially infinite to the right
– The tape is marked off into squares 
– Each square holds one symbol
– We can enumerate the squares, but that’s not part of the model

• We visualize the reading and writing as being done by a tape 
head, which at any time is centered on a single square

• The tape serves as input, output, and memory

0     1     2     3     4      5     6

Computation

Tape

Tape head

-- a     a b     a     b     a

Left end Infinite to the right
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• One crucial difference between a Turing machine 
and an FA or PDA is that a Turing machine is not 
restricted to a single pass through the input

• We will focus on two primary objectives of a Turing 
machine
– Accepting a language
– Computing a function

• The first is similar to what we’ve done so far
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A General Model of Computation 
(cont’d.)

• A Turing machine will have two halt states, one 
denoting acceptance and the other rejection
o More than two are unnecessary; unlike an FA, the 

complete input string is on the tape initially, and a 
separate answer for each prefix is not required

• Unlike FAs and PDAs (or at least PDAs without           
Λ-transitions), Turing machines may never stop
o Very important for the analysis of algorithms, and 

(in)tractable problems

hrha
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• Definition: A Turing Machine (TM) is a 5-tuple                           
T = (Q, Σ, Γ, q0, δ), where:
– Q is a finite set of states

• The two halt states ha and hr are not elements of Q
– The input alphabet Σ and the tape alphabet Γ are both finite 

sets, with Σ ⊆ Γ
• The blank symbol ∆ is not an element of  Γ

– q0, the initial state, is an element of Q
– The transition function is 

δ : Q × (Γ ∪ {∆}) → (Q ∪ {ha, hr}) × (Γ ∪ {∆}) × {R, L, S}

Right     Left    StopAccept   RejectCurrent state 
Current 
symbol on 
tape Output symbol

New 
state
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• We interpret δ(p, X) = (q, Y, D) to mean: 
- when T is in state p and 
- the symbol in the current square is X, 
- the TM replaces X by Y in that square, 
- changes to state q,
- and moves the tape head one square to the right, or moves 

one square to the left, or doesn’t move (D)

Foundations of Computer Science

-- a     a X     a     b     a -- a     a Y     a     b     a

D = Left

0     1     2     3     4      5     6 0     1     2     3     4      5     6



Foundations of Computer Science 13

• We interpret δ(p, X) = (q, Y, D) to mean: 
- when T is in state p and 
- the symbol in the current square is X, 
- the TM replaces X by Y in that square, 
- changes to state q,
- and moves the tape head one square to the right, or moves 

one square to the left, or doesn’t move (D)

• If the state q is either ha or hr then T halts forever
• If T attempts to move left when it is on square 0, we will say 

that it halts in state hr , leaving the tape head in square 0 and 
leaving the tape unchanged
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• Normally a TM begins with an input string starting in 
square 1 and all other squares (square 0 and all the ones 
following the input string) blank

• In any case, the set of nonblank squares on the tape must 
always be finite

0     1      2     3      4    5

∆ a    b     a      ∆ ∆ ∆ …

input
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The current configuration of a TM is described by a single 
string xqy, where 

– q is the current state

– x is the string of symbols to the left of the current cell (may 
be null)

– y starts in the current cell, includes everything to the right, 
and everything after xy on the tape is blank

xqy = xqy ∆ = xqy ∆ ∆ = xqy ∆ ∆ ∆ = … same configuration
If the head points to ∆, and all following cells are ∆ then the 
configuration is written as xq ∆

х y

current cell
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• We trace a sequence of moves by specifying the 
configuration at each step

• If q is a non-halting state and r is any state, we write                              
xqy ⊢T zrw or xqy ⊢T* zrw

to mean that T moves from the first configuration to the   
second in one move, or in zero or more moves, respectively
Example: T is in nonhalting state q, and the configuration is 
aabqa ∆ a, and δ(q, a)=(r, ∆ , L) we could write  

aabqa ∆ a ⊢T    aarb ∆ ∆a

• The initial configuration corresponding to input x is given 
by q0∆x (if not defined otherwise)

∆ a    a b      a     ∆ a    … ∆ a    a b      ∆ ∆ a    …

q r
a/∆, L

0     1      2     3      4    5 6 0     1      2     3      4    5 6
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Turing Machines as Language Acceptors

• Definition: If T = (Q, Σ, Γ, q0, δ) is a TM and x ∈ Σ*,  x is accepted by 
T if  q0 ∆ x ⊢ T* whay for some w, y ∈ (Γ ∪ {∆})*

• A language L ⊆ Σ* is accepted by T if                                                          
L = L(T) = {x ∈ Σ* | x is accepted by T}
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TM simulating FA

• The following transition diagrams show an FA and a TM that 
accept the same language

L = {a,b}*{ab}{a,b}* ∪{a,b}*{ba}

hr
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• We don’t simulate non-deterministic PDA for Pal (however, there 
exist non-deterministic TMs).

