
Foundations of Computer Science 1

Chapter 5

Pushdown Automata

Foundations of Computer Science 2

Definitions and Examples
• A language can be generated by a CFG if and only if it can be

accepted by a pushdown automaton
• A pushdown automaton is similar to an FA but has an

auxiliary memory in the form of a stack

• Pushdown automata are, by default, nondeterministic.
Unlike FA/NFA’s, the nondeterminism cannot always be
removed

bottom

topLast
In
First
Out

Push Pop

Foundations of Computer Science 3

• We’ll start with a simple example, the language
AnBn = {anbn | n ≥ 0}
– This is not a regular language (there is no FA for it),

but it is context-free (there is a CFG)
• In processing the first part of an input string that

might be in AnBn, all we need to remember is the
number of a’s
– Saving the actual a’s is a simple way to do this
– So, the PDA will start by reading a’s and pushing them

onto the stack

a

a

This pair (state,transition)
saves a in the stack a

a

a

a

a

a

a

a

a

a a a a

Foundations of Computer Science 4

• As soon as the PDA reads b, two things should happen
– It enters a new state in which only b’s are legal inputs
– It pops one a off the stack to cancel this b

• In the new state, the correct move on b is to pop a off the
stack to cancel it. Once enough b’s have been read to
cancel the a’s on the stack, the string read so far is
accepted

• We assume that the stack has no limit to its size, so the
PDA can handle anything in AnBn

a

a

a

a
a

This pair
(state,transition)
removes b from the
stack

a

a

a

a

a

a

b

b b b b

b

Foundations of Computer Science 5

• Problem: in the transition function we need to consider
what we have in the stack

a

a

a

a

b

a a a

What if there is b on top?

Not
accepted

…..

a

a

a

a
a

Or what if one more b is in
the string? a

a

a

a

a

a

b

b b b b

b

b

Not accepted

Foundations of Computer Science 6

• A single move of a PDA depends on the current state, the next input, and
the symbol currently on top of the stack (the only one the PDA can see)

• In the move, the PDA is allowed to change states and to modify the top
of the stack. We will allow the PDA to replace the top symbol X by a
string α of stack symbols

• Example: push a symbol Y means “replace X by YX”; and pop X means
“replace X by Λ”If the stack is empty

and the input is a
then push a

First b in the input
erases the top a in
the stack

Continue to
erase a’s if the
input symbols
are b’sInput and stack are empty

Continue to push a’s into stack
if the input symbols are a’s

Nothing in the input

Foundations of Computer Science 7

Definition: PDA

• Definition: A pushdown automaton is a 7-tuple
M = (Q, Σ, Γ, q0, Z0, A, δ), where:
– Q is a finite set of states
– The input and stack alphabets Σ and Γ are finite sets
– q0 ∈ Q is the initial state
– Z0 ∈ Γ is the initial stack symbol
– A ⊆ Q is the set of accepting states
– The transition function is

δ : Q × (Σ ∪ {Λ}) × Γ → a finite subset of Q × Γ*
• Because values of δ are sets, M may be nondeterministic
• A move requires that there be at least one symbol on the

stack. Z0 is the one on the stack initially

Foundations of Computer Science 8

• A configuration of a PDA is a triple (q, x, α)
– q ∈ Q is the current state
– x ∈ Σ* is the portion of the input string that has not yet been

read
– The complete contents of the stack is α ∈ Γ* (the convention

will be that the top corresponds to the leftmost symbol). The
last symbol of α is often Z0.

Foundations of Computer Science 9

• We write (p, x, α) ⊢M (q, y, β) to mean that one of the
possible moves in the first configuration takes M to the
second.
– This happens if x=σy or x= Λ y=y, i.e., where σ∈ Σ ∪ {Λ}
– If α=Xγ, X∈Γ and γ∈Γ* then β=ξγ for some string ξ, for which

(q, ξ) ∈ δ(p, σ ,X)

• ⊢Mn and ⊢M* refer to n moves and zero or more moves

Foundations of Computer Science 10

Definition: If M = (Q, Σ, Γ, q0, Z0, A, δ) and x ∈ Σ*,
the string x is accepted by M if

(q0, x, Z0) ⊢M* (q, Λ, α)
for some α ∈ Γ* and some q ∈ A

– A language L is said to be accepted by M if L is
precisely the set of strings accepted by M

