Chapter 3

Regular Expressions, Regular Languages, Nondeterminism, and Kleene’s Theorem
Regular Languages and Regular Expressions

• Many simple languages can be expressed by a formula involving languages containing a single string of length 1 and the operations of union, concatenation and Kleene star. Here are three examples
 – Strings ending in aa: $\{a, b\}* \{aa\}$
 – (This is a simplification of $\left(\{a\} \cup \{b\}\right)*\{a\}\{a\}$)
 – Strings containing ab or bba: $\{a, b\}* \{ab, bba\} \{a, b\}*\$

• These are called *regular* languages
Regular Languages and Regular Expressions (cont’d.)

• Definition: If Σ is an alphabet, the set R of regular languages over Σ is defined as follows:
 – The language \emptyset is an element of R, and for every $\sigma \in \Sigma$, the language $\{\sigma\}$ is in R
 – For every two languages L_1 and L_2 in R, the three languages $L_1 \cup L_2$, L_1L_2, and L_1^* are elements of R

• Examples:
 – $\{\Lambda\}$, because $\emptyset^* = \{\Lambda\}$
 – $\{a, b\}^*\{aa\} = (\{a\} \cup \{b\})^* (\{a\}\{a\})$

1. We start with these
2. Then with these
3. Kleene’s star
4. Last concatenation
Regular Languages and Regular Expressions (cont’d.)

- A regular expression for a language is a slightly more user-friendly formula which is similar to algebraic expressions
 - Parentheses replace curly braces, and are used only when needed, and the union symbol is replaced by +

<table>
<thead>
<tr>
<th>Regular language</th>
<th>Regular Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>{Λ}</td>
<td>Λ</td>
</tr>
<tr>
<td>{a,b}^*</td>
<td>(a+b)^*</td>
</tr>
<tr>
<td>{aab}^*{a,ab}</td>
<td>(aab)^*(a+ab)</td>
</tr>
<tr>
<td>{aa, bb} ∪ {ab, ba}{aa, bb}^{ab, ba})^</td>
<td>(aa + bb + (ab + ba)(aa + bb)^(ab + ba))^</td>
</tr>
</tbody>
</table>
Regular Languages and Regular Expressions (cont’d.)

• A regular expression describes a regular language, and a regular language can be described by a regular expression.

• Two regular expressions are equal if the languages they describe are equal. For example,
 – \((a^*b^*)^* = (a+b)^*\)
 – \((a+b)^*ab(a+b)^*+b^*a^* = (a+b)^*\)
 • The first half of the left-hand expression describes the strings that contain the substring \(ab\) and the second half describes those that don’t
Regular Languages and Regular Expressions (cont’d.)

- The language in \{a, b\}^* with an odd number of a’s
- A string with an odd number of a’s has at least one a, and the additional a’s can be grouped into pairs. There can be arbitrarily many b’s before the first a, between any two consecutive a’s, and after the last a.

- \(b*ab*(ab*ab*)^* \)
- \(b*a(b*ab*a)*b* \)
- \(b*a(b+ab*a)* \)
- \((b+ab*a)*ab* \)

See more examples in the textbook!
• An identifier in C is a string of length 1 or more that contains only letters, digits, and underscores (“_”) and does not begin with a digit.

$$(l+_)(l+d+_)*$$

Letter, i.e., a+b+c+...+A+B+...+Z
For the alphabet \{0, 1\} find regular expressions for languages

- All binary strings
 \[(0+1)^* = (1+0)^*\]

- All binary strings of even length
 \[((0+1)(0+1))^*\]

- All binary strings containing the substring 001
 \[(0+1)^*001(0+1)^*\]

- All binary strings with \#1s = 0 mod 3
 \[0^* + (0^*10^*10^*10^*)^*\]

- All binary strings without two consecutive 0s
 \[(01+1)^*(0+\Lambda)\]

- All binary strings with either 001 or 100 occurring somewhere
 \[(0+1)^*001(0+1)^* + (0+1)^*100(0+1)^*\]
This is what we know about languages ...

All languages

Regular languages = Languages accepted by regular expressions

• Palindromes
• AnBn
• Etc.

