Chapter 3

Regular Expressions, Regular Languages, Nondeterminism, and Kleene's Theorem

Regular Languages and Regular Expressions

- Many simple languages can be expressed by a formula involving languages containing a single string of length 1 and the operations of union, concatenation and Kleene star. Here are three examples
 - Strings ending in *aa*: {*a*, *b*}* {*aa*}
 - (This is a simplification of $({a} \cup {b})^*{a}{a}$)
 - Strings containing *ab* or *bba*: $\{a, b\}^* \{ab, bba\} \{a, b\}^*$
- These are called *regular* languages

- Definition: If Σ is an alphabet, the set *R* of regular languages over Σ is defined as follows:
 - The language \varnothing is an element of **R**, and for every $\sigma \in \Sigma$, the language $\{\sigma\}$ is in **R**
 - For every two languages L_1 and L_2 in **R**, the three languages $L_1 \cup L_2$, L_1L_2 , and L_1^* are elements of **R**
- Examples:

- Kleene's star
 Last concatenation
- { Λ }, because $\emptyset^* = {\Lambda}$ - {a, b}*{aa} = ({a} U {b})* ({a}{a})

1. We start with these

^{2.} Then with these

- A *regular expression* for a language is a slightly more user-friendly formula which is similar to algebraic expressions
 - Parentheses replace curly braces, and are used only when needed, and the union symbol is replaced by +

Regular language	Regular Expression
Ø	Ø
$\{\Lambda\}$	Λ
{ <i>a</i> , <i>b</i> }*	$(a+b)^*$
{aab}*{a,ab}	$(aab)^*(a+ab)$
$(\{aa, bb\} \cup \{ab, ba\}\{aa, bb\}^*\{ab, ba\})^*$	(aa + bb + (ab + ba)(aa + bb)*(ab + ba))*

- A regular expression describes a regular language, and a regular language can be described by a regular expression.
- Two regular expressions are equal if the languages they describe are equal. For example,

$$- (a^*b^*)^* = (a+b)^*$$

$$- (a+b)^*ab(a+b)^*+b^*a^* = (a+b)^*$$

• The first half of the left-hand expression describes the strings that contain the substring *ab* and the second half describes those that don't

- The language in {a, b}* with an odd number of a's
- A string with an odd number of *a*'s has at least one *a*, and the additional *a*'s can be grouped into pairs. There can be arbitrarily many *b*'s before the first *a*, between any two consecutive *a*'s, and after the last *a*.
 - b*ab*(ab*ab*)*
 - b*a(b*ab*a)*b*
 - b*a(b+ab*a)*
 - (b+ab*a)*ab*

See more examples in the textbook!

• An identifier in C is a string of length 1 or more that contains only letters, digits, and underscores ("_") and does not begin with a digit.

Letter, i.e., *a+b+c+...+A+B+...+Z*

For the alphabet {0, 1} find regular expressions for languages

• All binary strings

 $(0+1)^* = (1+0)^*$

- All binary strings of even length ((0+1)(0+1))*
- All binary strings containing the substring 001 (0+1)*001(0+1)*
- All binary strings with #1s = 0 mod 3
 0* + (0*10*10*10*)*
- All binary strings without two consecutive 0s (01+1)*(0+Λ)
- All binary strings with either 001 or 100 occurring somewhere
 (0+1)*001(0+1)* + (0+1)*100(0+1)*

This is what we know about languages ...

Nondetermínístíc Fíníte Automata

- This NFA closely resembles the regular expression (*aa* + *aab*)**b*
 - The top loop is *aa*
 - The bottom loop is *aab*
 - By following the links we can generate any string in the language
- This is not the transition diagram for an FA; some nodes have more than one *a*-arc, some have none
- Example: *aaaabaab* can be either accepted (top-bottom-top-b) or not accepted (top-bottom-bottom loops).