– Sometimes a string accepted by M is said to be
accepted by final state, because acceptance does not
depend on the final stack contents at all

There is
nothing left in
the input string

Foundations of Computer Science 11

PDA for AnBn is M = (Q, Σ, Γ, q0, Z0, A, δ) where Q = {q0, q1, q2, q3},
A = {q3}, and the transitions are shown in this table:

Move # State Input Stack top Move(s)
1 q0 a Z0 (q1, aZ0)
2 q1 a a (q1, aa)
3 q1 b a (q2, Λ)
4 q2 b a (q2, Λ)
5 q2 Λ Z0 (q3, Z0)
all other combinations none

Stack top a is
replaced with aa

a, Z0/ aZ0
a, a/ aa

b, a/ Λ

b, a/ Λ

Λ, Z0 / Z0

0 1

3 2

Λ, Z0 / Z0

Foundations of Computer Science 12

• The moves that M makes as it processes the
string aabb are shown below:

(q0, aabb, Z0) ⊢ (q1, abb, aZ0)
⊢ (q1, bb, aaZ0)
⊢ (q2, b, aZ0)
⊢ (q2, Λ, Z0)
⊢ (q3, Λ, Z0)

• M is deterministic. It never has a choice of moves

Rest of the input string

a, Z0/ aZ0
a, a/ aa

b, a/ Λ

b, a/ Λ

Λ, Z0 / Z0

0 1

3 2

Λ, Z0 / Z0

Foundations of Computer Science 13

Foundations of Computer Science 14

• a cancels b on top of the stack
• b cancels a on top of the stack
• both letters are accumulated if

read in chains to be canceled in
future

Foundations of Computer Science 15

Foundations of Computer Science 16

Foundations of Computer Science 17

Foundations of Computer Science 18

is

Foundations of Computer Science 19

Foundations of Computer Science 20

This PDA is also
deterministic

Foundations of Computer Science 21

This PDA is not deterministic

moves for pal’s of length 1

moves for pal’s of odd length

moves for pal’s of even length

Foundations of Computer Science 22

Foundations of Computer Science 23

moves for pal’s of length 1

moves for pal’s of odd length

moves for pal’s of even length

Input
string

1

2

3

4
5

6

Foundations of Computer Science 24

moves for pal’s of length 1

moves for pal’s of odd length

moves for pal’s of even length

Input
string

1

2

3

4
5

6

Foundations of Computer Science 25

Computation tree
for string baab

Foundations of Computer Science 26

Stack symbol that
is not an input
symbol

Foundations of Computer Science 27

This is what we know about languages …
All languages

• CFL
• PDA

Regular languages =
Regular expressions =
FA = NFA

?

Foundations of Computer Science 28

Deterministic Pushdown Automata

• Definition 5.10: A pushdown automaton
M = (Q, Σ, Γ, q0, Z0, A, δ) is deterministic if it satisfies
both of the following conditions:
– For every q ∈ Q, every σ in Σ ∪ {Λ}, and every X ∈ Γ,

the set δ(q, σ, X) has at most one element
– For every q ∈ Q, every σ ∈ Σ, and every X ∈ Γ, the two

sets δ(q, σ, X) and δ(q, Λ, X) cannot both be nonempty
• A language L is a deterministic context-free language

(DCFL) if there is a deterministic PDA (DPDA)
accepting L

Foundations of Computer Science 29

Deterministic Pushdown Automata

• Definition: A PDA M = (Q, Σ, Γ, q0, Z0, A, δ) is deterministic if it
satisfies both of the following conditions:
– For every q ∈ Q, every σ in Σ ∪ {Λ}, and every X ∈ Γ, the set

δ(q, σ, X) has at most one element

– For every q ∈ Q, every σ ∈ Σ, and every X ∈ Γ, the two sets δ(q,
σ, X) and δ(q, Λ, X) cannot both be nonempty

• A language L is a deterministic context-free language (DCFL)
if there is a deterministic PDA (DPDA) accepting L

Foundations of Computer Science 30

Deterministic Pushdown Automata

• One example is the PDA accepting AnBn
• Another example: the language of balanced strings of

brackets that is “a string of left and right brackets is
balanced if no prefix has more right than left and there
are equal numbers of left and right”
– Two states q0 and q1, where q0 is the accepting state
– Input symbols are ‘[‘ and ‘]’
– Stack symbols are the input symbols and Z0