• Basic idea:
– Compare the first σ1 with the last σn.
– If they match, compare the σ2 with σn-1 and so on …
– For a palindrome, we will end up with 0 or 1 unmatched letter

• Comparison: 
1) read σ and replace it with ∆; 
2) move across the tape to first ∆; 
3) check the character to the left and replace it with ∆ if it matches.

• Halting condition: If when you moved left/right after finding the first 
blank, the character found is a blank, the string is a palindrome.

Example: TM for Palindromes
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Add hr and transitions to it from q3 and q6



Foundations of Computer Science 21

Demo of AnBnCn in JFLAP
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• Basic idea:
– Find and mark the middle of the string
– Compare characters starting from the start of the string with 

characters starting from the middle of the string.

Example: TM for L={xx} (not CFL)

• Finding the middle: similar to palindromes but now replace lower 
case letters with the corresponding upper case letters

• Once we have found the middle, 
– convert the 1st half of the string to lower case letters, and 
– match lower case letters (1st half of xx) to the upper case letters (2nd half 

of xx).
• Matching will be done by replacing letters with blanks.
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Find middle of string

q1 ∆ a b a b ∆

q3 ∆ A b a b ∆

q1 ∆ A b a B ∆

q3 ∆ A B a B ∆

q1 ∆ A B A B ∆
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First half to lower case

q1 ∆ A B A B ∆

q5 ∆ A b A B ∆

q5 ∆ a b A B ∆
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Matching of characters

q6 ∆ a b A B ∆

q8 ∆ A b A B ∆

q6 ∆ A b ∆ B ∆

q7 ∆ A B ∆ B ∆

∆ A B ∆ ∆ ∆add hr for the opposite capital letters
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Turing Machines that Compute Partial 
Functions

• A Turing machine that produces an output string for 
every legal input string is said to compute a partial 
function on Σ*

A

B

f

f is not defined on all elements of A
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Turing Machines that Compute Partial 
Functions

• A Turing machine that produces an output string for 
every legal input string is said to compute a partial 
function on Σ*

• We consider TMs that compute partial functions on 
(Σ*)k, i.e., functions of k variables

• The most important issue is what output strings are 
produced for input strings in the domain of f

• However, we want the TM to accept only inputs in 
the domain of f, in order to be able to say that it 
computes f and not some other function with larger 
domain 
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• Definition: 
– Let T = (Q, Σ, Γ, q0, δ) be a Turing machine, k a natural number, 

and f a partial function from (Σ*)k to  Γ*
– We say that T computes f if for every (x1, x2, …, xk) in

the domain of f,      
q0 ∆ x1 ∆ x2 ∆… ∆ xk ⊢T* ha ∆f(x1, x2,… xk) 

and no other input that is a k-tuple of strings is accepted by T
• A partial function f is Turing-computable if there is a TM that 

computes f

T

∆ x1 ∆ x2       ∆ x3     ∆ ∆ ∆

T

∆ ……  f(…..) ………      ∆ ∆ ∆

⊢T*

strings
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• For our purposes, it will be sufficient to consider 
partial functions on ℕk with values in ℕ

• We will use unary notation for numbers
• The official definition is similar to the previous definition, 

except that the input alphabet is {1}, and the initial 
configuration looks like q0∆1n1∆1n2∆…∆1nk

• Example: f(x,y,z) = x+y+z

2+1+1 = 4

T

∆ 1      1     ∆ 1 ∆ 1 ∆ ∆ ∆

T

∆ 1     1    1     1      ∆ ∆ ∆

⊢T*
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Example: TM for computing the remainder Mod 2

q2

q4

q3q1

Moves the tape head to the end of the string, then makes a 
pass from right to left in which the 1’s are counted and 
simultaneously erased. The final output is a single 1 if the 
input was odd and nothing otherwise.
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Example: TM for copying a string

∆ab∆∆
∆ab∆∆
∆Ab∆∆
∆Ab∆∆
∆Ab∆∆
∆Ab∆a
∆Ab∆a
…
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Example: TM for computing reverse function
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Example: TM that never halts on input 01