- For this reason, we should **not** think of an NFA as describing an algorithm for recognizing a language
- Instead, consider it as describing a number of different sequences of steps that *might* be followed

This is the "computation tree" for *aaaabaab*

- Each level corresponds to a prefix of the input string
- Each state on a level is one the machine could be in after processing that prefix
- There is an accepting path for the input string (as well as other paths that are not (accepting) (q_1)

q0)

 q_0

 q_0

 q_0

NFA: **Λ-transitions**

The technique in previous example does not provide a simple way to draw a transition diagram for (*aab*)*(*a*+*aba*)*

- We introduce a new feature called Λ-transition.
- It allows the device to change state without reading the next symbol.

- Definition: A nondeterministic finite automaton (NFA) is a 5-tuple (Q, Σ, q₀, A, δ), where:
 - *Q* is a finite set of states,
 - Σ is a finite input alphabet
 - $q_0 \in Q$ is the initial state
 - $A \subseteq Q$ is the set of accepting states
 - δ : *Q* × (Σ ∪ {Λ}) → 2^{*Q*} is the transition function.

(The values of δ are not single states, but *sets* of states)

• For every $q \in Q$ and every $\sigma \in \Sigma \cup \{\Lambda\}$, we interpret $\delta(q, \sigma)$ as the set of states to which the NFA can move from state q on input σ

$$\mathcal{O} \xrightarrow{\mathcal{A}} \mathcal{E} \qquad \mathcal{O} \qquad \mathcalO \O \\mathcalO O \qquad \mathcalO \O \\mathcalO O \qquad \mathcal$$

• Example: $\delta(0,a) = \{1\}$ $\delta(0,A) = \{3\}$ $\delta(0,b) = \emptyset$ $\delta(3,a) = \{3, 4\}$

How to define $\delta^*(q, x\sigma)$?

Defining δ^* is a little harder than for an FA, since $\delta^*(q, x)$ is a set, as is $\delta(p, \sigma)$ for any p in the first set:

 $\cup \{ \delta(p, \sigma) \mid p \in \delta^*(q, x) \}$ is a first step towards δ^*

We must also consider $\Lambda\text{-}transitions,$ which could potentially occur at any stage

- Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - The Λ -closure of S is the set $\Lambda(S)$ that can be defined recursively as follows:
 - $S \subseteq \Lambda(S)$
 - For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$

- Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - The Λ -closure of S is the set $\Lambda(S)$ that can be defined recursively as follows:
 - $S \subseteq \Lambda(S)$
 - For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$

- Definition: Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an NFA, and $S \subseteq Q$ is a set of states
 - The Λ -closure of S is the set $\Lambda(S)$ that can be defined recursively as follows:
 - $S \subseteq \Lambda(S)$
 - For every $q \in \Lambda(S)$, $\delta(q, \Lambda) \subseteq \Lambda(S)$
- As for any finite set that is defined recursively, we can easily formulate an algorithm to calculate Λ(S):
 - Initialize *T* to be *S*, as in the basis part of the definition
 - Make a sequence of passes, in each pass considering every $q \in T$ and adding every state in $\delta(q, \Lambda)$ not already there
 - Stop after the first pass in which *T* does not change
 - The final value of *T* is $\Lambda(S)$

• Definition: Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA

Define the extended transition function

 $\delta^* : Q \times \Sigma^* \to 2^Q$ as follows:

- For every $q \in Q$, $\delta^*(q,\Lambda) = \Lambda(\{q\})$

- For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$
 - $\delta^*(q, y\sigma) = \Lambda(\cup \{\delta(p, \sigma) \mid p \in \delta^*(q, y)\})$

- A string *x* ∈ Σ^{*} is accepted by *M* if $\delta^*(q_0, x) \cap A \neq \emptyset$

- (i.e., some sequence of transitions **involving the symbols of** x and Λ 's leads from q_0 to an accepting state)
- <u>The language *L(M)* accepted by *M* is the set of all strings accepted by *M*</u>

а Λ a а Λ а Λ Let us find $\delta^*(0, aab)$ $\Lambda(\{0\}) = \{0, 3\};$ Then, $\delta^*(0, aa) = \{2, 3, 4\};$ Now we add b to aa $\cup \{\delta(p,b) | p \in \{2,3,4\}\} = \delta(2,b) \cup \delta(3,b) \cup \delta(4,b) =$ See also $= \{0\} \cup \emptyset \cup \{5\} = \{0, 5\};$ example Now we compute Λ -closure of this set, and add $\{3\}$. 3.15 in the The answer is $\delta^*(0, aab) = \{0, 5, 3\}.$ textbook

An NFA that accepts strings that contain aa or bb as a substring.

