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Chapter 3

Regular Expressions, 
Regular Languages,

Nondeterminism, and 
Kleene’s Theorem
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Regular Languages and Regular 
Expressions

• Many simple languages can be expressed by a 
formula involving languages containing a single 
string of length 1 and the operations of union, 
concatenation and Kleene star.  Here are three 
examples
– Strings ending in aa: {a, b}* {aa}
– (This is a simplification of ({a} ∪ {b})*{a}{a} )
– Strings containing ab or bba: {a, b}* {ab, bba} {a, b}*

• These are called regular languages
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Regular Languages and Regular 
Expressions (cont’d.)

• Definition: If Σ is an alphabet, the set R of regular 
languages over Σ is defined as follows:
– The language ∅ is an element of R, and for every           

σ ∈ Σ, the language {σ} is in R
– For every two languages L1 and L2 in R, the three 

languages L1 ∪ L2, L1L2, and L1* are elements of R
• Examples:

– {Λ},  because ∅* = {Λ}
– {a, b}*{aa} =  ({a} ∪ {b})* ({a}{a}) 

1. We start with these

2. Then with these

3. Kleene’s star
4. Last concatenation
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Regular Languages and Regular 
Expressions (cont’d.)

• A regular expression for a language is a slightly more 
user-friendly formula which is similar to algebraic 
expressions
– Parentheses replace curly braces, and are used only 

when needed, and the union symbol is replaced by +

Regular language Regular Expression
∅ ∅
{Λ} Λ
{a,b}* (a+b)*
{aab}*{a,ab} (aab)*(a+ab)
({aa, bb} ∪ {ab, ba}{aa, bb}*{ab, ba})* (aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗
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Regular Languages and Regular 
Expressions (cont’d.)

• A regular expression describes a regular language, 
and a regular language can be described by a regular 
expression.

• Two regular expressions are equal if the languages 
they describe are equal.  For example,
– (a*b*)* = (a+b)*
– (a+b)*ab(a+b)*+b*a* = (a+b)*

• The first half of the left-hand expression describes the 
strings that contain the substring ab and the second half 
describes those that don’t
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Regular Languages and Regular 
Expressions (cont’d.)

• The language in {a, b}∗ with an odd number of a’s
• A string with an odd number of a’s has at least one a, 

and the additional a’s can be grouped into pairs. There 
can be arbitrarily many b’s before the first a, between 
any two consecutive a’s, and after the last a.

– b*ab*(ab*ab*)*
– b*a(b*ab*a)*b*
– b*a(b+ab*a)*
– (b+ab*a)*ab*

See more examples in the textbook!
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Regular Languages and Regular 
Expressions (cont’d.)

• An identifier in C is a string of length 1 or more that 
contains only letters, digits, and underscores (“_”) and 
does not begin with a digit.

(l+_)(l+d+_)*

Letter, i.e., a+b+c+…+A+B+…+Z

digit
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For the alphabet {0, 1} find regular expressions for languages
• All binary strings

(0+1)* = (1+0)*

• All binary strings of even length

((0+1)(0+1))*
• All binary strings containing the substring 001

(0+1)*001(0+1)*

• All binary strings with #1s = 0 mod 3

0* + (0*10*10*10*)*
• All binary strings without two consecutive 0s

(01+1)*(0+Λ)
• All binary strings with either 001 or 100 occurring somewhere

(0+1)*001(0+1)* + (0+1)*100(0+1)*
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This is what we know about languages …

All languages

Languages 
of finite 
automata

• Palindromes
• AnBn
• Etc.

Regular languages = 
Languages accepted 
by regular 
expressions

• {a,b}=
a+b

The intersection  is not 
empty but is there a regular 
language that cannot be 
accepted by FA?