Foundations of Computer Science 31

Deterministic PDA: The transition table for a PDA accepting
the language of balanced strings of brackets

Move # State Input Stack top Move
1 q0 [Z0 (q1, [Z0)
2 q1 [[(q1, [[)
3 q1] [(q1, Λ)
4 q1 Λ Z0 (q0, Z0)
(all other combinations) none

It is easy to prove by induction the equivalence of two languages (see page 173).

q0 q1

[, Z0 / [Z0

Λ , Z0 / Z0

[, [/ [[

] , [/ Λ

Foundations of Computer Science 32

Foundations of Computer Science 33

Symbols for 1st a or b

Foundations of Computer Science 34

Foundations of Computer Science 38

Constructing a PDA from a Given CFG

• We’ll examine two ways of constructing a PDA from
an arbitrary CFG
– In both cases the PDA will be nondeterministic

• In both approaches, the PDA attempts to simulate a
derivation in the grammar, using the stack to hold
portions of the current string
– The PDA terminates the computation if it finds that the

derivation-in-progress is not consistent with the input
string

– It attempts to construct a derivation tree from the
input string

Foundations of Computer Science 39

A PDA from a Given CFG

• The two approaches are top-down and bottom-up,
which refer to the way the tree is constructed
– We’ll describe for each one the PDA obtained from the

grammar and indicate why it accepts the language
• The top-down PDA:

– Begins by placing the start symbol of the grammar on
the stack

– From this point, each step in the construction of the
derivation tree consists of replacing a variable A that is
currently on top of the stack by the right side of a
grammar production A → α

Foundations of Computer Science 40

A PDA from a Given CFG (cont’d.)

• The top-down PDA: (cont’d.)
– This step corresponds to building the portion of the

tree containing that variable-node and its children
– The intermediate moves of the PDA are to remove

terminal symbols from the stack as they are produced
and match them with input symbols

– To the extent that they continue to match, the
derivation being simulated is consistent with the input
string

– Because the variable replaced in each step is the
leftmost one, we are simulating a leftmost derivation

Foundations of Computer Science 41

A PDA from a Given CFG (cont’d.)
Let G = (V, Σ, S, P) be a CFG. The nondeterministic top-
down PDA corresponding to G is NT(G)=(Q, Σ, Γ, q0, Z0,
A, δ), defined as follows:

• Q = {q0, q1, q2}, A = {q2}, Γ = V ∪ Σ ∪ {Z0}
• The initial move is “push S to stack”, i.e.,

δ(q0, Λ, Z0) = {(q1, SZ0)}
• The only move to the accepting state is

δ(q1, Λ, Z0) = {(q2, Z0)}
• The moves from q1 are the following:

– For every X ∈ V, δ(q1, Λ, X) = {(q1, α) | X → α ∈ P}
– For every σ ∈ Σ, δ(q1, σ, σ) = {(q1, Λ)}

Foundations of Computer Science 42

A PDA from a Given CFG (cont’d.)

• After the initial move, before the final move, the PDA
remains in state q1
– The only moves are to replace a variable with the right

side of a production and to match a terminal symbol
on the stack with an input symbol and discard both

• Theorem 5.18: If G is a CFG, then the
nondeterministic top-down PDA NT(G) accepts the
language L(G)
– Proof: see book

Foundations of Computer Science 43

Example: CFGPDA accepting Balanced
• The language of balanced strings of brackets that is “a string

of left and right brackets is balanced if no prefix has more
right than left and there are equal numbers of left and right”

Foundations of Computer Science 44

Example: CFGPDA accepting Balanced
• The language of balanced strings of brackets that is “a string

of left and right brackets is balanced if no prefix has more
right than left and there are equal numbers of left and right”

Foundations of Computer Science 45

Foundations of Computer Science 46

A PDA from a Given CFG (cont’d.)

• The bottom-up PDA:
– The tree is constructed from the bottom up
– The PDA simulates the reverse of a derivation starting

with the last move and ending with the first
– Another thing that’s reversed is the order in which we

read the symbols on the stack when doing a
“reduction”: the reduction corresponding to A → β is
performed when the string r(β) appears on the top of
the stack; it is replaced by A.