An NFA that accepts strings that contain aa or bb as a substring.

An NFA that accepts strings over {a,b} that contain b either at the third position from the right or at the second position from the right. An NFA that accepts strings over {a,b} that contain b either at the third position from the right or at the second position from the right.

Simultaneous Pattern: NFA for a*+(ab)*

Simultaneous Pattern: NFA for a*+(ab)*

Simultaneous Pattern: NFA for (a*+(ab)*)b*

Simultaneous Pattern: NFA for (a*+(ab)*)b*

Simultaneous Pattern: NFA for all strings over {a,b,c} that are missing at least one letter. For example: ab,ccccc, bcbcbb, cacaaa

Simultaneous Pattern: NFA for all strings over {a,b,c} that are missing at least one letter. For example: ab,ccccc, bcbcbb, cacaaa

$$L = (a+b)*b$$

FA

Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$.

Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$.

Proof. We need to show that if $s \in \Lambda(S)$ then $s \in \Lambda(T)$.

- $\forall s \in S$, it is true that $s \in T$ and then (by def of $\Lambda(T)$) $s \in \Lambda(T)$
- if $s \notin S$ then it was added to $\Lambda(S)$ by the recursive rule

 $\delta(q,\Lambda) \subseteq \Lambda(S)$ for some $q \in \Lambda(S)$

. We prove by induction on the number of recursive applications of $\delta(\cdot, \Lambda)$, i.e., by structural induction.
Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. Show that if S and T are subsets of Q for which $S \subseteq T$, then $\Lambda(S) \subseteq \Lambda(T)$.

Proof. We need to show that if $s \in \Lambda(S)$ then $s \in \Lambda(T)$.

- $\forall s \in S$, it is true that $s \in T$ and then (by def of $\Lambda(T)$) $s \in \Lambda(T)$
- if $s \notin S$ then it was added to $\Lambda(S)$ by the recursive rule

 $\delta(q,\Lambda) \subseteq \Lambda(S)$ for some $q \in \Lambda(S)$

. We prove by induction on the number of recursive applications of $\delta(\cdot, \Lambda)$, i.e., by structural induction.

- IH: all elements in $\Lambda(S)$ that were added by less than k applications of $\delta(\cdot, \Lambda)$ are in $\Lambda(T)$
- IS: We add s to $\Lambda(S)$ by kth application of δ . W.l.o.g., there exists $q \in \Lambda(S)$ (such that $s \in \delta(q, \Lambda)$) that was added by less than k applications of δ to $\Lambda(S)$ and by IH $q \in \Lambda(T)$. By def of $\Lambda(T) \ \delta(q, \Lambda) \subset \Lambda(T)$ because $q \in \Lambda(T)$.

Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $M_1 = (Q, \Sigma, q_0, A, \delta_1)$ be the NFA with no Λ -transitions for which

$$\forall q \in Q \ \forall \sigma \in \Sigma \quad \delta_1(q, \sigma) = \{\delta(q, \sigma)\}.$$

Then $\forall q \in Q \ \forall \sigma \in \Sigma \quad \delta_1^*(q, x) = \{\delta^*(q, x)\}.$

Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $M_1 = (Q, \Sigma, q_0, A, \delta_1)$ be the NFA with no Λ -transitions for which

$$\forall q \in Q \ \forall \sigma \in \Sigma \quad \delta_1(q, \sigma) = \{\delta(q, \sigma)\}.$$

Then $\forall q \in Q \ \forall \sigma \in \Sigma \quad \delta_1^*(q, x) = \{\delta^*(q, x)\}.$

Proof. The proof is by structural induction.