Languages of finite automata

• \{a,b\} = a+b

The intersection is not empty but is there a regular language that cannot be accepted by FA?
Nondeterministic Finite Automata
Nondeterministic Finite Automata

- This NFA closely resembles the regular expression
 \((aa + aab)^*b\)
 - The top loop is \(aa\)
 - The bottom loop is \(aab\)
 - By following the links we can generate any string in the language

- This is not the transition diagram for an FA; some nodes have more than one \(a\)-arc, some have none

- Example: \(aaaabaaaab\) can be either accepted (top-bottom-top-b) or not accepted (top-bottom-bottom loops).
Nondeterministic Finite Automata

• For this reason, we should not think of an NFA as describing an algorithm for recognizing a language.
• Instead, consider it as describing a number of different sequences of steps that might be followed.
Nondeterministic Finite Automata

This is the “computation tree” for $aaaabaab$

- Each level corresponds to a prefix of the input string
- Each state on a level is one the machine could be in after processing that prefix
- There is an accepting path for the input string (as well as other paths that are not accepting)
NFA: Λ-transitions

The technique in previous example does not provide a simple way to draw a transition diagram for \((aab)^*(a+aba)^*\)

- We introduce a new feature called Λ-transition.
- It allows the device to change state without reading the next symbol.

Computation tree for \(aababa\)
Nondeterministic Finite Automata

• Definition: A *nondeterministic finite automaton* (NFA) is a 5-tuple \((Q, \Sigma, q_0, A, \delta)\), where:
 - \(Q\) is a finite set of states,
 - \(\Sigma\) is a finite input alphabet
 - \(q_0 \in Q\) is the initial state
 - \(A \subseteq Q\) is the set of accepting states
 - \(\delta : Q \times (\Sigma \cup \{\Lambda\}) \rightarrow 2^Q\) is the transition function.
 (The values of \(\delta\) are not single states, but sets of states)

• For every \(q \in Q\) and every \(\sigma \in \Sigma \cup \{\Lambda\}\), we interpret \(\delta(q, \sigma)\) as the set of states to which the NFA can move from state \(q\) on input \(\sigma\)
• Example:
 \[\delta(0,a) = \{1\} \]
 \[\delta(0,\Lambda) = \{3\} \]
 \[\delta(0,b) = \emptyset \]
 \[\delta(3,a) = \{3, 4\} \]
Nondeterministic Finite Automata

How to define $\delta^*(q, x\sigma)$?

Defining δ^* is a little harder than for an FA, since $\delta^*(q, x)$ is a set, as is $\delta(p, \sigma)$ for any p in the first set:

$$\bigcup \{ \delta(p, \sigma) \mid p \in \delta^*(q, x) \}$$

is a first step towards δ^*

We must also consider Λ-transitions, which could potentially occur at any stage
• Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states

 - **The Λ-closure of S is the set $\Lambda(S)$** that can be defined recursively as follows:

 • $S \subseteq \Lambda(S)$

 • For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$
• Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - **The Λ-closure of S is the set $\Lambda(S)$** that can be defined recursively as follows:
 • $S \subseteq \Lambda(S)$
 • For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$
• Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - The Λ-closure of S is the set $\Lambda(S)$ that can be defined recursively as follows:
 • $S \subseteq \Lambda(S)$
 • For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$

• As for any finite set that is defined recursively, we can easily formulate an algorithm to calculate $\Lambda(S)$:
 - Initialize T to be S, as in the basis part of the definition
 - Make a sequence of passes, in each pass considering every $q \in T$ and adding every state in $\delta(q, \Lambda)$ not already there
 - Stop after the first pass in which T does not change
 - The final value of T is $\Lambda(S)$
Nondeterministic Finite Automata

• Definition: Let $M=\langle Q, \Sigma, q_0, A, \delta \rangle$ be an NFA

Define the extended transition function

$\delta^* : Q \times \Sigma^* \rightarrow 2^Q$ as follows:

– For every $q \in Q$, $\delta^*(q, \Lambda) = \Lambda(\{q\})$

– For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$

 $\delta^*(q, y\sigma) = \Lambda(\bigcup \{ \delta(p, \sigma) \mid p \in \delta^*(q, y) \})$

– A string $x \in \Sigma^*$ is accepted by M if $\delta^*(q_0, x) \cap A \neq \emptyset$

 (i.e., some sequence of transitions involving the symbols of x and Λ’s leads from q_0 to an accepting state)

• The language $L(M)$ accepted by M is the set of all strings accepted by M
Let us find $\delta^*(0, aab)$

$\Lambda(\{0\}) = \{0, 3\}$;

Then, $\delta^*(0, aa) = \{2, 3, 4\}$;

Now we add b to aa

$\bigcup \{ \delta(p, b) \mid p \in \{2, 3, 4\} \} = \delta(2, b) \cup \delta(3, b) \cup \delta(4, b) = \{0\} \cup \emptyset \cup \{5\} = \{0, 5\}$;

Now we compute Λ-closure of this set, and add $\{3\}$.