?
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Nondeterministic 
Finite Automata
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Nondeterministic Finite Automata
• This NFA closely resembles the regular expression                     

(aa + aab)*b
– The top loop is aa
– The bottom loop is aab
– By following the links we can generate any string in the language

• This is not the transition diagram for an FA; some nodes have 
more than one a-arc, some have none

• Example: aaaabaab can be either accepted                                 
(top-bottom-top-b) or
not accepted (top-bottom-bottom loops).         
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Nondeterministic Finite Automata

• For this reason, we should not think of an NFA as 
describing an algorithm for recognizing a language

• Instead, consider it as describing a number of 
different sequences of steps that might be followed
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Nondeterministic Finite Automata
This is the “computation tree” for aaaabaab

– Each level corresponds to a prefix of the 
input string

– Each state on a level is one  the machine 
could be in after processing that prefix

– There is an accepting path for the input 
string (as well as other paths that are not 
accepting)

0
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NFA: Λ-transitions
The technique in previous example 
does not provide a simple way to draw 
a transition diagram for (aab)*(a+aba)*
• We introduce a new feature called  

Λ-transition. 
• It allows the device to change state 

without reading the next symbol.

Computation 
tree for 
aababa
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Nondeterministic Finite Automata
• Definition: A nondeterministic finite automaton (NFA) 

is a 5-tuple (Q, Σ, q0, A, δ), where:
– Q is a finite set of states,
– Σ is a finite input alphabet
– q0 ∈ Q is the initial state
– A ⊆ Q is the set of accepting states
– δ : Q × (Σ ∪ {Λ}) → 2Q is the transition function.
(The values of  δ are not single states, but sets of states)

• For every q∈Q and every σ ∈Σ ∪ {Λ},  we interpret 
δ(q, σ) as the set of states to which the NFA can move 
from state q on input σ
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• Example: 
δ(0,a) = {1}
δ(0,Λ) = {3}
δ(0,b) = ∅
δ(3,a) = {3, 4}
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Nondeterministic Finite Automata

How to define δ* (q, xσ)? 

Defining δ* is a little harder than for an FA, since δ*(q, x) 
is a set, as is δ(p, σ) for any p in the first set:

∪ { δ(p, σ) | p ∈ δ*(q, x)} is a first step towards δ*

We must also consider Λ-transitions, which could 
potentially occur at any stage
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• Definition: Suppose M = (Q, Σ, q0, A, δ) is an NFA, and              
S ⊆ Q is a set of states
– The Λ-closure of S is the set Λ(S) that can be defined 

recursively as follows:
• S ⊆ Λ(S)
• For every q ∈ Λ(S),  δ(q, Λ) ⊆ Λ(S)
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• Definition: Suppose M = (Q, Σ, q0, A, δ) is an NFA, and              
S ⊆ Q is a set of states
– The Λ-closure of S is the set Λ(S) that can be defined 

recursively as follows:
• S ⊆ Λ(S)
• For every q ∈ Λ(S),  δ(q, Λ) ⊆ Λ(S)
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• Definition: Suppose M = (Q, Σ, q0, A, δ) is an NFA, and              
S ⊆ Q is a set of states
– The Λ-closure of S is the set Λ(S) that can be defined 

recursively as follows:
• S ⊆ Λ(S)
• For every q ∈ Λ(S),  δ(q, Λ) ⊆ Λ(S)

• As for any finite set that is defined recursively, we 
can easily formulate an algorithm to calculate Λ(S):  
– Initialize T to be S, as in the basis part of the definition
– Make a sequence of passes, in each pass considering 

every q ∈ T and adding every state in δ(q, Λ) not 
already there  

– Stop after the first pass in which T does not change
– The final value of T is Λ(S)
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Nondeterministic Finite Automata
• Definition:  Let M=(Q, Σ, q0, A, δ) be an NFA

Define the extended transition function
δ* : Q × Σ* → 2Q as follows:

– For every q ∈ Q, δ*(q,Λ) = Λ({q})
– For every q ∈ Q, every y ∈ Σ*, and every σ ∈ Σ

