Chapter 4

Conlextl-Free Languages

Using Grammar Rules to Define a Language

e Regular languages and FAs are too simple for many
purposes (Example: when we need to count
something such as equal numbers of a and b.)

e We will use grammars, i.e., the set of rules for
generating phrases and sentences.

— Using context-free grammars allows us to describe
more difficult languages

— Much high-level programming language syntax can be
expressed with context-free grammars

— Context-free grammars with a very simple form
provide another way to describe the regular languages

e Grammars can be ambiguous

For example, a string could be parsed using more than one
chain of rules which can lead to different interpretations

Let's begin with an example ...

e Consider the language AnBn = {a"b" | n > 0}, defined using
the recursive definition:

- A € AnBn
- For every S € AnBn, aSb € AnBn

e Think of S as a variable representing an arbitrary
element, and write these rules as
S—>A

S —> aSh

In the process of obtaining an element of AnBn, S can be
replaced by either string.

Generating with recursive definition: A, ab, aabb, aaabbb
Generating with new rules: S, aSb, aaSbb, aaaSbbb, aaabbb

Representing a Chain of Grammar Rules

e [fa and B are strings, and o contains at least one
occurrence of S, then

o. = [means that 3 is obtained from o in one step,
by using either §$ > A or S— aSb

e Example of generating aaabbb
S = aSb = aaSbb = aaaSbbb = aaabbb
i.e.,, we describe a derivation of the string aaabbb

e We can simplify the rules by using the | symbol to
mean “or”, so that the rules become

S—>A|aSb

Another example of grammar

e Consider the language Expr of legal algebraic expressions:
- a € Expr
— For every x,y € Expr, x+y € Expr, and x*y € Expr
— For every x € Expr, (x) € Expr

e Think of S as a variable representing an arbitrary
element, and write these rules as

Another example of grammar

e Consider the language Expr of legal algebraic expressions:
- a € Expr
— For every x,y € Expr, x+y € Expr, and x*y € Expr
— For every x € Expr, (x) € Expr

e Think of S as a variable representing an arbitrary
element, and write these rules as ...

S—>al|S+S|S*S|(S)
e Examples of different derivations of a+a*a

S =85+S = a+S = a+S*S = a+a*S = a+a*a
S =85%S = 5+5*S = a+S*S = a+S*a = a+a*a

We can use more than one variable

e Recursive definition of Expr is
- a € Expr
— For every x,y € Expr, x+y € Expr, and x*y € Expr
— For every x € Expr, (x) € Expr

e The grammar rules are
S >q | S+S | S*G | (S) i.e., you cannot

expand it
recursively

But what if we want to use more than one “atomic”
expression? For example, if we need identifiers a,b and also
constants 120, 1.6E-2, then we can add one more variable
and more rules

S 3A|S+S|S*S| (S)
A—al|b|120]|1.6E-2

Palindromes and Nonpalindromes

e Palindromes

Palindromes and Nonpalindromes
e Palindromes
S — AlalblaSalbSb

e Nonpalindromes (NonPal). The last two rules can still work if
S is a nonpalindrome. Let us define NonPal

Palindromes and Nonpalindromes
e Palindromes
S — AlalblaSalbSb

e Nonpalindromes (NonPal). The last two rules can still work if
S is a nonpalindrome. Let us define NonPal

e For every A € {a,b}*, aAb, and bAa are in NonPal.
e For every S € NonPal, aSa, and bSb are in NonPal.

and the rules are
1 2 3 4

S — aSalbSblaAblbAa

A — Aa|AblA
5 6 7
A derivation of abbaaba is
1 2 4 5 7

S = aSa = abSba = abbAaba = abbAaaba = abbaaba

Definition of CFG

e A context-free grammar (CFG) is a 4-tuple G=(V, %, S, P),
where V and X are disjoint finite sets,S e V,and Pis a
finite set of formulas of the form

A > a,whered e Vand a € (VU X)*

2. - set of terminal symbols or terminals (such as letters, i.e.,

something that cannot be divided, and recursively extended)
Example: in S — aSb, a and b are terminals

V - set of variables or nonterminals
Example: in S > aSbA, S, and A are variables

S € V - start variable

P - grammar rules (or productions), i.e., a subset of all
possible strings made of terminals and nonterminals

- We use — for productions in a grammar and = for a step
in a derivation

Grammar rules:

S — aSalbSblaAblbAa
A — Aa|Ab|A

A derivation of abbaaba is

S = aSa = abSba = abbAaba = abbAaaba = abbaaba

— The notations o =" 3 and oo =* [3 refer to exactly n steps and
Zero or more steps, respectively

Example: S =° abbAaba

- Sometimes we will write a = P to indicate that a derivation
involves productions of grammar G.