The answer is $\delta^*(0, aab) = \{0, 5, 3\}$.

See also example 3.15 in the textbook
An NFA that accepts strings that contain aa or bb as a substring.
An NFA that accepts strings that contain aa or bb as a substring.
An NFA that accepts strings over \{a,b\} that contain b either at the third position from the right or at the second position from the right.
An NFA that accepts strings over \{a,b\} that contain b either at the third position from the right or at the second position from the right.
Simultaneous Pattern: NFA for a*+(ab)*
Simultaneous Pattern: NFA for a*+(ab)*
Simultaneous Pattern: NFA for \((a^*+(ab)^*)b^*\)
Simultaneous Pattern: NFA for \((a^*+(ab)^*)b^*\)
Simultaneous Pattern: NFA for all strings over \{a,b,c\} that are missing at least one letter. For example: ab, cccccc, bcbcbc, cacaaa
Simultaneous Pattern: NFA for all strings over \{a,b,c\} that are missing at least one letter. For example: ab, ccccc, bcbcb, cacaa
L = (a+b)*b
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$.
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$.

Proof. We need to show that if $s \in \Lambda(S)$ then $s \in \Lambda(T)$.

- $\forall s \in S$, it is true that $s \in T$ and then (by def of $\Lambda(T)$) $s \in \Lambda(T)$
- if $s \notin S$ then it was added to $\Lambda(S)$ by the recursive rule

$$\delta(q, \Lambda) \subseteq \Lambda(S)$$

for some $q \in \Lambda(S)$

. We prove by induction on the number of recursive applications of $\delta(\cdot, \Lambda)$, i.e., by structural induction.
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$.

Proof. We need to show that if $s \in \Lambda(S)$ then $s \in \Lambda(T)$.

- $\forall s \in S$, it is true that $s \in T$ and then (by def of $\Lambda(T)$) $s \in \Lambda(T)$
- if $s \not\in S$ then it was added to $\Lambda(S)$ by the recursive rule $\delta(q, \Lambda) \subseteq \Lambda(S)$ for some $q \in \Lambda(S)$

. We prove by induction on the number of recursive applications of $\delta(\cdot, \Lambda)$, i.e., by structural induction.

- IH: all elements in $\Lambda(S)$ that were added by less than k applications of $\delta(\cdot, \Lambda)$ are in $\Lambda(T)$

- IS: We add s to $\Lambda(S)$ by kth application of δ. W.l.o.g., there exists $q \in \Lambda(S)$ (such that $s \in \delta(q, \Lambda)$) that was added by less than k applications of δ to $\Lambda(S)$ and by IH $q \in \Lambda(T)$. By def of $\Lambda(T)$ $\delta(q, \Lambda) \subseteq \Lambda(T)$ because $q \in \Lambda(T)$.

37
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $M_1 = (Q, \Sigma, q_0, A, \delta_1)$ be the NFA with no Λ-transitions for which

$$\forall q \in Q \ \forall \sigma \in \Sigma \quad \delta_1(q, \sigma) = \{\delta(q, \sigma)\}.$$

Then $\forall q \in Q \ \forall \sigma \in \Sigma \quad \delta^*_1(q, x) = \{\delta^*(q, x)\}$.
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $M_1 = (Q, \Sigma, q_0, A, \delta_1)$ be the NFA with no Λ-transitions for which

$$\forall q \in Q \forall \sigma \in \Sigma \quad \delta_1(q, \sigma) = \{\delta(q, \sigma)\}. \quad (1)$$

Then $\forall q \in Q \forall \sigma \in \Sigma \quad \delta_1^*(q, x) = \{\delta^*(q, x)\}$. \quad (2)

Proof. The proof is by structural induction.