- Observe there are no Λ-transitions in M₁, i.e., δ₁^{*}(q, Λ) = {q}, and δ₁^{*}(q, xa) = ∪{δ₁(p, a) | p ∈ δ₁^{*}(q, x)}, ∀q ∈ Q, ∀a ∈ Σ.
 PS: δ^{*}(q, Λ) = {q} and δ^{*}(q, Λ) = a by definition of δ^{*}
- BS: $\delta_1^*(q, \Lambda) = \{q\}$, and $\delta^*(q, \Lambda) = q$ by definition of δ^* .
- IH: Suppose that for some y, $\delta_1^*(q, y) = \{\delta^*(q, y)\}$, for every q.
- IS: Then for $a \in \Sigma$,

$$\begin{aligned}
\delta_1(q, ya) &= \bigcup \{ \delta_1(p, a) \mid p \in \delta_1^*(q, y) \} \\
&= \bigcup \{ \delta_1(p, a) \mid p \in \{ \delta^*(q, y) \} \} \\
&= \delta_1(\delta^*(q, y), a) \\
&= \{ \delta(\delta^*(q, y), a) \} = \{ \delta^*(q, ya) \}
\end{aligned}$$

Claim. Let $M = (Q, \Sigma, q_0, A, \delta)$ be an NFA. For every $q \in Q$ and every $x, y \in \Sigma^*$,

$$\delta^*(q, xy) = \bigcup \{\delta^*(r, y) \mid r \in \delta^*(q, x)\}.$$

Proof by structural induction is given in Exercise 3.30. Learn it!

The Nondeterminism in an NFA Can Be Eliminated

- Two types of nondeterminism have arisen:
 - 1) Different arcs for the same input symbol (or no arcs), and
 2) Λ-transitions
 - Both can be eliminated
 - For the **second type**, introduce new transitions so that we no longer need the Λ -transitions
 - When there is no σ -transition from p to q but the NFA can go from p to q by using one or more Λ -transitions as well as σ , we introduce the σ -transition
 - The resulting NFA may have more nondeterminism of the first type, but it will have no $\Lambda\text{-}transitions$

The Nondeterminism in an NFA Can Be Eliminated (cont'd.)

• Theorem: For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an NFA M_1 with no Λ -transitions that also accepts L

• Define
$$M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$$
, where

- for every $q \in Q$, $\delta_1(q, \Lambda) = \emptyset$, and $(\eta, \Lambda) = \emptyset$, $(\eta, \Lambda) = \emptyset$,
- for every $q \in Q$ and every $\sigma \in \Sigma$, $\delta_1(q, \sigma) = \delta^*(q, \sigma)$

original definition of $\delta^* \rightarrow \delta^*(q, y\sigma) = \Lambda(\cup \{\delta(p, \sigma) \mid p \in \delta^*(q, y)\})$

here we need $y = \Lambda \longrightarrow \delta^*(q, \Lambda \sigma) = \Lambda(\cup \{\delta(p, \sigma) \mid p \in \delta^*(q, \Lambda)\})$

The Nondeterminism in an NFA Can Be Eliminated (cont'd.)

• Theorem: For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an NFA M_1 with no Λ -transitions that also accepts L

• Define
$$M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$$
, where

- for every $q \in Q$, $\delta_1(q, \Lambda) = \emptyset$, and

- for every $q \in Q$ and every $\sigma \in \Sigma$, $\delta_1(q, \sigma) = \delta^*(q, \sigma)$

- Define $A_1 = A \cup \{q_0\}$ if $\Lambda \in L$, and $A_1 = A$ otherwise
- We can prove, by structural induction on *x*, that for every *q* and every *x* with $|x| \ge 1$, $\delta_1^*(q, x) = \delta^*(q, x)$

Homework: prove this theorem (see Theorem 3.17 in the textbook)