Note: we just learned how to code rules as strings, i.e., strings code not only the input but
also an algorithm (rules).

e Definition: If G = (V, %, S, P) is a CFG, the language
generated by G is
L(G)={xeX*|S=>;*x},
where S is the start variable, and x is a string of terminals.

 Alanguage L is a context-free language (CFL) if there is
a CFG G with L = L(G)

Example: CFG for language L1a = {x € {a,b}* | n,(x)=1}

e Definition: If G = (V, %, S, P) is a CFG, the language
generated by G is
L(G)={xeX*|S=>;*x},
where S is the start variable, and x is a string of terminals.

 Alanguage L is a context-free language (CFL) if there is
a CFG G with L = L(G)

Example: CFG for language L1a = {x € {a,b}* | n,(x)=1}

Easy to see that any xin L1a is a non-null string, so
X =yaz, where v,z € L, ={s € {b}*}

- We represent L, by the variable B

- The productions for L, and S are ...

e Definition: If G = (V, %, S, P) is a CFG, the language
generated by G is
L(G)={xeX*|S=>;*x},
where S is the start variable, and x is a string of terminals.

 Alanguage L is a context-free language (CFL) if there is
a CFG G with L = L(G)

Example: CFG for language L1a = {x € {a,b}* | n,(x)=1}

Easy to see that any xin L1a is a non-null string, so
X =yaz, where v,z € L, ={s € {b}*}

- We represent L, by the variable B

- The productions for L, are B— A | bB

- All we need now is production for L1a

-S - BaB

<expression>
<term>
<factor>
<name>
<integer>

<letter>
<digit>

;= <expression> + <term> |
<term>

.= <term> * <factor> |
<factor>

.:=(<expression>)
| <name> | <integer>

.= <|etter> | <name> <letter> |
<name> <digit>

.= <digit> | <integer> <digit>

=A|B]|..]|Z

=01]1]12]..1]19

Warm up exercises

What language is generated by CFG?
oS — aS|bS|A

Warm up exercises

What language is generated by CFG?
oS — aS|bS|A
(a+b)*
oS — SaS|b

Warm up exercises

What language is generated by CFG?

e S — aS|bS|A
(a+b)*

oS — SaS|b
(ba)*b

oS — SaS|b|A

Warm up exercises

What language is generated by CFG?

e S — aS|bS|A
(a+b)*

oS — SaS|b
(ba)*b

e S — SaS|b|A

strings not containing bb

S — al|bT | A
T — aS|bS

Warm up exercises

What language is generated by CFG?

oS — aS|bS|A
(a+b)*
oS — SaS|b
(ba)*b
oS — SaS|bl|A
strings not containing bb

S — al|bT | A
T — aS|bS

even length strings in (a+b)*

Warm up exercises

 The set of odd-length strings in (a+b)* with middle a.

Warm up exercises

 The set of odd-length strings in (a+b)* with middle a.
S — aSa|aSb|bSa|bSb|a

 The set of even-length strings in (a+b)* with the two
middle symbols equal.

Warm up exercises

 The set of odd-length strings in (a+b)* with middle a.
S — aSa|aSb|bSa|bSb|a

 The set of even-length strings in (a+b)* with the two
middle symbols equal.

S — aSa|aSb|bSa|bSb| aa | bb

 The set of odd-length strings in (a+b)* whose first,
middle, and last symbols are all the same.

Warm up exercises

 The set of odd-length strings in (a+b)* with middle a.
S — aSa|aSb|bSa|bSb|a

 The set of even-length strings in (a+b)* with the two
middle symbols equal.

S — aSa|aSb|bSa|bSb| aa | bb

 The set of odd-length strings in (a+b)* whose first,
middle, and last symbols are all the same.