- **BS**: $\delta_1^*(q, \Lambda) = \{q\}$, and $\delta^*(q, \Lambda) = q$ by definition of δ^*.
- **IH**: Suppose that for some y, $\delta_1^*(q, y) = \{\delta^*(q, y)\}$, for every q.
- **IS**: Then for $a \in \Sigma$,

$$\delta_1(q, ya) = \bigcup \{\delta_1(p, a) \mid p \in \delta_1^*(q, y)\}$$
$$= \bigcup \{\delta_1(p, a) \mid p \in \{\delta^*(q, y)\}\}$$
$$= \delta_1(\delta^*(q, y), a)$$
$$= \{\delta(\delta^*(q, y), a)\} = \{\delta^*(q, ya)\}.$$

\square
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. For every $q \in Q$ and every $x, y \in \Sigma^*$,

$$\delta^*(q, xy) = \bigcup \{ \delta^*(r, y) \mid r \in \delta^*(q, x) \}.$$

Proof by structural induction is given in Exercise 3.30. Learn it!
The Nondeterminism in an NFA Can Be Eliminated

• Two types of nondeterminism have arisen:
 – 1) Different arcs for the same input symbol (or no arcs), and
 – 2) Λ-transitions
 – Both can be eliminated

• For the **second type**, introduce new transitions so that we no longer need the Λ-transitions
 – When there is no σ-transition from p to q but the NFA can go from p to q by using one or more Λ-transitions as well as σ, we introduce the σ-transition
 – The resulting NFA may have more nondeterminism of the first type, but it will have no Λ-transitions
The Nondeterminism in an NFA Can Be Eliminated (cont'd.)

- **Theorem:** For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an NFA M_1 with no Λ-transitions that also accepts L

- Define $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$, where
 - for every $q \in Q$, $\delta_1(q, \Lambda) = \emptyset$, and
 - for every $q \in Q$ and every $\sigma \in \Sigma$, $\delta_1(q, \sigma) = \delta^*(q, \sigma)$

original definition of δ^*

$$\delta^*(q, y\sigma) = \Lambda(\cup \{ \delta(p, \sigma) \mid p \in \delta^*(q, y) \})$$

here we need $y = \Lambda$

$$\delta^*(q, \Lambda \sigma) = \Lambda(\cup \{ \delta(p, \sigma) \mid p \in \delta^*(q, \Lambda) \})$$
The Nondeterminism in an NFA Can Be Eliminated (cont’d.)

• Theorem: For every language \(L \subseteq \Sigma^* \) accepted by an NFA \(M = (Q, \Sigma, q_0, A, \delta) \), there is an NFA \(M_1 \) with no \(\Lambda \)-transitions that also accepts \(L \)

• Define \(M_1 = (Q, \Sigma, q_0, A_1, \delta_1) \), where
 – for every \(q \in Q \), \(\delta_1(q, \Lambda) = \emptyset \), and
 – for every \(q \in Q \) and every \(\sigma \in \Sigma \), \(\delta_1(q, \sigma) = \delta^*(q, \sigma) \)

• Define \(A_1 = A \cup \{q_0\} \) if \(\Lambda \in L \), and \(A_1 = A \) otherwise

• We can prove, by structural induction on \(x \), that for every \(q \) and every \(x \) with \(|x| \geq 1 \), \(\delta_1^*(q, x) = \delta^*(q, x) \)

Homework: prove this theorem (see Theorem 3.17 in the textbook)
Example: Λ-transition elimination

<table>
<thead>
<tr>
<th>q</th>
<th>δ(q, a)</th>
<th>δ(q, b)</th>
<th>δ(q, Λ)</th>
<th>δ*(q, a)</th>
<th>δ*(q, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∅</td>
<td>∅</td>
<td>{2}</td>
<td>{2, 3}</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>{2, 3}</td>
<td>∅</td>
<td>∅</td>
<td>{2, 3}</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>∅</td>
<td>{4}</td>
<td>∅</td>
<td>∅</td>
<td>{1, 2, 4}</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
<td>{5}</td>
<td>{1}</td>
<td>{2, 3}</td>
<td>{5}</td>
</tr>
<tr>
<td>5</td>
<td>{4}</td>
<td>∅</td>
<td>∅</td>
<td>{1, 2, 4}</td>
<td>∅</td>
</tr>
</tbody>
</table>

means 5 will be connected to 1, 2, and 4
Eliminate Lambda-transition
Eliminate Lambda-transition
The Nondeterminism in an NFA Can Be Eliminated

• Theorem: For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L

• We can assume M has no Λ-transitions. Let $Q_1 = 2^Q$ (for this reason, this is called the *subset construction*); $q_1 = \{q_0\}$; for every $q \in Q_1$ and $\sigma \in \Sigma$,

$$\delta_1(q, \sigma) = \cup \{\delta(p, \sigma) \mid p \in q\} \ldots$$
The Nondeterminism in an NFA Can Be Eliminated