– The simulated derivation is a rightmost derivation

Foundations of Computer Science 47

Example: Bottom-Up PDA for simplified Algebraic Expressions

Tree for a+a*a

Foundations of Computer Science 48

A PDA from a Given CFG (cont’d.)
Let G=(V, Σ, S, P) be a CFG. The nondeterministic bottom-
up PDA corresponding to G is NB(G)=(Q, Σ, Γ, q0, Z0, A, δ),
defined as follows:
• For every σ ∈ Σ and every X ∈ Γ, δ(q0, σ, X)={(q0, σX)},

the shift moves
• For every production B → α, and every nonnull string

β ∈ Γ*, (q0, Λ, r(α) β) ⊢* (q0, B β), where this reduction
is a sequence of one or more moves in which, if there
is more than one, the intermediate configurations
involve other states that are specific to this sequence
and appear in no other moves of NB(G)

• (q1, Λ) ∈ δ(q0, Λ, S) and δ(q1, Λ, Z0)={(q2, Z0)}

Foundations of Computer Science 49

A PDA from a Given CFG (cont’d.)

• Theorem 5.23: If G is a CFG, then the non-
deterministic bottom-up PDA NB(G) accepts L(G)
– Proof: see book

Foundations of Computer Science 51

The Pumping Lemma for Context-Free
Languages

• It’s easy to find a language that cannot be accepted by
a finite automaton, even if proving it is a little harder
– For example, AnBn cannot be accepted by a FA,

because with only a finite number of states, we can’t
keep track of how many a’s we’ve seen

– It might be argued, in a similar way, that neither
AnBnCn = {anbncn | n ≥ 0} nor XX = {xx | x ∈ {a,b}*} can
be accepted by a PDA

Even if the PDA is nondeterministic, and we know when do we need
to switch from the first x to the second x, we cannot access the first
symbol of x to match it because it is at the bottom of the stack!

Foundations of Computer Science 52

The Pumping Lemma for Context-Free
Languages (cont’d.)

• The way a PDA processes aibjck allows it to confirm
that i = j but not to remember that number long
enough to compare it to k

• One way to prove AnBn is not regular is to use the
pumping lemma for regular languages

• Now we’ll establish a result for CFLs that is similar to
the pumping lemma, but a little more complicated

• The basic idea is that …

A sufficiently long derivation in a grammar G will have
to contain a self-embedded variable

Foundations of Computer Science 53

The Pumping Lemma for Context-Free
Languages (cont’d.)

• For instance, in S⇒* vAz ⇒* vwAyz ⇒* vwxyz, the
string derived from the first occurrence of A also
includes an occurrence of A
– S ⇒* vAz ⇒* vwAyz ⇒* vwkAykz ⇒* vwkxykz

must also be a valid derivation, for every k ≥ 1, and
S ⇒* vAz ⇒* vxz = vw0xy0z is also valid

– This observation will be useful if we can guarantee
that the strings w and y are not both null, and even
more useful if we can impose some other restrictions
on the five strings v, w, x, y, and z of terminals

Foundations of Computer Science 54

The Pumping Lemma for Context-Free
Languages (cont’d.)

• Theorem: Suppose L is a CFL
– Then there is an integer n so that for every u ∈ L with

|u| ≥ n, u can be written as u = vwxyz so that:
• (c1) |wy| > 0
• (c2) |wxy| ≤ n
• (c3) For every m ≥ 0, vwmxymz ∈ L

Foundations of Computer Science 55

Applying the pumping lemma to AnBnCn
Suppose, for the sake of contradiction, that AnBnCn is a context-free
language, and let n be the integer in the pumping lemma
• Let u (= vwxyz) be the string anbncn

– Then u ∈ AnBnCn and |u| ≥ n
– Therefore, according to the pumping lemma, u=vwxyz for some

strings satisfying the three conditions
– (c1) wy contains at least one symbol, |wy| > 0
– (c2) wxy (|wxy| ≤ n) contains no more than two distinct symbols.

aaa…aaabbb…bbbccc…ccc

– If σ1 is one of the three symbols that occurs in wy and σ2 is one that
doesn’t, then vw0xy0z contains fewer than n occurrences of σ1 and
exactly n occurrences of σ2

– This is a contradiction because the third condition implies that
vw0xy0z is in AnBnCn (not equal numbers of all three symbols)

Foundations of Computer Science 56

Foundations of Computer Science 57

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57