S — aTal|bUb
T — aTal|aTlb|bTa|blb]a
U — aUa|aUb|bUa | bUb|b

Example: CFG for language AEqB = {x € {a,b}* | n(x) = n,(x)}
[f x is a non-null string in AEqB then either

X = ay, where yvel,={z € {ab}*|ny,(z) =n,(z) + 1}, or
X = by, where yvel,={z e{ab}*|n,(z) =n,(z)+ 1}

Example: CFG for language AEqB = {x € {a,b}* | n(x) = n,(x)}
[f x is a non-null string in AEqB then either

X = ay, where yvel,={z € {ab}*|ny,(z) =n,(z) + 1}, or

X = by, where yvel,={z e{ab}*|n,(z) =n,(z)+ 1}

- We represent L, by the variable B and L, by the variable A
- The productions so farare S — A | aB | bA

- All we need now are productions for A and B

Example: CFG for language AEqB = {x € {a,b}* | n(x) = n,(x)}
[f x is a non-null string in AEqB then either
X = ay, where yvel,={z € {ab}*|ny,(z) =n,(z) + 1}, or

X = by, where yvel,={z e{ab}*|n,(z) =n,(z)+ 1}

- We represent L, by the variable B and L, by the variable A
- The productions so farare S — A | aB | bA

- All we need now are productions for A and B

o Ify e L, starts with b, then the remainder is in AEqB

e [fitstarts with g, the rest has two more a’s than b’s

e Observation: ifin zn,(z) = n,(z) + 2 then z=z,z, such that
n,(z;) = ny(z;) + 1 and
n,(z,) =ny(z,) +1 (same for b, and a).

Example: CFG for language AEqB = {x € {a,b}* | n(x) = n,(x)}
[f x is a non-null string in AEqB then either
X = ay, where yvel,={z € {ab}*|ny,(z) =n,(z) + 1}, or

X = by, where yvel,={z e{ab}*|n,(z) =n,(z)+ 1}

- We represent L, by the variable B and L, by the variable A
- The productions so farare S — A | aB | bA

- All we need now are productions for A and B

o Ify e L, starts with b, then the remainder is in AEqB

e [fitstarts with g, the rest has two more a’s than b’s

e Observation: ifin zn,(z) = n,(z) + 2 then z=z,z, such that
n,(z,) =ny,(z,) +1andn,z,) = n,(z,) +1 (same for b, and a).
The resulting grammar is S—>A|aB|bA
B— bS| aBB
A— aS| bAA

Example: CFG for all binary strings x with an even n,(x).
[f the first symbol is a 1, then even number of 0’s remains
S —>1S

If the first symbol is a 0, then go to the next zero; the
remainder is a string with even n,(x)

S—>15[/0A0S | A
A—>1A[A
A language can have more than one CFG ...

[f the first symbol is a 0, the remainder is a language with odd
number of 0’s

S—»1S/0T| A
T —»1T/0S

Example: CFG for the regular language corresponding to the
RE 00*11*.

We can represent this language as a concatenation of two
languages

S—>CD
C—->0C|0
D—>1D|/1

Example: CFG for the complement of {0'T [i,j>0)

There is no obvious way to convert a grammar to its
complement.

We can represent this language as three languages

S»A/B/C|A
A—->D10D
roduces all strings wi —
Prod |l strings with 10 DﬁOD/ID/A
B—>0B[0
Only zeros CﬁlC/l

I

Only ones

We can create many different CFLs with the following theorem
e Theorem: If L, and L, are CFLs over %, then so are
L,VL,, L,L,, and L*

e Suppose G, and G, are CFGs that generate L, and L,
respectively, and assume that they have no variables in
common

e Suppose that §; and S, are the start variables. S, S.and S,,,
the start variables of the new grammars (for union,
concatenation, and Kleene), will be new variables.

We can create many different CFLs with the following theorem
e Theorem: If L, and L, are CFLs over %, then so are
L,VL,, L,L,, and L*

e Suppose G, and G, are CFGs that generate L, and L,
respectively, and assume that they have no variables in
common

e Suppose that §; and S, are the start variables. S, S.and S,,,
the start variables of the new grammars (for union,
concatenation, and Kleene), will be new variables.

- G, just adds the rules S, —» §; | §, to G, and G,
- G_just adds the rule §, — §,S, to G, and G,
- G, justadds therules S, > A | S, S; to G,

Read and learn the proof of this theorem! See Theorem 4.9 in the textbook.