Example: Λ -transition elimination

_

means 5 will be connected to 1, 2, and 4

(b)

q	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{a})$	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{b})$	$\boldsymbol{\delta}(\boldsymbol{q},\boldsymbol{\Lambda})$	$\delta^*(q, a)$	$\boldsymbol{\delta^*}(\boldsymbol{q},\boldsymbol{b})$
1	Ø	Ø	{2}	{2, 3}	Ø
2	{2, 3}	Ø	Ø	{2, 3}	Ø
3	Ø	{4}	Ø	Ø	{1, 2, 4}
4	Ø	{5}	{1}	{2, 3}	{5}
5	{4}	Ø	Ø	({1, 2, 4})	Ø

Eliminate Lambda-transition

Eliminate Lambda-transition

The Nondeterminism in an NFA Can Be Eliminated

- Theorem: For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L
- We can assume M has no Λ -transitions. Let $Q_1 = 2^Q$ (for this reason, this is called the *subset construction*); $q_1 = \{q_0\}$; for every $q \in Q_1$ and $\sigma \in \Sigma$, $\int^{\text{subset of } Q}$

$\delta_{1}(q, \sigma) = \bigcup \{\delta(p, \sigma) \mid p \in q\} \dots$ 1) Start with qo 2) Add transitions to subst states $\int \left(\frac{p}{2}\right) \left(\frac{p}{2$

The Nondeterminism in an NFA Can Be Eliminated

- Theorem: For every language $L \subseteq \Sigma^*$ accepted by an NFA $M = (Q, \Sigma, q_0, A, \delta)$, there is an FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L
- We can assume M has no Λ -transitions. Let $Q_1 = 2^Q$ (for this reason, this is called the *subset construction*); $q_1 = \{q_0\}$; for every $q \in Q_1$ and $\sigma \in \Sigma$, $\int^{\text{subset of } Q}$

$$\delta_1(q, \sigma) = \bigcup \{\delta(p, \sigma) \mid p \in q\}$$
$$A_1 = \{q \in Q_1 \mid q \cap A \neq \emptyset\}$$

- M_1 is clearly an FA
 - It accepts the same language as *M* because for every $x \in \Sigma^*$, $\delta_1^*(q_1, x) = \delta^*(q_0, x)$
- The proof is by structural induction on *x* Homework: prove this theorem (see Thm 3.18 in the textbook)

Example: Subset construction to eliminate nondeterminism

 $M = (Q, \Sigma, q_0, A, \delta)$ NFA to accept {aa, aab}*{b}

→ $M_1 = (2^{Q}, \Sigma, \{q_0\}, A_1, \delta_1)$ FA to accept $\{aa, aab\}^*\{b\}$

- No need to generate 2ⁿ subsets; consider only reachable states
- It is recommended to use a transition table
- Example: δ₁({1,2},a) = δ(1,a)∪δ(2,a)={0,3}
- All reachable states that contain elements from A are in A_1

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(\boldsymbol{q},\boldsymbol{b})$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q, a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(\boldsymbol{q},\boldsymbol{a})$	$\boldsymbol{\delta}(\boldsymbol{q},\boldsymbol{b})$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\pmb{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\pmb{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

q	$\boldsymbol{\delta}(q,a)$	$\boldsymbol{\delta}(q,b)$
0	{1, 2}	{4}
1	{0}	Ø
2	{3}	Ø
3	Ø	{0}
4	Ø	Ø

Construct FA from NFA: 1) eliminate all lambda transitions.

q	δ (q ,a)	δ (q,b)
1	{2}	Ø
2	Ø	{3}
3	{1,4,5}	Ø
4	{5}	Ø
5	{1}	Ø

This is what we know about languages ...

Kleene's Theorem, Part 1

- Theorem: For every alphabet Σ , every regular language over Σ can be accepted by a finite automaton
- Because of what we have just shown, it is enough to show that every regular language over Σ can be accepted by an NFA
- The proof is by structural induction, based on the recursive definition of the set of regular languages over $\boldsymbol{\Sigma}$

Homework: Learn both parts of Kleene's theorem (including proofs).