- **Theorem:** For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L

- We can assume M has no Λ-transitions. Let $Q_1 = 2^Q$ (for this reason, this is called the *subset construction*); $q_1 = \{q_0\}$; for every $q \in Q_1$ and $\sigma \in \Sigma$,

 $$\delta_1(q, \sigma) = \bigcup \{ \delta(p, \sigma) \mid p \in q \}$$

 $$A_1 = \{ q \in Q_1 \mid q \cap A \neq \emptyset \}$$

- M_1 is clearly an FA
 - It accepts the same language as M because for every $x \in \Sigma^*$,
 $$\delta_1^*(q_1, x) = \delta^*(q_0, x)$$

- The proof is by structural induction on x

Homework: prove this theorem (see Thm 3.18 in the textbook)
Example: Subset construction to eliminate nondeterminism

\[M = (Q, \Sigma, q_0, A, \delta) \]

NFA to accept \{aa, aab\}*\{b\}

\[M_1 = (2^Q, \Sigma, \{q_0\}, A_1, \delta_1) \]

FA to accept \{aa, aab\}*\{b\}

- No need to generate \(2^n\) subsets; consider only reachable states
- It is recommended to use a transition table
- Example: \(\delta_1(\{1,2\}, a) = \delta(1, a) \cup \delta(2, a) = \{0, 3\}\)
- All reachable states that contain elements from \(A\) are in \(A_1\)
Foundations of Computer Science

\[q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_4 \xrightarrow{b} q_4 \]

- \(q_0 \) transitions with symbols:
 - \(a \) to \(q_1 \)
 - \(b \) to \(q_4 \)

- \(q_1 \) transitions with symbols:
 - \(a \) to \(q_1 \)

- \(q_2 \) transitions with symbols:
 - \(a \) to \(q_2 \)

- \(q_3 \) transitions with symbols:
 - \(b \) to \(q_3 \)

- \(q_4 \) is a sink state.

\[\begin{array}{c|c|c}
 q & \delta(q, a) & \delta(q, b) \\
 \hline
 0 & \{1, 2\} & \{4\} \\
 1 & \{0\} & \emptyset \\
 2 & \{3\} & \emptyset \\
 3 & \emptyset & \emptyset \\
 4 & \emptyset & \{0\} \\
 \end{array} \]
The diagram represents a state transition system with states q_0, q_1, q_2, q_3, q_4 and transitions labeled with a and b.

The table below shows the transition function $\delta(q, a)$ and $\delta(q, b)$ for each state q:

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta(q, a)$</th>
<th>$\delta(q, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{1, 2}</td>
<td>{4}</td>
</tr>
<tr>
<td>1</td>
<td>{0}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>{3}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{0}</td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Foundations of Computer Science

<table>
<thead>
<tr>
<th>q</th>
<th>δ(q, a)</th>
<th>δ(q, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{1, 2}</td>
<td>{4}</td>
</tr>
<tr>
<td>1</td>
<td>{0}</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>{3}</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>∅</td>
<td>{0}</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>
Construct FA from NFA: 1) eliminate all lambda transitions.
Construct FA from NFA:

2) create a table of transitions.

You need this only if you don’t eliminate Lambda’s

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta(q, a)$</th>
<th>$\delta(q, b)$</th>
<th>$\delta(q, \Lambda)$</th>
<th>$\delta^*(q, a)$</th>
<th>$\delta^*(q, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1}</td>
<td>\emptyset</td>
<td>{2, 4}</td>
<td>{1, 2, 3, 4, 5}</td>
<td>{4, 5}</td>
</tr>
<tr>
<td>2</td>
<td>{3}</td>
<td>{5}</td>
<td>\emptyset</td>
<td>{3}</td>
<td>{5}</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{2}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{2}</td>
</tr>
<tr>
<td>4</td>
<td>{5}</td>
<td>{4}</td>
<td>\emptyset</td>
<td>{5}</td>
<td>{4}</td>
</tr>
<tr>
<td>5</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
3) Construct FA.