Union of two CFLs

Language Grammar
Li={zx€e{a, b}z =a™", ne N} | Gy = (V,X, 51, P)
Vi ={51}
> ={a,b}
P Sl — A | CLSlb
Ly ={x € {a,b}*|x = wr(w)} Gy = (Vo,3, 52, P)
Vo = {52}
> ={a,b}
Pg : SQ — A | CLSQCL ‘ ngb
L:L1UL2 G:(V,Z,S,P)
V =15, 51, 5}
Y, ={a,b}
P : S — Sl ‘ SQ
Sl — A ‘ (leb
SQ — A ‘ CLSQCL | bSQb

Concatenation of two CFLs

Language Grammar
Ly ={z € {a,b}*|x =a™b", n e N} | Gy = (V1, %, 51, P)
Vi ={51}
> ={a,b}
P1 X Sl — A | CLSlb
Ly ={x € {a,b}*|x = wr(w)} Gy = (Vo,3, 52, P)
Vo = {5}
> ={a,b}
Pg : SQ — A | CLSQCL ‘ ngb
L:L1L2 G:(V,Z,S,P)
V= {Sa 81782}
Y, ={a,b}
P : S — Slsg
Sl — A ‘ (leb
SQ — A ‘ CLSQCL | bSQb

Closure of CFL

Language Grammar
Lo ={x € {a, b} |z =wr(w)} | Gy = (V5,%, 9, P,)

Vo = {5}

Y, = {a, b}

b SQ%A‘CLSQQ‘[)SQZ)
L =1L} G= (V%S5 P)

V ={5,5}

> ={a,b}

P: S — A|SS,

SQ — A ‘ (ISQCL ‘ bSQb

Intersection of two CFLs is not necessarily CFL

Language Grammar
Ly =A{a™"c™ | n,m € N} G, =(V,%, 51, P)
Vi= {Sa A, C}
> =Aa,b,c}
P S — AC
A — aAb| A
C — cC|A
Lo ={a™™c™ | n,m € N} Go = (Vo, X, Sy, P)
Vo = {Sa AvB}
> =1{a,b,c}
PQI S — AB
A — aA|A
B — bBc| A
L=LiNLy={a"b"c" | n,m € N} | Not CFL

Complement of CFL is not necessarily CFL

Proof. Assume the complement of every CFL is a CFL. Let L; and
Lo be CFLs. Since CFLs are closed under union, and we are assum-
ing they are closed under complement then

L_1UL_2:L1QL27

that is a contradiction to our previous example. []

Let us see if we can construct CFG from a regular expression.
Let L C {a,b}* be the language of bba(ab)* + (ab + ba*b) ba

e We can apply U,-, and * rules from the theorem but it is lengthy
(separate variables for {a}, {b}, i

We don’t need
e [is a union of Ll, and Lg, 1.e. Lambda for *
_______ - because there is
e For [, we introduce(S| — Slab\bba S a correct
derivation

e For L, we also introduce variable 1" for ab + ba*b, and the
productions

SQ — TSQ’[)CL
T — ablbUb
U — AlaU

We can prove that every regular language can be generated by a
context-free grammar.

Moreover, if you have an FA, you can create a context-free grammar.

e States correspond to variables

* For each transition we introduce a rule

* We also need to add termination rules L={a,b}*ba
b

a

S — aS|bA b .

A = bAlaB Q“QG,

B — 0bA|aS|A

e Definition: A context-free grammar is regular (RG) if
every production is of the form A —>cBorA—> A

e Theorem: For every language L — 2%,

L is regular if and only if L = L(G) for some regular grammar G
e Proof: Lisregular => L=L(G) for some RG

— If L is regular, then there is an FA M=(0Q, %, q,, 4, 9) that accepts
it. Define G=(V, %, S, P) by

e letting V be (),
e § the initial state q,, and

e P the set containing the production T — aU for every transition
O(T,a) =Uin M, and

e the production T — A for every accepting state T of M.
- G is RG, and G accepts the same language as M

For every x = a,a,...a,in L, the transitions on these symbols that start at
q, end at an accepting state if and only if there is a derivation of x in G
(show by induction on |x| = n). <— Prove at home!

Regular expression
ab*a

—>

S—=>aA | bC

A - aB
B—> aC
C—-> aC

bA
bC | A
bC

OuO%s
N

a,b

e Proof (part 2): L is regular <= L=L(G) for some RG

To prove the other direction we can start with a regular
grammar G and reverse the construction to produce M.