• δ*(q, yσ) = Λ(∪ {δ(p, σ) | p ∈ δ*(q, y)})
– A string x ∈ Σ* is accepted by M if  δ*(q0, x) ∩ A ≠ ∅
(i.e., some sequence of transitions involving the symbols of 

x and Λ’s leads from q0 to an accepting state)
• The language L(M) accepted by M is the set of all strings 

accepted by M
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See also 
example 
3.15 in the 
textbook
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An NFA that accepts strings that contain aa or bb as a 
substring.
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An NFA that accepts strings that contain aa or bb as a 
substring.
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An NFA that accepts strings over {a,b} that contain b 
either at the third position from the right or at the 
second position from the right.
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An NFA that accepts strings over {a,b} that contain b 
either at the third position from the right or at the 
second position from the right.
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Simultaneous Pattern: NFA for a*+(ab)*
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Simultaneous Pattern: NFA for a*+(ab)*
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Simultaneous Pattern: NFA for (a*+(ab)*)b*
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Simultaneous Pattern: NFA for (a*+(ab)*)b*
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Simultaneous Pattern: NFA for all strings over 
{a,b,c} that are missing at least one letter. For 
example: ab,ccccc, bcbcbb, cacaaa
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Simultaneous Pattern: NFA for all strings over 
{a,b,c} that are missing at least one letter. For 
example: ab,ccccc, bcbcbb, cacaaa
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L = (a+b)*b

a

b

b a

a

b

FA

a,b

b NFA
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Proof by structural induction is given in Exercise 3.30. Learn it!
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The Nondeterminism in an NFA Can Be 
Eliminated

• Two types of nondeterminism have arisen: 
– 1) Different arcs for the same input symbol (or no arcs), and               

2) Λ-transitions
– Both can be eliminated

• For the second type, introduce new transitions so 
that we no longer need the Λ-transitions
– When there is no σ-transition from p to q but the NFA 

can go from p to q by using one or more Λ-transitions 
as well as σ, we introduce the σ-transition

– The resulting NFA may have more nondeterminism of 
the first type, but it will have no Λ-transitions
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The Nondeterminism in an NFA Can Be 
Eliminated (cont’d.)

• Theorem: For every language L ⊆ Σ* accepted by 
an NFA M = (Q, Σ, q0, A, δ), there is an NFA M1 with 
no   Λ-transitions that also accepts L

• Define M1 = (Q, Σ, q0, A1,δ1), where 
– for every q∈ Q, δ1(q, Λ) = ∅,  and 
– for every q ∈ Q and every σ ∈ Σ, δ1(q, σ) = δ*(q, σ)

δ*(q, yσ) = Λ(∪ {δ(p, σ) | p ∈ δ*(q, y)})
δ*(q, Λσ) = Λ(∪ {δ(p, σ) | p ∈ δ*(q, Λ)})

original definition of δ*

here we need y= Λ
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The Nondeterminism in an NFA Can Be 
Eliminated (cont’d.)

• Theorem: For every language L ⊆ Σ* accepted by 
an NFA M = (Q, Σ, q0, A, δ), there is an NFA M1 with 
no   Λ-transitions that also accepts L

• Define M1 = (Q, Σ, q0, A1,δ1), where 
– for every q∈ Q, δ1(q, Λ) = ∅,  and 
– for every q ∈ Q and every σ ∈ Σ, δ1(q, σ) = δ*(q, σ)

• Define A1 = A ∪ {q0} if Λ ∈ L, and A1 = A otherwise
• We can prove, by structural induction on x, that for 

every q and every x with |x| ≥ 1, δ1*(q, x) = δ* (q, x)  

Homework: prove this theorem (see Theorem 3.17 in the textbook)
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means 5 will be connected to 1, 2, and 4