Foundations of Computer Science 35

Combining Turing Machines

• Just as a large algorithm can be described as a 
number of subalgorithms working in combination, 
we can combine several Turing machines into a 
larger composite TM

• If T1 and T2 are TMs, we can consider the composition 
T1T2: “first execute T1, then execute T2 on the result”
– The set of states of T1T2 is the union of the sets of 

states of T1 and T2 (relabeled if necessary)
– The initial state is the initial state of T1
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• The transitions of T1T2 include all of those of T2 and all of 
those of T1 that don’t go to ha

• A transition in T1 that goes to ha is replaced by a similar 
transition that goes to the start state of T2

• The output of T1 must be a valid input configuration for T2

• We may use transition diagrams containing notations such 
as T1 → T2 , in order to avoid showing all the states.

• We might use any of the above notations to mean “in 
state p, if the current symbol is a, then execute T ”

• We might use any of the following to mean “execute 
T1, and if T1 halts in ha with current symbol a, then 
execute T2”
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Example: Accepting the language of palindromes

Copy→NB → R → PB → Equal

A Copy TM starts with tape 
∆x, where x is a string of 
nonblank symbols, and 
ends up with ∆x∆x.

NB (PB) denotes the Turing 
machine that moves the 
tape head to the next 
(previous) blank

R denotes the Turing 
machine that computes 
the reverse of a string

Equal denotes the Turing 
machine that starts with 
∆x∆y and determines 
whether x=y.
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Multitape Turing Machines

• Some algorithms can be unwieldy to implement on a TM, 
because of the bookkeeping necessary

• A way of simplifying them is to have multiple tapes with 
independent heads

• This is a different model of computation, a multitape TM
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Multitape Turing Machines

• A 2-tape TM can also be described by a 5-tuple            
T = (Q, Σ, Γ, q0, δ), where this time
δ : Q × (Γ ∪ {∆})2 → (Q ∪ {ha, hr}) × (Γ ∪ {∆})2 × {R, L, S}2

• A single move can change the state, the symbols in 
the current squares on both tapes, and the positions 
of the two tape heads

• We will represent a configuration by a 3-tuple          
(q, x1 a1 y1, x2 a2 y2) where q is the current state, xi ai yi
is the contents of tape i, and ai is in the current 
square of tape i

• The input configuration for input x will be (q0, ∆ x, ∆)
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Current cell 
on tape 1

Current cell 
on tape 2

Output for 
cell on tape 1

Output for 
cell on tape 2

Directions for 
tapes 1 and 2
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Multitape Turing Machines
• It turns out that that, just as nondeterminism and Λ-

transitions do not increase the power of FAs, allowing a 
Turing machine multiple tapes does not increase its power

• We can prove that for every multitape TM T there is a single-
tape TM that accepts exactly the same strings as T, rejects the 
same strings, and produces exactly the same output for every 
input string it accepts

• To simplify, we will only consider two-tape machines
• We need to simulate 2 tapes using 1 tape only. This can be 

done by enumerating the cells and using even squares for 
tape 2, and odd for tape 1.

• Another approach: use a separator symbol to concatenate 
the contents of two tapes on one tape.
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The Church-Turing Thesis

• To say that the TM is a general model of computation 
implies that any algorithmic procedure that can be 
carried out at all, by a human computer or a team of 
humans or an electronic computer, can be carried out 
by a TM
– The statement was formulated by Alonzo Church in 

the 30’s
– It is referred to as Church’s thesis or the Church-

Turing thesis
– It is not a statement that can be proved (i.e., you 

cannot use it to prove something else), but there is a 
lot of evidence for it
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The Church-Turing Thesis
• The nature of the model makes it seem that a TM can 

execute any algorithm a human can
• Enhancements to the TM (stacks, queues, multi-tape, 

multi-head, etc.) have been shown not to increase its 
power

• Other theoretical models (even those that are faster) 
of computation proposed have been shown to be 
equivalent to a TM

• No one has ever suggested any kind of computation 
that cannot be implemented on a TM

• From now on, we will consider that by definition, 
an “algorithmic procedure” is what a TM can do
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Nondeterministic Turing Machines
• We can add nondeterminism to Turing machines: as usual,  

δ(q, a) becomes a subset, not an element

• Theorem: For every nondeterministic TM (NTM) T there is 
an ordinary (deterministic) TM T1 with   L(T1) = L(T)

• Proof: The idea is to use an algorithm that can test, if necessary, 
every possible sequence of moves of T on an input string x

For example, we can simulate T by scanning all its possible steps 
using the tree of all possible configurations, i.e., the nodes are 
configurations, the children of a node are all possible steps of T. 
T accepts the input iff there is a finite branch from its root to an 
accepting configuration.
In the simulation use BFS (not DFS!). Running time explodes but this  
simulator will reach all accepting configurations.
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Equivalence of models

• In order to show that two TM models (e.g., ordinary 
deterministic TM T and double-head deterministic TM 
DHT) are equivalent, you need to prove that each model 
can be simulated with another (e.g., given T for some 
problem, you can design DHT for the same problem and 
vice versa).

