
Foundations of Computer Science 1

Chapter 4

Context-Free Languages

Foundations of Computer Science 2

Using Grammar Rules to Define a Language
• Regular languages and FAs are too simple for many

purposes (Example: when we need to count
something such as equal numbers of a and b.)

• We will use grammars, i.e., the set of rules for
generating phrases and sentences.
– Using context-free grammars allows us to describe

more difficult languages
– Much high-level programming language syntax can be

expressed with context-free grammars
– Context-free grammars with a very simple form

provide another way to describe the regular languages
• Grammars can be ambiguous
For example, a string could be parsed using more than one
chain of rules which can lead to different interpretations

Foundations of Computer Science 3

• Consider the language AnBn = {anbn | n ≥ 0}, defined using
the recursive definition:
– Λ ∈ AnBn
– For every S ∈ AnBn, aSb ∈ AnBn

• Think of S as a variable representing an arbitrary
element, and write these rules as

S →Λ
S → aSb

In the process of obtaining an element of AnBn, S can be
replaced by either string.

Generating with recursive definition: Λ, ab, aabb, aaabbb
Generating with new rules: S, aSb, aaSbb, aaaSbbb, aaabbb

Let’s begin with an example …

Foundations of Computer Science 4

Representing a Chain of Grammar Rules

• If α and β are strings, and α contains at least one
occurrence of S, then
α⇒ β means that β is obtained from α in one step,

by using either S →Λ or S → aSb

• Example of generating aaabbb
S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

i.e., we describe a derivation of the string aaabbb

• We can simplify the rules by using the | symbol to
mean “or”, so that the rules become

S →Λ | aSb

5

• Consider the language Expr of legal algebraic expressions:
– a ∈ Expr
– For every x,y ∈ Expr, x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr, (x) ∈ Expr

• Think of S as a variable representing an arbitrary
element, and write these rules as …

Another example of grammar

6

• Consider the language Expr of legal algebraic expressions:
– a ∈ Expr
– For every x,y ∈ Expr, x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr, (x) ∈ Expr

• Think of S as a variable representing an arbitrary
element, and write these rules as …

Another example of grammar

S → a | S+S | S*S | (S)

• Examples of different derivations of a+a*a
S ⇒ S+S ⇒ a+S ⇒ a+S*S ⇒ a+a*S ⇒ a+a*a
S ⇒ S*S ⇒ S+S*S ⇒ a+S*S ⇒ a+S*a ⇒ a+a*a

Foundations of Computer Science 7

• Recursive definition of Expr is
– a ∈ Expr
– For every x,y ∈ Expr, x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr, (x) ∈ Expr

• The grammar rules are
S → a | S+S | S*S | (S)

But what if we want to use more than one “atomic”
expression? For example, if we need identifiers a,b and also
constants 120, 1.6E-2, then we can add one more variable
and more rules

S → A | S+S | S*S | (S)
A → a | b | 120 | 1.6E-2

We can use more than one variable

i.e., you cannot
expand it
recursively

Foundations of Computer Science 8

Palindromes and Nonpalindromes

Foundations of Computer Science 9

Palindromes and Nonpalindromes

Foundations of Computer Science 10

Palindromes and Nonpalindromes

1 2 3 4

5 6 7

1 2 4 5 7

Foundations of Computer Science 11

Definition of CFG
• A context-free grammar (CFG) is a 4-tuple G=(V, Σ, S, P),

where V and Σ are disjoint finite sets, S ∈ V, and P is a
finite set of formulas of the form
A →α, where A ∈ V and α ∈ (V ∪ Σ)*

Σ - set of terminal symbols or terminals (such as letters, i.e.,
something that cannot be divided, and recursively extended)
Example: in S → aSb, a and b are terminals

V - set of variables or nonterminals
Example: in S → aSbA, S, and A are variables

S ∈ V - start variable

P – grammar rules (or productions), i.e., a subset of all
possible strings made of terminals and nonterminals

Foundations of Computer Science 12

– We use → for productions in a grammar and ⇒ for a step
in a derivation

– The notations α⇒n β and α⇒* β refer to exactly n steps and
zero or more steps, respectively

– Sometimes we will write α⇒G β to indicate that a derivation
involves productions of grammar G.