M may be an NFA, but it still accepts L(G), and it follows that
L(G) is regular.

S — dAl|bB
A — aClbA
C — aC|bBJA
B — aC|bC

e Definition: A context-free grammar is right-regular
(RRG) if every production is of the formA —> Bcor4d—> A

e Theorem: For every language L — 2*, L is regular if and
only if L = L(G) for some right-regular grammar G

Proof: L is regular <= L=L{G) for some RRG

Grammar G contains rules of the form
A — Boor A— A,

i.e., all x € L(G) are reversed strings of the language generated by
the reversed rules of the form A — o B. Therefore, L(G) = r(L(G")),
where G’ are the reverse rules of G.

But we know that G’ is regular, and so is L(G’), i.e., the reverse
of L is regular. Can we prove that if L is regular then r(L) is also
regular?

reverse of L

Theorem. If L is reqular then r(L) is also regqular.

Proof. e If L is regular we can find its FA M = (Q, X, qo, A, 9).

e We will construct NFA M’ = (Q', %, q, A’,¢') that recognizes
r(L). Then, M’ will be converted into deterministic FA, and
this completes the proof.

o @' =QU{q}
o A'=1{q;
e Define 6 '(q,a) = {¢' | (¢, a) = q}, then

) A ifg=¢q,and c = A @
5((1,0){ 4=

0~ (q,0) if q# qyand o # A

e Definition: A context-free grammar is right-regular
(RRG) if every production is of the formA —> Bcor4d—> A

e Theorem: For every language L — 2*, L is regular if and
only if L = L(G) for some right-regular grammar G

e Proof: Lisregular => L=L(G) for some RRG

L is regular = r(L) is regular = we can find (left) regular G’ such
that G'(r(L)) is regular = we can reverse all rules of G’ to get RRG
G

Find a regular grammar generating the language L(M)

a b

—O+E©

o a, b

A—-aB| AN B —aB |bC C — aB|bC | A We could also add the
productions A — bD D — aD | bD, but they are not necessary, because no string of
terminals can be obtained from a sequence of steps in which the variable D appears.

Find an NFA for this grammar

S—bS|aA | A A—aA |bB | b B — bS

In this example, we could accommodate the production A — b by making the state
corresponding to B in our diagram accepting, since the only other production with B on
the right side also has b preceding it. However, a more appropriate technique in general is
to replace A — b by the two productions A — bC C' — A, where C' is a variable used
only for this purpose. The resulting NFA looks like

Derivation Trees

The root node represents the start variable S

Any interior node and its children represent a
production A — o used in the derivation; the node
represents 4, and the children, from left to right,
represent the symbols in a (can include variables,
and terminals).

Each leaf node represents a terminal or A

The string derived is read off from left to right,
ignoring A’s

Every derivation has exactly one derivation tree, but
a tree can represent more than one derivation

Grammar rules:

S — aSalbSblaAblbAa
A — Aa|Ab|A

A derivation of abbaaba is

S = aSa = abSba = abbAaba = abbAaaba = abbaaba

Derivation Trees and Ambiguity

So far we've been interested in what strings a CFG
generates (e.g., S=> => ababa)

[t is also useful to consider how a string is generated
by a CFG

A derivation may provide information about the
structure of a string, and if a string has several
possible derivations, one may be more appropriate
than another

We can draw trees to represent derivations

Derivation Trees and Ambiguity

e Definition: Ambiguity in a CFG

A context-free grammar G is ambiguous if for at least one
X € L(G), x has more than one derivation tree.

Consider the language Expr of legal algebraic
expressions:

- a € Expr
— For every x,y € Expr, x+y € Expr, and x*y € Expr
— For every x € Expr, (x) € Expr

CFGrulesare S —a | S+5| S*S| (S) S
/IN

Examples of different derivations of a+(a*a) s S
a (S)

for the same derivation tree
- S =5+S = a+S = a+(S) = a+(S5*S) =
a+(S*a) = a+(a*a) / \
S xS

- S = 85+5 =2 5+(S) = S+(57S) = a+(5*S) =
a+(a*S) = a+(a*a)

Derivation Trees and Ambiguity

e In a derivation, at each step some production is
applied to some occurrence of a variable

e Consider a derivation that starts S= S+ S. We
could apply a production to either the first or second
of the S’s, but the resulting trees would be the same

e The order in which the tree was created is also
important for evaluation.