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta(q, a)$</th>
<th>$\delta(q, b)$</th>
<th>$\delta(q, \Lambda)$</th>
<th>$\delta^*(q, a)$</th>
<th>$\delta^*(q, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1}</td>
<td>\emptyset</td>
<td>{2, 4}</td>
<td>{1, 2, 3, 4, 5}</td>
<td>{4, 5}</td>
</tr>
<tr>
<td>2</td>
<td>{3}</td>
<td>{5}</td>
<td>\emptyset</td>
<td>{3}</td>
<td>{5}</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>{2}</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>{2}</td>
</tr>
<tr>
<td>4</td>
<td>{5}</td>
<td>{4}</td>
<td>\emptyset</td>
<td>{5}</td>
<td>{4}</td>
</tr>
<tr>
<td>5</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
This is what we know about languages ...

All languages

- Palindromes
- \(A^mB^n\)
- Etc.

Regular languages = Languages accepted by regular expressions

- \(\{a, b\} = a + b\)

Languages of NFA = Languages of FA
Kleene’s Theorem, Part 1

• **Theorem**: For every alphabet \(\Sigma \), every regular language over \(\Sigma \) can be accepted by a finite automaton

• Because of what we have just shown, it is enough to show that every regular language over \(\Sigma \) can be accepted by an NFA

• The proof is by structural induction, based on the recursive definition of the set of regular languages over \(\Sigma \)

Homework: Learn both parts of Kleene’s theorem (including proofs).
Kleene’s Theorem, Part 1 (cont’d.)

• The basis cases are easy
• The automata pictured below accept the languages \emptyset and $\{\sigma\}$, respectively

\[
\begin{align*}
\text{and} & \\
\text{and} &
\end{align*}
\]

• Induction hypothesis: both L_1 and L_2 are regular languages can be accepted by NFAs
• Induction step: $L(M_1) \cup L(M_2)$, $L(M_1)L(M_2)$, and $L(M_1)^*$ can be accepted by NFAs
Each FA is shown as having 2 accepting states

Union

Concatenation

Kleene’s *
An NFA Corresponding to $((aa + b)(aba)*bab)^*$

concatenation

$((aa + b)(aba)*bab)^*$

aba
Kleene’s Theorem, Part 2

• Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language $L(M)$ is regular.

• Proof: First, for two states p and q, we define the language $L(p, q) = \{ x \in \Sigma^* \mid \delta^*(p, x) = q \}$.
Kleene’s Theorem, Part 2

- Theorem: For every finite automaton $M = (Q, \Sigma, q_0, A, \delta)$, the language $L(M)$ is regular

- Proof: First, for two states p and q, we define the language $L(p, q) = \{x \in \Sigma^* \mid \delta^*(p, x) = q\}$

- If we can show that for every p and q in Q, $L(p, q)$ is regular, then it will follow that $L(M)$ is, because ...

$$L(M) = \bigcup \{L(q_0, q) \mid q \in A\}$$

Each of these languages is regular, so is their union
Kleene’s Theorem, Part 2

- Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language $L(M)$ is regular
- Proof: First, for two states p and q, we define the language $L(p, q) = \{x \in \Sigma^* | \delta^*(p, x)=q\}$
- If we can show that for every p and q in Q, $L(p, q)$ is regular, then it will follow that $L(M)$ is, because ...
 - $L(M) = \bigcup \{L(q_0, q) \mid q \in A\}$
 - The union of a finite collection of regular languages is regular
- We will show that $L(p, q)$ is regular by expressing it in terms of simpler languages that are regular
Kleene’s Theorem, Part 2 (cont’d.)

• We will consider the distinct states through which M passes as it moves from p to q

• If $x \in L(p, q)$, we say x causes M to go from p to q through a state r if there are non-null strings x_1 and x_2 such that $x = x_1x_2$, $\delta^*(p, x_1) = r$, and $\delta^*(r, x_2) = q$

```
\begin{tikzpicture}
  \node (p) at (0,0) {$p$};
  \node (r) at (2,0) {$r$};
  \node (q) at (4,0) {$q$};
  \draw[->] (p) edge node[above] {$x_1$} (r);
  \draw[->] (r) edge node[above] {$x_2$} (q);
\end{tikzpicture}
```

– In using a string of length 1 to go from p to q, M does not go through any state

```
\begin{tikzpicture}
  \node (p) at (0,0) {$p$};
  \node (q) at (2,0) {$q$};
  \draw[->] (p) edge (q);
\end{tikzpicture}
```

– How can we construct an inductive proof on what happens between p and q?
Kleene’s Theorem, Part 2 (cont’d.)