Note: we just learned how to code rules as strings, i.e., strings code not only the input but
also an algorithm (rules).

13

• Definition: If G = (V, Σ, S, P) is a CFG, the language
generated by G is

L(G) = { x ∈ Σ* | S ⇒G* x},
where S is the start variable, and x is a string of terminals.

• A language L is a context-free language (CFL) if there is
a CFG G with L = L(G)

Example: CFG for language L1a = {x ∈ {a,b}* | na(x)=1}

14

• Definition: If G = (V, Σ, S, P) is a CFG, the language
generated by G is

L(G) = { x ∈ Σ* | S ⇒G* x},
where S is the start variable, and x is a string of terminals.

• A language L is a context-free language (CFL) if there is
a CFG G with L = L(G)

Example: CFG for language L1a = {x ∈ {a,b}* | na(x)=1}
Easy to see that any x in L1a is a non-null string, so
x = yaz, where y,z ∈ Lb = {s ∈ {b}*}
- We represent Lb by the variable B
- The productions for Lb and S are …

15

• Definition: If G = (V, Σ, S, P) is a CFG, the language
generated by G is

L(G) = { x ∈ Σ* | S ⇒G* x},
where S is the start variable, and x is a string of terminals.

• A language L is a context-free language (CFL) if there is
a CFG G with L = L(G)

Example: CFG for language L1a = {x ∈ {a,b}* | na(x)=1}
Easy to see that any x in L1a is a non-null string, so
x = yaz, where y,z ∈ Lb = {s ∈ {b}*}
- We represent Lb by the variable B
- The productions for Lb are B →Λ | bB
- All we need now is production for L1a
- S → BaB

16

<expression> ::= <expression> + <term> |
<term>

<term> ::= <term> * <factor> |
<factor>

<factor> ::= (<expression>)
| <name> | <integer>

<name> ::= <letter> | <name> <letter> |
<name> <digit>

<integer> ::= <digit> | <integer> <digit>
<letter> ::= A | B | ... |Z
<digit> ::= 0 | 1 | 2 | ... | 9

Foundations of Computer Science 17

Warm up exercises

Foundations of Computer Science 18

Warm up exercises

(a+b)*

Foundations of Computer Science 19

Warm up exercises

(a+b)*

(ba)*b

Foundations of Computer Science 20

Warm up exercises

(a+b)*

(ba)*b

strings not containing bb

Foundations of Computer Science 21

Warm up exercises

(a+b)*

(ba)*b

strings not containing bb

even length strings in (a+b)*

Foundations of Computer Science 22

Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

Foundations of Computer Science 23

Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

• The set of even-length strings in (a+b)* with the two
middle symbols equal.

Foundations of Computer Science 24

Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

• The set of even-length strings in (a+b)* with the two
middle symbols equal.

• The set of odd-length strings in (a+b)* whose first,
middle, and last symbols are all the same.

Foundations of Computer Science 25

Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

• The set of even-length strings in (a+b)* with the two
middle symbols equal.

• The set of odd-length strings in (a+b)* whose first,
middle, and last symbols are all the same.

26

Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}

27

Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
- We represent Lb by the variable B and La by the variable A
- The productions so far are S →Λ | aB | bA
- All we need now are productions for A and B

28

Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
- We represent Lb by the variable B and La by the variable A
- The productions so far are S →Λ | aB | bA
- All we need now are productions for A and B
• If y ∈ La starts with b, then the remainder is in AEqB
• If it starts with a, the rest has two more a’s than b’s
• Observation: if in z na(z) = nb(z) + 2 then z=z1z2 such that

na(z1) = nb(z1) + 1 and
na(z2) = nb(z2) + 1 (same for b, and a).