Kleene's Theorem, Part 1 (cont'd.)

- The basis cases are easy
- The automata pictured below accept the languages \varnothing and $\{\sigma\}$, respectively

- Induction hypothesis: both $\rm L_1$ and $\rm L_2$ are regular languages can be accepted by NFAs
- Induction step: $L(M_1) \cup L(M_2)$, $L(M_1)L(M_2)$, and $L(M_1)^*$ can be accepted by NFAs

Each FA is shown as having 2 accepting states

Kleene's *

Kleene's Theorem, Part 2

- Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular
- Proof: First, for two states p and q, we define the language $L(p, q) = \{x \in \Sigma^* \mid \delta^*(p, x) = q\}$

Kleene's Theorem, Part 2

- Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular
- Proof: First, for two states p and q, we define the language $L(p, q) = \{x \in \Sigma^* \mid \delta^*(p, x) = q\}$
- If we can show that for every *p* and *q* in *Q*, *L*(*p*, *q*) is regular, then it will follow that *L*(*M*) is, because ...

$$-L(M) = \cup \{L(q_0, q) \mid q \in A\}$$

Each of these languages is regular, so is their union
Kleene's Theorem, Part 2

- Theorem: For every finite automaton $M=(Q, \Sigma, q_0, A, \delta)$, the language L(M) is regular
- Proof: First, for two states p and q, we define the language $L(p, q) = \{x \in \Sigma^* \mid \delta^*(p, x) = q\}$
- If we can show that for every *p* and *q* in *Q*, *L*(*p*, *q*) is regular, then it will follow that *L*(*M*) is, because ...

$-L(M)=\cup\left\{L(q_0,q)\mid q\in A\right\}$

- The union of a finite collection of regular languages is regular
- We will show that *L*(*p*, *q*) is regular by expressing it in terms of simpler languages that are regular

- We will consider the distinct states through which *M* passes as it moves from *p* to *q*
- If $x \in L(p, q)$, we say x causes M to go from p to qthrough a state r if there are non-null strings x_1 and x_2 such that $x = x_1x_2$, $\delta^*(p, x_1) = r$, and $\delta^*(r, x_2) = q$

- In using a string of length 1 to go from *p* to *q*, *M* does not go *through* any state *P*
- How can we construct an inductive proof on what happens between *p* and *q*?

• Assume *Q* has *n* elements numbered 1 to *n*

- Assume *Q* has *n* elements numbered 1 to *n*
- For $p, q \in Q$ and $j \ge 0$

L(p, q, j) = strings in L(p, q) that cause M to go from p to q without going through any state numbered higher than j

- Assume *Q* has *n* elements numbered 1 to *n*
- For $p, q \in Q$ and $j \ge 0$

L(p, q, j) =strings in L(p, q) that cause M to go from p to q without going through any state numbered higher than j

- Suppose that for some number $k \ge 0$, L(p, q, k) is regular for every $p, q \in Q$ and consider how a string can be in L(p, q, k+1)
 - The easiest way is for it to be in L(p, q, k)
 - If not, it causes *M* to go to *k*+1 one or more times, but *M* goes through nothing higher (i.e., no state *k+2* for example)

- Every string in L(p, q, k+1) can be described in one of those two ways and every string that has one of these two forms is in L(p, q, k+1). This leads to the formula

 L(p, q, k+1) = L(p, q, k) ∪
 L(p, k+1, k) L(k+1, k+1, k)* L(k+1, q, k)
- This is the main point of a proof by induction on *k* and for an algorithm