- Assume Q has n elements numbered 1 to n
Kleene’s Theorem, Part 2 (cont’d.)

- Assume Q has n elements numbered 1 to n
- For $p, q \in Q$ and $j \geq 0$

 $L(p, q, j) = \text{strings in } L(p, q) \text{ that cause } M \text{ to go from } p \text{ to } q \text{ without going through any state numbered higher than } j$
Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n
• For $p, q \in Q$ and $j \geq 0$

 $L(p, q, j) = \text{strings in } L(p, q) \text{ that cause } M \text{ to go from } p \text{ to } q \text{ without going through any state numbered higher than } j$
• Suppose that for some number $k \geq 0$, $L(p, q, k)$ is regular for every $p, q \in Q$ and consider how a string can be in $L(p, q, k+1)$

 – The easiest way is for it to be in $L(p, q, k)$

 – If not, it causes M to go to $k+1$ one or more times, but M goes through nothing higher (i.e., no state $k+2$ for example)
Kleene’s Theorem, Part 2 (cont’d.)

- Every string in \(L(p, q, k+1) \) can be described in one of those two ways and every string that has one of these two forms is in \(L(p, q, k+1) \). This leads to the formula
 \[
 L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k) L(k+1, k+1, k)^* L(k+1, q, k)
 \]

- This is the main point of a proof by induction on \(k \) and for an algorithm
Algorithm: FA→RE. Let $r(i, j, k)$ denote a RE for $L(i, j, k)$. Then $L(M)$ is described by the RE

$$r(M) = r(1, 1, 3) + r(1, 2, 3)$$

we need accepting states only

The recursive formula with smaller k in the proof tells

$$r(1, 1, 3) = r(1, 1, 2) + r(1, 3, 2)r(3, 3, 2)^*r(3, 1, 2)$$
$$r(1, 2, 3) = r(1, 2, 2) + r(1, 3, 2)r(3, 3, 2)^*r(3, 2, 2)$$

Applying the formula to the expressions $r(i, j, 2)$ we get

$$r(1, 1, 2) = r(1, 1, 1) + r(1, 2, 1)r(2, 2, 1)^*r(2, 1, 1)$$
$$r(1, 3, 2) = r(1, 3, 1) + r(1, 2, 1)r(2, 2, 1)^*r(2, 3, 1)$$
$$r(3, 3, 2) = r(3, 3, 1) + r(3, 2, 1)r(2, 2, 1)^*r(2, 3, 1)$$
$$r(3, 1, 2) = r(3, 1, 1) + r(3, 2, 1)r(2, 2, 1)^*r(2, 1, 1)$$
$$r(1, 2, 2) = r(1, 2, 1) + r(1, 2, 1)r(2, 2, 1)^*r(2, 2, 1)$$
$$r(3, 2, 2) = r(3, 2, 1) + r(3, 2, 1)r(2, 2, 1)^*r(2, 2, 1)$$
Example:

\[
\begin{align*}
r(2, 2, 1) &= r(2, 2, 0) + r(2, 1, 0)r(1, 1, 0)^*r(1, 2, 0) \\
&= \Lambda + (a)(a + \Lambda)^*(b) \\
&= \Lambda + aa^*b
\end{align*}
\]
Regular languages
= Languages of regular expressions
= Languages accepted by FA
= Languages accepted by NFA
Regular expressions and finite automata
- Tools such as grep, awk, and sed
- Email servers
- Pattern matching

Finite automata
- Software testing/QC
- TCP/IP, HTTP, and other protocols
- Hardware

Grammars, Automata, Regular Expressions
- GUI
- Lexical analysis in compilers of programming languages like C/C++, Java, and many more

Future computers
- Biomolecular finite automata
- DNA/RNA Turing machines
More questions

• Find duplicate occurrences of a phrase (Reg Exp).
• Does a program contain an assertion violation? Does a device driver respect certain protocols? (Properties of Lang)
• Can your software be stuck in an infinite loop? (Lang Incl)
• Does a distributed algorithm contain a livelock? (Lang Incl)
• Detect malicious Javascript entered into a web application. The set of malicious strings is a language. (Langs Inters)
• Run-time monitoring of reactive and mission-critical systems (nuclear reactors, chemical procs). (FA, Incl/Inters)
• Bioinformatics: pattern matching \rightarrow build a language
• AI: FAs are used in simulation of character behavior