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Chapter 4

Context-Free Languages
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Using Grammar Rules to Define a  Language
• Regular languages and FAs are too simple for many 

purposes (Example: when we need to count 
something such as equal numbers of a and b.)

• We will use grammars, i.e., the set of rules for 
generating phrases and sentences.
– Using context-free grammars allows us to describe 

more difficult languages
– Much high-level programming language syntax can be 

expressed with context-free grammars
– Context-free grammars with a very simple form 

provide another way to describe the regular languages
• Grammars can be ambiguous
For example, a string could be parsed using more than one 
chain of rules which can lead to different interpretations
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• Consider the language AnBn = {anbn | n ≥ 0}, defined using 
the recursive definition: 
– Λ ∈ AnBn
– For every S ∈ AnBn,  aSb ∈ AnBn

• Think of S as a variable representing an arbitrary 
element, and write these rules as   

S →Λ
S → aSb

In the process of obtaining an element of AnBn, S can be 
replaced by either string.

Generating with recursive definition: Λ, ab, aabb, aaabbb
Generating with new rules: S, aSb, aaSbb, aaaSbbb, aaabbb

Let’s begin with an example …
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Representing a Chain of Grammar Rules

• If α and β are strings, and α contains at least one 
occurrence of S, then 
α⇒ β means that β is obtained from α in one step, 

by using either S →Λ or  S → aSb

• Example of generating aaabbb
S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

i.e., we describe a derivation of the string aaabbb

• We can simplify the rules by using the | symbol to 
mean “or”, so that the rules become 

S →Λ | aSb
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• Consider the language Expr of legal algebraic expressions: 
– a ∈ Expr
– For every x,y ∈ Expr,  x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr,  (x) ∈ Expr

• Think of S as a variable representing an arbitrary 
element, and write these rules as   …

Another example of grammar
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• Consider the language Expr of legal algebraic expressions: 
– a ∈ Expr
– For every x,y ∈ Expr,  x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr,  (x) ∈ Expr

• Think of S as a variable representing an arbitrary 
element, and write these rules as   …

Another example of grammar

S → a | S+S | S*S | (S)

• Examples of different derivations of a+a*a
S ⇒ S+S ⇒ a+S ⇒ a+S*S ⇒ a+a*S ⇒ a+a*a
S ⇒ S*S ⇒ S+S*S ⇒ a+S*S ⇒ a+S*a ⇒ a+a*a
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• Recursive definition of Expr is 
– a ∈ Expr
– For every x,y ∈ Expr,  x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr,  (x) ∈ Expr

• The grammar rules are
S → a | S+S | S*S | (S)

But what if we want to use more than one “atomic” 
expression? For example, if we need identifiers a,b and also 
constants 120, 1.6E-2, then we can add one more variable 
and more rules

S → A | S+S | S*S | (S)
A → a | b | 120 | 1.6E-2

We can use more than one variable

i.e., you cannot 
expand it 
recursively
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Palindromes and Nonpalindromes
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Palindromes and Nonpalindromes
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Palindromes and Nonpalindromes

1        2         3         4

5      6     7

1                     2                         4                               5                                 7
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Definition of CFG
• A context-free grammar (CFG) is a 4-tuple G=(V, Σ, S, P), 

where V and Σ are disjoint finite sets, S ∈ V, and P is a 
finite set of formulas of the form 
A →α, where A ∈ V and α ∈ (V ∪ Σ)*

Σ - set of terminal symbols or terminals (such as letters, i.e., 
something that cannot be divided, and recursively extended)
Example: in S → aSb, a and b are terminals

V - set of variables or nonterminals
Example: in S → aSbA, S, and A are variables

S ∈ V - start variable

P – grammar rules (or productions), i.e., a subset of all 
possible strings made of terminals and nonterminals
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– We use  → for productions in a grammar and   ⇒ for a step 
in a derivation

– The notations α⇒n β and α⇒* β refer to exactly n steps and 
zero or more steps, respectively

– Sometimes we will write α⇒G β to indicate that a derivation 
involves productions of grammar G.