• Same idea works if you need to show equivalence of any 
models

• You cannot use Church-Turing thesis to say that these 
models are equivalent. 
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Universal Turing Machines

• The TMs we have studied so far have been special-
purpose computers capable of executing a single 
algorithm

• We need a “universal” Turing machine, which can 
execute a program stored in its memory
– It receives an input string that specifies
1. the algorithm it is to execute, i.e., another TM, and 
2. the input that is to be provided to the algorithm

∆ TM T to run ∆ Input for T
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Universal Turing Machines
• Definition:  A universal Turing machine is a Turing 

machine Tu that works as follows
– It is assumed to receive an input string of the form  

e(T) e(z)

e is an encoding function whose values are strings in {0,1}*
– The computation performed by Tu on this input string 

satisfies these two properties
• Tu accepts e(T)e(z) iff T accepts z
• If T accepts z and produces output y, then Tu produces output 

e(y)

T is an arbitrary TM z is an input string
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Universal Turing Machines

• We discuss a simple encoding function e, and then 
sketch one approach to constructing a universal TM

• What are the crucial features of the encoding function:

– It is possible to decide algorithmically, for an arbitrary 
string w ∈ {0,1}*, whether w is a legitimate value of e

– A string w should represent at most one TM, or at most 
one string

– There should be an algorithm for decoding strings of 
the form e(T) or e(z) and reconstructing the TM or 
string it represents



Foundations of Computer Science 51

Universal Turing Machines: Encoding

• State labels will be replaced by numbers, and we will 
base the encoding on these numbers

• We also enumerate all possible symbols including blank

• The idea of the encoding is to represent a TM as a set of 
moves and each move is associated with a 5-tuple of 
numbers  
– Each number is in unary representation followed by a 0
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Universal Turing Machines
• Definition: If T=(Q, Σ, Γ, q0, δ) is a TM and z is a string, 

define the strings e(T) and e(z) as follows
– First assign numbers to each state, tape symbol, and tape 

head direction of  T;  n(ha) = 1, n(hr) = 2, and  n(q0) = 3
– The other elements of Q get distinct numbers ≥ 4
– n(R) = 1, n(L) = 2, n(S) = 3

q0
ha

hr

1

11

111

Right: 1
Left: 11
Stop: 111

∆ : 1
a: 11
b: 111
c: 1111

q1

q2

1111

11111
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Universal Turing Machines

– For each move m of the form δ(p, σ) = (q, τ, D),           
e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

– List the moves of T as m1, …, mk (the order is arbitrary), and let 
e(T) = e(m1)0e(m2)0…0e(mk)0

– If z = z1 z2 … zj is a string over Γ*, then                                           
e(z) = 0 1n(z1 ) 0 1n(z2) 0 … 0 1n(zj)0

So, e(T) e(z) = e(m1)0e(m2)0…0e(mk)0 0 1n(z1 ) 0 1n(z2) 0 … 0 1n(zj)0
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Example of encoding

1111
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• Theorem: Let E = {e(T) | T is a TM}
– Then for every x ∈ {0,1}*, x ∈ E if and only if :

• x matches the regular expression (11*0)50((11*0)50)*, 
so that it is a sequence of 5-tuples

• No two substrings of x representing 5-tuples have the 
same first two parts (no move can appear twice)

• None of the 5-tuples have first part 1 or 11 (no moves 
from halting states)

• The last part of each 5-tuple must be 1, 11, or 111 (it 
must represent a direction)

• Those conditions don’t guarantee that the string represents 
a TM that carries out a meaningful computation
– But they do ensure that we can draw a transition diagram 

corresponding to the encoded TM
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• Testing a string to determine whether it satisfies these 
conditions is straightforward, so we have verified that e
satisfies the minimal requirements for such a function

• The simplest idea for a universal TM is to have 3 tapes: the 
first for the input, the second is the working tape, and the 
third remembers the state the input TM is currently 
simulated.

• Homework: read the chapter about universal TM, and 
the details of simulation.

input tape

working tape

current state of 
simulation
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