S = 5+S = a+S = a+(S) = a+(S*S) = a+(S*a) = a+(a*a)

S = 5+S = 5+(S) = S+(5*S) = a+(5*S) = a+(a*S) = a+(a*a)

e Consider the language Expr of legal algebraic expressions:
- a € Expr
— For every x,y € Expr, x+y € Expr, and x*y € Expr
— For every x € Expr, (x) € Expr

e CFGrulesareS —a|S+S|S*S|(S)
e Examples of different derivation trees for string a+a*a

S S
N N
S * S S + S
AN I N
S + S a a S * S
d d d d
S =85*%S = 5+5*S = a+S*S S =85+S = 5+5*S = a+S*S

= a+a*S = a+a*a = a+a*S = a+a*a

Derivation Trees and Ambiguity

e Definition: A derivation in a CFG is a leftmost
derivation (LMD) if, at each step, a production is
applied to the leftmost variable-occurrence in the

current string S
— Arightmost derivation is defined similarly / 1‘ \
s T s
e CFGrulesareS —a|S+S|S*S| (S) 2 /3 \
o Examples of different derivations of a+(a*a) « (s)
- S =S5+5 = a+S = a+(S) = a+(S*S) = /4 \
a+(a*S) = a+(a*a) s * S
-&5&&5&@5}5— : .

Q

)))) a
This derivation is not LMD

Theorem. If G is CFG then for every x € L(G), these three state-
ments are equivalent

1. x has more than one derivation tree.
2. x has more than one leftmost derivation.
3. x has more than one rightmost derivation.

Proof. We will show 1 < 2.

e Part I, 1 = 2. Comnsider x with two different derivation trees
= these trees have two LMD that must be different because if
they are not, then their trees are equal.

AN N
)) /N

Theorem. If G is CFG then for every x € L(G), these three state-
ments are equivalent

1. x has more than one derivation tree.
2. x has more than one leftmost derivation.

3. x has more than one rightmost derivation.
Proof. We will show 1 < 2.

e Part II, 1 <« 2. Consider x with two different LMD. Their
corresponding trees are 17, and 7T5. Suppose that the first step
where they are different is

strings
mﬁ = xoq 8 in LMD1, and 2 AB8 = xasf in LMD2

variable

In both 7%, and 75 there is a node corresponding to A, and
these nodes have different children (because oy # ag) which
makes 717, and 75 different.

[]

Show that the CFG with productions

S — a|Sal|bSS|SSb|SbS

1s ambiguous.

Show that the CFG with productions
S — al|Sa|bSS|SSb|SbS

1s ambiguous.

By definition, grammar G is ambiguous if we can find at least
one string with more than one derivation tree. The string abaa has
two leftmost derivations, one starting with

S = 55 = abS = abSa = abaa,
the other with
S = Sa = SbSa = abSa = abaa.

By using the previous theorem we can state that abaa has more than
one derivation tree.

Consider the context-free grammar with productions

S — AB
A — aA|A
B — ab|bB| A

Every derivation of a string in this grammar must begin with the
production S — AB. Clearly, any string derivable from A has only
one derivation from A, and likewise for B. Therefore, the grammar
1S unambiguous.

True or false? Why?

Consider the context-free grammar with productions

S — AB
A — aA|A
B — ab|bB| A

Every derivation of a string in this grammar must begin with the
production S — AB. Clearly, any string derivable from A has only
one derivation from A, and likewise for B. Therefore, the grammar
1S unambiguous.

True or false? Why?

False. Although for each string derivable from A there is only one
recursive derivation, and similarly for B, there may be more than
one choice for certain strings. For example, there is a derivation of
ab in which a is derived from A and b from B, and there is another
derivation in which A is derived from A and ab from B.