Foundations of Computer Science 29

Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
- We represent Lb by the variable B and La by the variable A
- The productions so far are S →Λ | aB | bA
- All we need now are productions for A and B
• If y ∈ La starts with b, then the remainder is in AEqB
• If it starts with a, the rest has two more a’s than b’s
• Observation: if in z na(z) = nb(z) + 2 then z=z1z2 such that

na(z1) = nb(z1) + 1 and na(z2) = nb(z2) + 1 (same for b, and a).
The resulting grammar is S →Λ | aB | bA

B → bS | aBB
A → aS | bAA

Foundations of Computer Science 30

Example: CFG for all binary strings x with an even n0(x).
If the first symbol is a 1, then even number of 0’s remains

S →

If the first symbol is a 0, the remainder is a language with odd
number of 0’s

S → 1S | 0T | Λ
T → 1T | 0S

1S
If the first symbol is a 0, then go to the next zero; the
remainder is a string with even n0(x)

S → 1S | 0A0S | Λ
A → 1A | Λ

A language can have more than one CFG …

Foundations of Computer Science 31

Example: CFG for the regular language corresponding to the
RE 00*11*.

We can represent this language as a concatenation of two
languages

S → CD
C → 0C | 0
D → 1D | 1

Foundations of Computer Science 32

Example: CFG for the complement of {0i1j | i,j>0}

There is no obvious way to convert a grammar to its
complement.

We can represent this language as three languages
S → A | B | C | Λ
A → D10D
D → 0D | 1D | Λ
B → 0B | 0
C → 1C | 1

Produces all strings with 10

Only zeros

Only ones

Foundations of Computer Science 33

We can create many different CFLs with the following theorem
• Theorem: If L1 and L2 are CFLs over Σ, then so are

L1 ∪ L2, L1L2, and L1*
• Suppose G1 and G2 are CFGs that generate L1 and L2

respectively, and assume that they have no variables in
common

• Suppose that S1 and S2 are the start variables. Su, Sc and Sk ,
the start variables of the new grammars (for union,
concatenation, and Kleene), will be new variables.

Foundations of Computer Science 34

We can create many different CFLs with the following theorem
• Theorem: If L1 and L2 are CFLs over Σ, then so are

L1 ∪ L2, L1L2, and L1*
• Suppose G1 and G2 are CFGs that generate L1 and L2

respectively, and assume that they have no variables in
common

• Suppose that S1 and S2 are the start variables. Su, Sc and Sk ,
the start variables of the new grammars (for union,
concatenation, and Kleene), will be new variables.

Read and learn the proof of this theorem! See Theorem 4.9 in the textbook.

– Gu just adds the rules Su → S1 | S2 to G1 and G2
– Gc just adds the rule Sc → S1S2 to G1 and G2
– Gk just adds the rules Sk →Λ | SkS1 to G1

Foundations of Computer Science 35

Union of two CFLs

Foundations of Computer Science 36

Concatenation of two CFLs

Foundations of Computer Science 37

Closure of CFL

Foundations of Computer Science 38

Intersection of two CFLs is not necessarily CFL

Foundations of Computer Science 39

Complement of CFL is not necessarily CFL

Foundations of Computer Science 41

We can prove that every regular language can be generated by a
context-free grammar.

We don’t need
Lambda for *
because there is
a correct
derivation

Foundations of Computer Science 42

Moreover, if you have an FA, you can create a context-free grammar.

L={a,b}*ba

• States correspond to variables
• For each transition we introduce a rule
• We also need to add termination rules

Foundations of Computer Science 43

• Definition: A context-free grammar is regular (RG) if
every production is of the form A →σB or A →Λ

Prove at home!

• Theorem: For every language L ⊆ Σ*,
L is regular if and only if L = L(G) for some regular grammar G

• Proof: L is regular => L=L(G) for some RG
– If L is regular, then there is an FA M=(Q, Σ, q0, A, δ) that accepts

it. Define G=(V, Σ, S, P) by
• letting V be Q,
• S the initial state q0, and
• P the set containing the production T → aU for every transition
δ(T, a) = U in M, and

• the production T →Λ for every accepting state T of M.
– G is RG, and G accepts the same language as M
For every x = a1a2…an in L, the transitions on these symbols that start at
q0 end at an accepting state if and only if there is a derivation of x in G
(show by induction on |x| = n).