Example: Λ-transition elimination
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Eliminate Lambda-transition
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Eliminate Lambda-transition
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The Nondeterminism in an NFA Can Be Eliminated
• Theorem: For every language L ⊆ Σ* accepted by an NFA 

M = (Q, Σ, q0, A, δ), there is an FA M1 = (Q1, Σ, q1, A1, δ1) 
that also accepts L

• We can assume M has no Λ-transitions.  Let Q1 = 2Q (for this 
reason, this is called the subset construction); q1 = {q0}; for 
every q ∈ Q1 and σ ∈ Σ, 

δ1(q, σ) = ∪{δ(p,σ) | p ∈ q} …
subset of Q



Foundations of Computer Science 50

The Nondeterminism in an NFA Can Be Eliminated
• Theorem: For every language L ⊆ Σ* accepted by an NFA 

M = (Q, Σ, q0, A, δ), there is an FA M1 = (Q1, Σ, q1, A1, δ1) 
that also accepts L

• We can assume M has no Λ-transitions.  Let Q1 = 2Q (for this 
reason, this is called the subset construction); q1 = {q0}; for 
every q ∈ Q1 and σ ∈ Σ, 

δ1(q, σ) = ∪{δ(p,σ) | p ∈ q} 
A1 = {q ∈ Q1 | q ∩ A ≠ ∅}

• M1 is clearly an FA
– It accepts the same language as M because for every     x ∈ Σ*, 

δ1*(q1, x) = δ*(q0, x)
• The proof is by structural induction on x
Homework: prove this theorem (see Thm 3.18 in the textbook)

subset of Q



Foundations of Computer Science 51

NFA to accept {aa,aab}*{b}
M = (Q, Σ, q0, A, δ) 
Example: Subset construction to eliminate nondeterminism

M1 = (2Q, Σ, {q0}, A1, δ1) 

• No need to generate 2n subsets; consider 
only reachable states

• It is recommended to use a transition table
• Example: δ1({1,2},a) = δ(1,a)∪δ(2,a)={0,3}
• All reachable states that contain elements 

from A are in A1

FA to accept {aa,aab}*{b}
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Construct FA from NFA: 1) eliminate all lambda transitions.
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Construct FA from NFA: 

2) create a table of transitions.

You need this only if you don’t 
eliminate Lambda’s
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3) Construct
FA.

a
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q δ(q,a) δ(q,b)

1 {2} ∅
2 ∅ {3}

3 {1,4,5} ∅
4 {5} ∅
5 {1} ∅
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This is what we know about languages …
All languages

Languages 
of NFA
=
Languages 
of FA

• Palindromes
• AnBn
• Etc.

Regular languages = 
Languages accepted 
by regular 
expressions

• {a,b}=
a+b

?
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Kleene’s Theorem, Part 1

• Theorem: For every alphabet Σ, every regular 
language over Σ can be accepted by a finite 
automaton

• Because of what we have just shown, it is enough to 
show that every regular language over Σ can be 
accepted by an NFA

• The proof is by structural induction, based on the 
recursive definition of the set of regular languages 
over Σ

Homework: Learn both parts of Kleene’s theorem (including proofs).
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Kleene’s Theorem, Part 1 (cont’d.)

• The basis cases are easy
• The automata pictured below accept the languages ∅

and {σ}, respectively

• Induction hypothesis: both L1 and L2 are regular 
languages can be accepted by NFAs

• Induction step: L(M1) ∪ L(M2), L(M1)L(M2), and 
L(M1)* can be accepted by NFAs
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Union
Concatenation

Kleene’s *

Each FA is shown as having 2 accepting states
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concatenation

aba
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Kleene’s Theorem, Part 2

• Theorem: For every finite automaton                      
M=(Q, Σ, q0, A, δ), the language L(M) is regular

• Proof: First, for two states p and q, we define the 
language L(p, q) = {x ∈ Σ* | δ*(p, x)=q}
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Kleene’s Theorem, Part 2