Note: we just learned how to code rules as strings, i.e., strings code not only the input but 
also an algorithm (rules).
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• Definition: If G = (V, Σ, S, P) is a CFG, the language 
generated by G is 

L(G) = { x ∈ Σ* | S ⇒G* x},
where S is the start variable, and x is a string of terminals.

• A language L is a context-free language (CFL) if there is 
a CFG G with L = L(G)

Example: CFG for language L1a = {x ∈ {a,b}* |  na(x)=1}
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• Definition: If G = (V, Σ, S, P) is a CFG, the language 
generated by G is 

L(G) = { x ∈ Σ* | S ⇒G* x},
where S is the start variable, and x is a string of terminals.

• A language L is a context-free language (CFL) if there is 
a CFG G with L = L(G)

Example: CFG for language L1a = {x ∈ {a,b}* |  na(x)=1}
Easy to see that any x in L1a is a non-null string, so
x = yaz, where y,z ∈ Lb = {s ∈ {b}*}
- We represent Lb by the variable B
- The productions for Lb and S are …
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• Definition: If G = (V, Σ, S, P) is a CFG, the language 
generated by G is 

L(G) = { x ∈ Σ* | S ⇒G* x},
where S is the start variable, and x is a string of terminals.

• A language L is a context-free language (CFL) if there is 
a CFG G with L = L(G)

Example: CFG for language L1a = {x ∈ {a,b}* |  na(x)=1}
Easy to see that any x in L1a is a non-null string, so
x = yaz, where y,z ∈ Lb = {s ∈ {b}*}
- We represent Lb by the variable B
- The productions for Lb are B →Λ | bB
- All we need now is production for L1a
- S → BaB
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<expression> ::= <expression> + <term> | 
<term>

<term>       ::= <term> * <factor> | 
<factor>

<factor>     ::= (  <expression> ) 
| <name> | <integer>

<name> ::= <letter> | <name> <letter> | 
<name> <digit>

<integer> ::= <digit> | <integer> <digit>
<letter>     ::= A | B | ... |Z 
<digit> ::= 0 | 1 | 2 | ... | 9
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Warm up exercises
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Warm up exercises

(a+b)*
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Warm up exercises

(a+b)*

(ba)*b
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Warm up exercises

(a+b)*

(ba)*b

strings not containing bb
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Warm up exercises

(a+b)*

(ba)*b

strings not containing bb

even length strings in (a+b)*
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Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.
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Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

• The set of even-length strings in (a+b)* with the two 
middle symbols equal.
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Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

• The set of even-length strings in (a+b)* with the two 
middle symbols equal.

• The set of odd-length strings in (a+b)* whose first, 
middle, and last symbols are all the same.
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Warm up exercises

• The set of odd-length strings in (a+b)* with middle a.

• The set of even-length strings in (a+b)* with the two 
middle symbols equal.

• The set of odd-length strings in (a+b)* whose first, 
middle, and last symbols are all the same.
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Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either 
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or 
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
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Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either 
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or 
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
- We represent Lb by the variable B and La by the  variable A
- The productions so far are S →Λ | aB | bA
- All we need now are productions for A and B
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Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either 
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or 
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
- We represent Lb by the variable B and La by the  variable A
- The productions so far are S →Λ | aB | bA
- All we need now are productions for A and B
• If y ∈ La starts with b, then the remainder is in AEqB
• If it starts with a, the rest has two more a’s than b’s
• Observation: if in z na(z) = nb(z) + 2 then z=z1z2 such that 

na(z1) = nb(z1) + 1 and 
na(z2) = nb(z2) + 1 (same for b, and a).
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Example: CFG for language AEqB = {x ∈ {a,b}* | na(x) = nb(x)}
If x is a non-null string in AEqB then either 
x = ay, where y ∈ Lb = {z ∈ {a,b}* | nb(z) = na(z) + 1}, or 
x = by, where y ∈ La = {z ∈ {a,b}* | na(z) = nb(z) + 1}
- We represent Lb by the variable B and La by the  variable A
- The productions so far are S →Λ | aB | bA
- All we need now are productions for A and B
• If y ∈ La starts with b, then the remainder is in AEqB
• If it starts with a, the rest has two more a’s than b’s
• Observation: if in z na(z) = nb(z) + 2 then z=z1z2 such that 

na(z1) = nb(z1) + 1 and na(z2) = nb(z2) + 1 (same for b, and a).
The resulting grammar is S →Λ | aB | bA