Foundations of Computer Science 44

Regular expression
ab*a

S A B

C

S aA | bC
A aB | bA
B aC | bC | Λ
C aC | bC

Foundations of Computer Science 45

• Proof (part 2): L is regular <= L=L(G) for some RG

To prove the other direction we can start with a regular
grammar G and reverse the construction to produce M.
M may be an NFA, but it still accepts L(G), and it follows that
L(G) is regular.

Foundations of Computer Science 46

• Definition: A context-free grammar is right-regular
(RRG) if every production is of the form A → Bσ or A →Λ

• Theorem: For every language L ⊆ Σ*, L is regular if and
only if L = L(G) for some right-regular grammar G

Proof: L is regular <= L=L(G) for some RRG

Foundations of Computer Science 47

S

B

CA

q0’
Λ

a a

b
a,b

b

b
a

reverse of L

Foundations of Computer Science 48

• Definition: A context-free grammar is right-regular
(RRG) if every production is of the form A → Bσ or A →Λ

• Theorem: For every language L ⊆ Σ*, L is regular if and
only if L = L(G) for some right-regular grammar G

• Proof: L is regular => L=L(G) for some RRG

Foundations of Computer Science 49

Find a regular grammar generating the language L(M)

Foundations of Computer Science 50

Find an NFA for this grammar

b

Foundations of Computer Science 53

Derivation Trees
• The root node represents the start variable S
• Any interior node and its children represent a

production A →α used in the derivation; the node
represents A, and the children, from left to right,
represent the symbols in α (can include variables,
and terminals).

• Each leaf node represents a terminal or Λ
• The string derived is read off from left to right,

ignoring Λ’s
• Every derivation has exactly one derivation tree, but

a tree can represent more than one derivation

Foundations of Computer Science 54

S

a S a

b S b

b A a

A a

Λ

Foundations of Computer Science 55

Derivation Trees and Ambiguity

• So far we’ve been interested in what strings a CFG
generates (e.g., S=> ….. => ababa)

• It is also useful to consider how a string is generated
by a CFG

• A derivation may provide information about the
structure of a string, and if a string has several
possible derivations, one may be more appropriate
than another

• We can draw trees to represent derivations

Foundations of Computer Science 56

Derivation Trees and Ambiguity

• Definition: Ambiguity in a CFG
A context-free grammar G is ambiguous if for at least one
x ∈ L(G), x has more than one derivation tree.

Foundations of Computer Science 57

• Consider the language Expr of legal algebraic
expressions:
– a ∈ Expr
– For every x,y ∈ Expr, x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr, (x) ∈ Expr

• CFG rules are S → a | S+S | S*S | (S)

• Examples of different derivations of a+(a*a)
for the same derivation tree
– S ⇒ S+S ⇒ a+S ⇒ a+(S) ⇒ a+(S*S) ⇒

a+(S*a) ⇒ a+(a*a)

– S ⇒ S+S ⇒ S+(S) ⇒ S+(S*S) ⇒ a+(S*S) ⇒
a+(a*S) ⇒ a+(a*a)

Foundations of Computer Science
58

Derivation Trees and Ambiguity

• In a derivation, at each step some production is
applied to some occurrence of a variable

• Consider a derivation that starts S ⇒ S + S. We
could apply a production to either the first or second
of the S’s, but the resulting trees would be the same

• The order in which the tree was created is also
important for evaluation.

S ⇒ S+S ⇒ a+S ⇒ a+(S) ⇒ a+(S*S) ⇒ a+(S*a) ⇒ a+(a*a)

S ⇒ S+S ⇒ S+(S) ⇒ S+(S*S) ⇒ a+(S*S) ⇒ a+(a*S) ⇒ a+(a*a)

Foundations of Computer Science 59

• Consider the language Expr of legal algebraic expressions:
– a ∈ Expr
– For every x,y ∈ Expr, x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr, (x) ∈ Expr

• CFG rules are S → a | S+S | S*S | (S)
• Examples of different derivation trees for string a+a*a

S

S * S

S + S a

a a

S

S + S

a S * S

a a

S ⇒ S+S ⇒ S+S*S ⇒ a+S*S
⇒ a+a*S ⇒ a+a*a

S ⇒ S*S ⇒ S+S*S ⇒ a+S*S
⇒ a+a*S ⇒ a+a*a

60

Derivation Trees and Ambiguity

• Definition: A derivation in a CFG is a leftmost
derivation (LMD) if, at each step, a production is
applied to the leftmost variable-occurrence in the
current string
– A rightmost derivation is defined similarly