• Theorem: For every finite automaton                      
M=(Q, Σ, q0, A, δ), the language L(M) is regular

• Proof: First, for two states p and q, we define the 
language L(p, q) = {x ∈ Σ* | δ*(p, x)=q}

• If we can show that for every p and q in Q, L(p, q) is 
regular, then it will follow that L(M) is, because …

– L(M) = ∪ {L(q0, q) | q ∈ A} 

Each of these languages is 
regular, so is their union
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Kleene’s Theorem, Part 2

• Theorem: For every finite automaton                      
M=(Q, Σ, q0, A, δ), the language L(M) is regular

• Proof: First, for two states p and q, we define the 
language L(p, q) = {x ∈ Σ* | δ*(p, x)=q}

• If we can show that for every p and q in Q, L(p, q) is 
regular, then it will follow that L(M) is, because …

– L(M) = ∪ {L(q0, q) | q ∈ A} 
– The union of a finite collection of regular languages is 

regular
• We will show that L(p, q) is regular by expressing it 

in terms of simpler languages that are regular
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Kleene’s Theorem, Part 2 (cont’d.)

• We will consider the distinct states through which M
passes as it moves from p to q

• If x ∈ L(p, q), we say x causes M to go from p to q
through a state r if there are non-null strings x1 and 
x2 such that x = x1x2,  δ*(p, x1) = r,  and δ*(r, x2) = q

– In using a string of length 1 to go from p to q, M does 
not go through any state

– How can we construct an inductive proof on what 
happens between p and q?
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Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n
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Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n
• For p, q ∈ Q and j ≥ 0

L(p, q, j) = strings in L(p, q) that cause M to go from p
to q without going through any state numbered higher 
than j
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Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n
• For p, q ∈ Q and j ≥ 0

L(p, q, j) = strings in L(p, q) that cause M to go from p
to q without going through any state numbered higher 
than j
• Suppose that for some number k ≥ 0, L(p, q, k) is 

regular for every p, q ∈ Q and consider how a string 
can be in L(p, q, k+1)
– The easiest way is for it to be in L(p, q, k)
– If not, it causes M to go to k+1 one or more times, but 

M goes through nothing higher (i.e., no state k+2 for 
example)
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Kleene’s Theorem, Part 2 (cont’d.)

• Every string in L(p, q, k+1) can be described in one of 
those two ways and every string that has one of these 
two forms is in L(p, q, k+1).  This leads to the formula
– L(p, q, k+1) = L(p, q, k) ∪

L(p, k+1, k) L(k+1, k+1, k)* L(k+1, q, k)
• This is the main point of a proof by induction on k and 

for an algorithm
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M

we need accepting states only
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M

Example:
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Regular languages
=

Languages of regular expressions
=

Languages accepted by FA
=

Languages accepted by NFA
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• Tools such as grep, awk, and sed
• Email servers
• Pattern matching

Regular expressions and 
finite automata

• Software testing/QC
• TCP/IP, HTTP, and other 

protocols
• Hardware

Finite automata

• Biomolecular finite automata
• DNA/RNA Turing machines

Future computers

• GUI
• Lexical analysis in compilers of 

programming languages like 
C/C++, Java, and many more

Grammars, Automata, 
Regular Expressions
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• Find duplicate occurrences of a phrase (Reg Exp).
• Does a program contain an assertion violation? Does a 

device driver respect certain protocols? (Properties of Lang)
• Can your software be stuck in an infinite loop? (Lang Incl)
• Does a distributed algorithm contain a livelock? (Lang Incl)
• Detect malicious Javascript entered into a web application. 

The set of malicious strings is a language. (Langs Inters)
• Run-time monitoring of reactive and mission-critical 

systems (nuclear reactors, chemical procs). (FA, Incl/Inters)
• Bioinformatics: pattern matching  build a language
• AI: FAs are used in simulation of character behavior

More questions
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