B → bS | aBB
A → aS | bAA
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Example: CFG for all binary strings x with an even n0(x).
If the first symbol is a 1, then even number of 0’s remains

S →

If the first symbol is a 0, the remainder is a language with odd  
number of 0’s

S → 1S | 0T | Λ
T → 1T | 0S

1S
If the first symbol is a 0, then go to the next zero; the 
remainder is a string with even  n0(x)

S → 1S | 0A0S | Λ
A → 1A | Λ

A language can have more than one CFG …
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Example: CFG for the regular language corresponding to the 
RE 00*11*.

We can represent this language as a concatenation of two 
languages

S → CD
C → 0C | 0
D → 1D | 1
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Example: CFG for the complement of {0i1j | i,j>0}

There is no obvious way to convert a grammar to its 
complement.

We can represent this language as three languages
S → A | B | C | Λ
A → D10D
D → 0D | 1D | Λ
B → 0B | 0
C → 1C | 1

Produces all strings with 10

Only zeros

Only ones
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We can create many different CFLs with the following theorem
• Theorem: If L1 and L2 are CFLs over Σ, then so are

L1 ∪ L2,  L1L2,  and L1*
• Suppose G1 and G2 are CFGs that generate L1 and L2

respectively, and assume that they have no variables in 
common

• Suppose that S1 and S2 are the start variables.  Su, Sc and Sk , 
the start variables of the new grammars (for union, 
concatenation, and Kleene), will be new variables.
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We can create many different CFLs with the following theorem
• Theorem: If L1 and L2 are CFLs over Σ, then so are

L1 ∪ L2,  L1L2,  and L1*
• Suppose G1 and G2 are CFGs that generate L1 and L2

respectively, and assume that they have no variables in 
common

• Suppose that S1 and S2 are the start variables.  Su, Sc and Sk , 
the start variables of the new grammars (for union, 
concatenation, and Kleene), will be new variables.

Read and learn the proof of this theorem! See Theorem 4.9 in the textbook.

– Gu just adds the rules Su → S1 | S2 to G1 and G2
– Gc just adds the rule Sc → S1S2 to G1 and G2
– Gk just adds the rules Sk →Λ | SkS1 to G1
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Union of two CFLs
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Concatenation of two CFLs
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Closure of CFL
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Intersection of two CFLs is not necessarily CFL
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Complement of CFL is not necessarily CFL
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We can prove that every regular language can be generated by a 
context-free grammar.

We don’t need 
Lambda for * 
because there is 
a correct 
derivation
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Moreover, if you have an FA, you can create a context-free grammar.

L={a,b}*ba

• States correspond to variables
• For each transition we introduce a rule
• We also need to add termination rules
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• Definition: A context-free grammar is regular (RG) if 
every production is of the form A →σB or A →Λ

Prove at home!

• Theorem: For every language L ⊆ Σ*, 
L is regular if and only if L = L(G) for some regular grammar G

• Proof: L is regular => L=L(G) for some RG
– If L is regular, then there is an FA M=(Q, Σ, q0, A, δ) that accepts 

it. Define G=(V, Σ, S, P) by 
• letting V be Q,
• S the initial state q0, and  
• P the set containing the production T → aU for every transition 
δ(T, a) = U in M, and

• the production T →Λ for every accepting state T of M.
– G is RG, and G accepts the same language as M
For every x = a1a2…an in L, the transitions on these symbols that start at 
q0 end at an accepting state if and only if there is a derivation of x in G 
(show by induction on |x| = n).
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Regular expression 
ab*a