• CFG rules are S → a | S+S | S*S | (S)
• Examples of different derivations of a+(a*a)

– S ⇒ S+S ⇒ a+S ⇒ a+(S) ⇒ a+(S*S) ⇒
a+(a*S) ⇒ a+(a*a)

– S ⇒ S+S ⇒ S+(S) ⇒ …

1

2 3

4

5 6

This derivation is not LMD

Foundations of Computer Science 61

Foundations of Computer Science 62

strings

variable

Foundations of Computer Science 63

Foundations of Computer Science 64

Foundations of Computer Science 65

Foundations of Computer Science 66

67

Derivation Trees and Ambiguity

• A classic example of ambiguity is the dangling else
• In C, an if-statement can be defined by

S → if (E) S | if (E) S else S | OS
(OS=“other statements”, E=“expression”, S=“statement”)

• Consider the statement string
if (e1) if (e2) f(); else g();
– In C, the else to belong to the second if, but this

grammar does not rule out the other interpretation
• The two derivation trees shown on the next slide

demonstrate the two interpretations of a dangling else

Foundations of Computer Science 68

preferred

Foundations of Computer Science 69

Derivation Trees and Ambiguity

• Clearly the grammar
S → if (E) S | if (E) S else S | OS

is ambiguous, but there are equivalent grammars that
allow only the correct interpretation
• Example:

S → S1 | S2

S1 → if (E) S1 else S1 | OS
S2 → if (E) S | if (E) S1 else S2

Foundations of Computer Science 70

Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:

S → S1 | S2

S1 → if (E) S1 else S1 | OS
S2 → if (E) S | if (E) S1 else S2

• S1 represents a statement in which every if is matched by a
corresponding else

• Every statement derived from S2 contains at least one
unmatched if.

• The only variable appearing before else in these rules is S1;
because the else cannot match any of the if s in the statement
derived from S1, it must match the if that appeared at the
same time it did.

Foundations of Computer Science 71

Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:
if (e1) if (e2) f(x); else g(x);

S → S1 | S2

S1 → if (E) S1 else S1 | OS
S2 → if (E) S | if (E) S1 else S2

Foundations of Computer Science 72

Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:
if (e1) if (e2) f(x); else g(x);

S → S1 | S2

S1 → if (E) S1 else S1 | OS
S2 → if (E) S | if (E) S1 else S2

73

Derivation Trees and Ambiguity

Consider the CFG G : S → S + S | S * S | (S) | a
• G generates simple algebraic expressions
• One reason for ambiguity is unspecified precedence

of + and *: a+a*a could be interpreted as (a+a)*a
or as a+(a*a)

• In fact, S → S + S causes ambiguity by itself, because
a+a+a could be interpreted as either (a+a)+a or
a+(a+a). Similarly for S → S * S

• We might try to correct both problems by using the
productions S → S + T | T T → T + F | F
(think of T as “term” and F as “factor”)

74

Derivation Trees and Ambiguity

• * now has higher precedence than + (all the
multiplications are performed within a term)

• By making the production S → S + T, not S → T + S,
we make + associate to the left. Similarly for *

• We want parenthetical expressions to be evaluated
first; this means we should consider such an
expression to be part of a factor. The resulting
unambiguous CFG generating L(G) is

S → S + T | T T → T * F | F F → (S) | a
(proofs of unambiguity and equivalence are both
somewhat complicated)

Derivation trees for
a + a ∗ a

75

76

77

78

Foundations of Computer Science 79

The problem is undecidable: there is no general algorithm
to check whether a given context-free grammar is
ambiguous. Some CFLs are inherently ambiguous.

This does not mean there aren’t classes of grammars where
an answer is possible.

Question: Give an algorithm to check whether a CFG is
ambiguous.

Example of languages that cannot be inherently
ambiguous: regular languages. Regular grammar can be
ambiguous, but we can always eliminate it.

Foundations of Computer Science 80

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80