Algorithm: FA \rightarrow RE. Let r(i, j, k) denote a RE for L(i, j, k). Then L(M) is described by the RE we need accepting states only

$$r(M) = r(1, 1, 3) + r(1, 2, 3)$$

The recursive formula with smaller k in the proof tells

$$r(1,1,3) = r(1,1,2) + r(1,3,2)r(3,3,2)*r(3,1,2)$$

$$r(1,2,3) = r(1,2,2) + r(1,3,2)r(3,3,2)*r(3,2,2)$$

Applying the formula to the expressions r(i, j, 2) we get $r(1, 1, 2) = r(1, 1, 1) + r(1, 2, 1)r(2, 2, 1)^*r(2, 1, 1)$ a $r(1, 3, 2) = r(1, 3, 1) + r(1, 2, 1)r(2, 2, 1)^*r(2, 3, 1)$

$$r(3, 3, 2) = r(3, 3, 1) + r(3, 2, 1)r(2, 2, 1)^*r(2, 3, 1)$$

$$r(3, 1, 2) = r(3, 1, 1) + r(3, 2, 1)r(2, 2, 1)^*r(2, 1, 1)$$

$$r(1, 2, 2) = r(1, 2, 1) + r(1, 2, 1)r(2, 2, 1)^*r(2, 2, 1)$$

 $r(3, 2, 2) = r(3, 2, 1) + r(3, 2, 1)r(2, 2, 1)^*r(2, 2, 1)$

р	<i>r</i> (p , 1 , 0)	<i>r</i> (p, 2, 0)	<i>r</i> (p , 3 , 0)	a
1	$a + \Lambda$	b	Ø	b - 2
2	а	Λ	b	
3	а	b	Λ	
	•			
p	<i>r</i> (p , 1 , 1)	<i>r</i> (p , 2 , 1)	<i>r</i> (p , 3 , 1)	
1	<i>a</i> *	a^*b	Ø	
2	aa^*	$\Lambda + aa^*b$	b	
3	aa^*	a^*b	Λ	
				-
p	<i>r</i> (p , 1 , 2)		<i>r</i> (p, 2, 2)	<i>r</i> (p, 3, 2)
1	$a^*(baa^*)^*$		$a^*(baa^*)^*b$	$a^*(baa^*)^*bb$
2	$aa^*(baa^*)^*$		$(aa^{*}b)^{*}$	$(aa^{*}b)^{*}b$

P	<i>r</i> (p , 1 , <i>2</i>)	<i>r</i> (p, <i>2</i> , <i>2</i>)	r (p, 5, 2)
1	$a^*(baa^*)^*$	$a^*(baa^*)^*b$	$a^*(baa^*)^*bb$
2	$aa^*(baa^*)^*$	$(aa^{*}b)^{*}$	$(aa^*b)^*b$
3	$aa^* + a^*baa^*(baa^*)^*$	$a^*b(aa^*b)^*$	$\Lambda + a^*b(aa^*b)^*b$

Example:

 $r(2, 2, 1) = r(2, 2, 0) + r(2, 1, 0)r(1, 1, 0)^*r(1, 2, 0)$

 $= \Lambda + (a)(a + \Lambda)^*(b)$ $= \Lambda + aa^*b$

Languages of regular expressions

Regular languages

Languages accepted by FA

Languages accepted by NFA

Regular expressions and finite automata

- Tools such as grep, awk, and sed
- Email servers
- Pattern matching

Finite automata

- Software testing/QC
- TCP/IP, HTTP, and other protocols
- Hardware

Grammars, Automata, Regular Expressions

- GUI
- Lexical analysis in compilers of programming languages like C/C++, Java, and many more

Future computers

- Biomolecular finite automata
- DNA/RNA Turing machines

More questions

- Find duplicate occurrences of a phrase (Reg Exp).
- Does a program contain an assertion violation? Does a device driver respect certain protocols? (Properties of Lang)
- Can your software be stuck in an infinite loop? (Lang Incl)
- Does a distributed algorithm contain a livelock? (Lang Incl)
- Detect malicious Javascript entered into a web application.
 The set of malicious strings is a language. (Langs Inters)
- Run-time monitoring of reactive and mission-critical systems (nuclear reactors, chemical procs). (FA, Incl/Inters)
- Bioinformatics: pattern matching \rightarrow build a language
- AI: FAs are used in simulation of character behavior