S A B

C

S  aA | bC
A  aB | bA
B  aC | bC | Λ
C  aC | bC



Foundations of Computer Science 45

• Proof (part 2): L is regular <= L=L(G) for some RG

To prove the other direction we can start with a regular 
grammar G and reverse the construction to produce M.
M may be an NFA, but it still accepts L(G), and it follows that 
L(G) is regular.
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• Definition: A context-free grammar is right-regular
(RRG) if every production is of the form A → Bσ or A →Λ

• Theorem: For every language L ⊆ Σ*, L is regular if and 
only if L = L(G) for some right-regular grammar G

Proof: L is regular <= L=L(G) for some RRG
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S

B

CA

q0’
Λ

a a

b
a,b

b

b
a

reverse of L
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• Definition: A context-free grammar is right-regular
(RRG) if every production is of the form A → Bσ or A →Λ

• Theorem: For every language L ⊆ Σ*, L is regular if and 
only if L = L(G) for some right-regular grammar G

• Proof: L is regular => L=L(G) for some RRG
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Find a regular grammar generating the language L(M)
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Find an NFA for this grammar

b
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Derivation Trees
• The root node represents the start variable S
• Any interior node and its children represent a 

production A →α used in the derivation; the node 
represents A, and the children, from left to right, 
represent the symbols in α (can include variables, 
and terminals).

• Each leaf node represents a terminal or Λ
• The string derived is read off from left to right, 

ignoring Λ’s
• Every derivation has exactly one derivation tree, but 

a tree can represent more than one derivation 
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S

a         S         a

b       S      b

b    A   a

A   a

Λ
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Derivation Trees and Ambiguity

• So far we’ve been interested in what strings a CFG 
generates (e.g., S=> ….. => ababa)

• It is also useful to consider how a string is generated 
by a CFG  

• A derivation may provide information about the 
structure of a string, and if a string has several 
possible derivations, one may be more appropriate 
than another

• We can draw trees to represent derivations
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Derivation Trees and Ambiguity

• Definition: Ambiguity in a CFG
A context-free grammar G is ambiguous if for at least one       
x ∈ L(G), x has more than one derivation tree.
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• Consider the language Expr of legal algebraic 
expressions: 
– a ∈ Expr
– For every x,y ∈ Expr,  x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr,  (x) ∈ Expr

• CFG rules are S → a | S+S | S*S | (S)

• Examples of different derivations of a+(a*a) 
for the same derivation tree
– S ⇒ S+S ⇒ a+S ⇒ a+(S) ⇒ a+(S*S) ⇒

a+(S*a) ⇒ a+(a*a)

– S ⇒ S+S ⇒ S+(S) ⇒ S+(S*S) ⇒ a+(S*S) ⇒
a+(a*S) ⇒ a+(a*a)
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Derivation Trees and Ambiguity

• In a derivation, at each step some production is 
applied to some occurrence of a variable

• Consider a derivation that starts  S ⇒ S + S.   We 
could apply a production to either the first or second 
of the S’s, but the resulting trees would be the same

• The order in which the tree was created is also 
important for evaluation.

S ⇒ S+S ⇒ a+S ⇒ a+(S) ⇒ a+(S*S) ⇒ a+(S*a) ⇒ a+(a*a)

S ⇒ S+S ⇒ S+(S) ⇒ S+(S*S) ⇒ a+(S*S) ⇒ a+(a*S) ⇒ a+(a*a)
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• Consider the language Expr of legal algebraic expressions: 
– a ∈ Expr
– For every x,y ∈ Expr,  x+y ∈ Expr, and x*y ∈ Expr
– For every x ∈ Expr,  (x) ∈ Expr

• CFG rules are S → a | S+S | S*S | (S)
• Examples of different derivation trees for string a+a*a

S

S      *      S

S   +   S         a    

a        a

S

S      +      S

a         S   *   S

a        a

S ⇒ S+S ⇒ S+S*S ⇒ a+S*S 
⇒ a+a*S ⇒ a+a*a

S ⇒ S*S ⇒ S+S*S ⇒ a+S*S 
⇒ a+a*S ⇒ a+a*a
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Derivation Trees and Ambiguity