Derivation Trees and Ambiguity

A classic example of ambiguity is the dangling else

In C, an if-statement can be defined by

So>If (E)S|if (E) S else S| 0OS

(OS="other statements”, E="expression”, S=“statement”)
Consider the statement string

if (e1) if (e2) f(); else g();

- In C, the else to belong to the second if, but this
grammar does not rule out the other interpretation

The two derivation trees shown on the next slide
demonstrate the two interpretations of a dangling else

A

A

E) S

el if (E) S
e2 £O);
(a)
S
E) S else S
el if (E) S g();
e2 £0);

(b)

preferred

s g

Derivation Trees and Ambiguity

e (learly the grammar
S—>if (E)S|if (E) Selse S| 0OS
is ambiguous, but there are equivalent grammars that
allow only the correct interpretation
e Example:
S—>51S5,
S;—>if(E) S, elseS, | 0S
S,>it(E)S|it(E)S, elses,

Derivation Trees and Ambiguity

Eliminate ambiguity with the following grammar:
S—>51S5,
S;—>if(E) S, elseS, | 0S
S,>it(E)S|if(E)S, elses,

e S, represents a statement in which every if is matched by a
corresponding else

e Every statement derived from S, contains at least one
unmatched if.

e The only variable appearing before else in these rules is S,;
because the else cannot match any of the if s in the statement
derived from S,, it must match the if that appeared at the
same time it did.

Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:

if (e1) if (e2) f(x); else g(x);
S—>515,
S>> (E) S elseS; | 0S
S,>it(E)S|if(E)S, elses,

T

(50 (2)
OBNG 0@3
&)

Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:

if (e1) if (e2) f(x); else g(x); a
S§—>5115; @

S;—>if(E) S, elseS, | 0S
S,>it(E)S|it(E) S, elses, o o e

(&0 2
®O0 06
®@® @

Derivation Trees and Ambiguity

Considerthe CFG G: S—>S+S | S*S | (S) | a

e (generates simple algebraic expressions

e One reason for ambiguity is unspecified precedence
of +and *: a+a*a could be interpreted as (a+a)*a
or as a+(a*a)

e Infact, S — S+ S causes ambiguity by itself, because
a+a+a could be interpreted as either (a+a)+a or
a+(a+a). Similarly forS§ > S*S

e We might try to correct both problems by using the
productions S—>S+T|T T—>T+F|F

(think of T as “term” and F as “factor”)

Derivation Trees and Ambiguity Derivation trees for

a+axa
S

/IN

e * now has higher precedence than + (all the ! /T\
multiplications are performed within a term) . & s

e By making the productionS —-> S+ T,notS —> T + §,
we make + associate to the left. Similarly for * a a

e We want parenthetical expressions to be evaluated «“
first; this means we should consider such an s
expression to be part of a factor. The resulting / \
unambiguous CFG generating L(G) is /T \ S

S>> S+T|T T>T*F|F F>(S)la .

(proofs of unambiguity and equivalence are both
somewhat complicated)

S a

(b)

Show that the context-free grammar is ambiguous and find an
equivalent unambiguous grammar

S — SS|alb|A

The string aaa has two different leftmost derivations. An equiv-
alent unambiguous grammar is

S — aS|bS | A.

Is it possible to find regular ambiguous CFG?

Yes. For example,

String a has two leftmost derivations.

Show that the context-free grammar is ambiguous and find an
equivalent unambiguous grammar

S — ABA
A — aA|A
B — bB|A

The string @ can be derived S = ABA =2 aBA =* a or
S = ABA = BA = A =? a.

It’s easy to see, that any string with at least one b has only one
leftmost derivation.

Therefore, an equivalent unambiguous grammar is

S — A| ABA
A — aA|A
B — bB|b.

Definition.
It L is a context-free language for which there exists an unambigu-

ous grammar then L is said to be unambiguous. If every grammar
that generates L is ambiguous, then the language is called inherently
ambiguous.

Example: L = {a"0"c™}U{a™b™c™}, where n, m are nonnegative.
This language is inherently ambiguous.

Easy to see that L is context-free. It is represented as

L =1L, UL,

where L, L, and Ly are generated by ...
S_>Sl‘82 Sl—>Slc|A SQ%CLSQ’B
A — aAb| A B — bBc| A

String a”b"c"™ has two distinct derivations, one starting with S = 57,
the other with S = S5. It is not a proof but in some way L;, and
L, have conflicting requirements on equal number of a, b, and b, c.

Example of l[anguages that cannot be inherently
ambiguous: regular languages. Regular grammar can be
ambiguous, but we can always eliminate it.

Question: Give an algorithm to check whether a CFG is
ambiguous.

The problem is undecidable: there is no general algorithm
to check whether a given context-free grammar is
ambiguous. Some CFLs are inherently ambiguous.

This does not mean there aren’t classes of grammars where
an answer is possible.

80

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80