• Definition: A derivation in a CFG is a leftmost
derivation (LMD) if, at each step, a production is 
applied to the leftmost variable-occurrence in the 
current string
– A rightmost derivation is defined similarly

• CFG rules are S → a | S+S | S*S | (S)
• Examples of different derivations of a+(a*a)

– S ⇒ S+S ⇒ a+S ⇒ a+(S) ⇒ a+(S*S) ⇒
a+(a*S) ⇒ a+(a*a)

– S ⇒ S+S ⇒ S+(S) ⇒ …

1

2 3

4

5 6

This derivation is not LMD
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strings

variable
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Derivation Trees and Ambiguity

• A classic example of ambiguity is the dangling else
• In C, an if-statement can be defined by                                      

S → if  ( E )  S |  if  ( E )  S else  S |  OS 
(OS=“other statements”, E=“expression”, S=“statement”)

• Consider  the statement string
if (e1) if (e2) f(); else g();
– In C, the else to belong to the second if, but this 

grammar does not rule out the other interpretation
• The two derivation trees shown on the next slide 

demonstrate the two interpretations of a dangling else
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preferred
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Derivation Trees and Ambiguity

• Clearly the grammar 
S → if  ( E )  S |  if  ( E )  S else  S |  OS    

is ambiguous, but there are equivalent grammars that 
allow only the correct interpretation
• Example:

S → S1 | S2

S1 → if ( E ) S1 else S1 | OS
S2 → if ( E ) S | if ( E ) S1 else S2
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Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:

S → S1 | S2

S1 → if ( E ) S1 else S1 | OS
S2 → if ( E ) S | if ( E ) S1 else S2

• S1 represents a statement in which every if is matched by a 
corresponding else

• Every statement derived from S2 contains at least one 
unmatched if.

• The only variable appearing before else in these rules is S1; 
because the else cannot match any of the if s in the statement 
derived from S1, it must match the if that appeared at the 
same time it did.
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Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:
if (e1) if (e2) f(x); else g(x);

S → S1 | S2

S1 → if ( E ) S1 else S1 | OS
S2 → if ( E ) S | if ( E ) S1 else S2
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Derivation Trees and Ambiguity
Eliminate ambiguity with the following grammar:
if (e1) if (e2) f(x); else g(x);

S → S1 | S2

S1 → if ( E ) S1 else S1 | OS
S2 → if ( E ) S | if ( E ) S1 else S2
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Derivation Trees and Ambiguity

Consider the CFG G : S → S + S |  S * S |  (S)  |  a
• G generates simple algebraic expressions 
• One reason for ambiguity is unspecified precedence 

of  + and  *:   a+a*a could be interpreted as (a+a)*a
or as  a+(a*a)

• In fact, S → S + S causes ambiguity by itself, because 
a+a+a could be interpreted as either  (a+a)+a or        
a+(a+a).  Similarly for S → S * S

• We might try to correct both problems by using the 
productions   S → S + T | T T → T + F | F
(think of T as “term” and F as “factor”) 
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Derivation Trees and Ambiguity

• *  now has higher precedence than + (all the 
multiplications are performed within a term) 

• By making the production S → S + T, not S → T + S, 
we make + associate to the left.  Similarly for  *   

• We want parenthetical expressions to be evaluated 
first; this means we should consider such an 
expression to be part of a factor.  The resulting 
unambiguous CFG generating L(G) is 

S → S + T | T T → T * F |  F F → (S) | a
(proofs of unambiguity and equivalence are both 
somewhat complicated)

Derivation trees for
a + a ∗ a
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The problem is undecidable: there is no general algorithm 
to check whether a given context-free grammar is 
ambiguous. Some CFLs are inherently ambiguous.

This does not mean there aren’t classes of grammars where 
an answer is possible.

Question: Give an algorithm to check whether a CFG is 
ambiguous.

Example of languages that cannot be inherently 
ambiguous: regular languages. Regular grammar can be 
ambiguous, but we can always eliminate it.



Foundations of Computer Science 80


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80

