
Foundations of Computer Science 1

Chapter 3

Regular Expressions,
Regular Languages,

Nondeterminism, and
Kleene’s Theorem

Foundations of Computer Science 2

Regular Languages and Regular
Expressions

• Many simple languages can be expressed by a
formula involving languages containing a single
string of length 1 and the operations of union,
concatenation and Kleene star. Here are three
examples
– Strings ending in aa: {a, b}* {aa}
– (This is a simplification of ({a} ∪ {b})*{a}{a})
– Strings containing ab or bba: {a, b}* {ab, bba} {a, b}*

• These are called regular languages

Foundations of Computer Science 3

Regular Languages and Regular
Expressions (cont’d.)

• Definition: If Σ is an alphabet, the set R of regular
languages over Σ is defined as follows:
– The language ∅ is an element of R, and for every

σ ∈ Σ, the language {σ} is in R
– For every two languages L1 and L2 in R, the three

languages L1 ∪ L2, L1L2, and L1* are elements of R
• Examples:

– {Λ}, because ∅* = {Λ}
– {a, b}*{aa} = ({a} ∪ {b})* ({a}{a})

1. We start with these

2. Then with these

3. Kleene’s star
4. Last concatenation

Foundations of Computer Science 4

Regular Languages and Regular
Expressions (cont’d.)

• A regular expression for a language is a slightly more
user-friendly formula which is similar to algebraic
expressions
– Parentheses replace curly braces, and are used only

when needed, and the union symbol is replaced by +

Regular language Regular Expression
∅ ∅
{Λ} Λ
{a,b}* (a+b)*
{aab}*{a,ab} (aab)*(a+ab)
({aa, bb} ∪ {ab, ba}{aa, bb}*{ab, ba})* (aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

Foundations of Computer Science 5

Regular Languages and Regular
Expressions (cont’d.)

• A regular expression describes a regular language,
and a regular language can be described by a regular
expression.

• Two regular expressions are equal if the languages
they describe are equal. For example,
– (a*b*)* = (a+b)*
– (a+b)*ab(a+b)*+b*a* = (a+b)*

• The first half of the left-hand expression describes the
strings that contain the substring ab and the second half
describes those that don’t

Foundations of Computer Science 6

Regular Languages and Regular
Expressions (cont’d.)

• The language in {a, b}∗ with an odd number of a’s
• A string with an odd number of a’s has at least one a,

and the additional a’s can be grouped into pairs. There
can be arbitrarily many b’s before the first a, between
any two consecutive a’s, and after the last a.

– b*ab*(ab*ab*)*
– b*a(b*ab*a)*b*
– b*a(b+ab*a)*
– (b+ab*a)*ab*

See more examples in the textbook!

Foundations of Computer Science 7

Regular Languages and Regular
Expressions (cont’d.)

• An identifier in C is a string of length 1 or more that
contains only letters, digits, and underscores (“_”) and
does not begin with a digit.

(l+_)(l+d+_)*

Letter, i.e., a+b+c+…+A+B+…+Z

digit

Foundations of Computer Science 8

For the alphabet {0, 1} find regular expressions for languages
• All binary strings

(0+1)* = (1+0)*

• All binary strings of even length

((0+1)(0+1))*
• All binary strings containing the substring 001

(0+1)*001(0+1)*

• All binary strings with #1s = 0 mod 3

0* + (0*10*10*10*)*
• All binary strings without two consecutive 0s

(01+1)*(0+Λ)
• All binary strings with either 001 or 100 occurring somewhere

(0+1)*001(0+1)* + (0+1)*100(0+1)*

Foundations of Computer Science 9

This is what we know about languages …

All languages

Languages
of finite
automata

• Palindromes
• AnBn
• Etc.

Regular languages =
Languages accepted
by regular
expressions

• {a,b}=
a+b

The intersection is not
empty but is there a regular
language that cannot be
accepted by FA?

?

Foundations of Computer Science 10

Nondeterministic
Finite Automata

Foundations of Computer Science 11

Foundations of Computer Science 12

Nondeterministic Finite Automata
• This NFA closely resembles the regular expression

(aa + aab)*b
– The top loop is aa
– The bottom loop is aab
– By following the links we can generate any string in the language

• This is not the transition diagram for an FA; some nodes have
more than one a-arc, some have none

• Example: aaaabaab can be either accepted
(top-bottom-top-b) or
not accepted (top-bottom-bottom loops).

Foundations of Computer Science 13

Nondeterministic Finite Automata

• For this reason, we should not think of an NFA as
describing an algorithm for recognizing a language

• Instead, consider it as describing a number of
different sequences of steps that might be followed

Foundations of Computer Science 14

Nondeterministic Finite Automata
This is the “computation tree” for aaaabaab

– Each level corresponds to a prefix of the
input string

– Each state on a level is one the machine
could be in after processing that prefix

– There is an accepting path for the input
string (as well as other paths that are not
accepting)

0

Foundations of Computer Science 15

NFA: Λ-transitions
The technique in previous example
does not provide a simple way to draw
a transition diagram for (aab)*(a+aba)*
• We introduce a new feature called

Λ-transition.
• It allows the device to change state

without reading the next symbol.

Computation
tree for
aababa

Foundations of Computer Science 16

Nondeterministic Finite Automata
• Definition: A nondeterministic finite automaton (NFA)

is a 5-tuple (Q, Σ, q0, A, δ), where:
– Q is a finite set of states,
– Σ is a finite input alphabet
– q0 ∈ Q is the initial state
– A ⊆ Q is the set of accepting states
– δ : Q × (Σ ∪ {Λ}) → 2Q is the transition function.
(The values of δ are not single states, but sets of states)

• For every q∈Q and every σ ∈Σ ∪ {Λ}, we interpret
δ(q, σ) as the set of states to which the NFA can move
from state q on input σ

Foundations of Computer Science 17

• Example:
δ(0,a) = {1}
δ(0,Λ) = {3}
δ(0,b) = ∅
δ(3,a) = {3, 4}

Foundations of Computer Science 18

Nondeterministic Finite Automata

How to define δ* (q, xσ)?

Defining δ* is a little harder than for an FA, since δ*(q, x)
is a set, as is δ(p, σ) for any p in the first set:

∪ { δ(p, σ) | p ∈ δ*(q, x)} is a first step towards δ*

We must also consider Λ-transitions, which could
potentially occur at any stage

Foundations of Computer Science 19

• Definition: Suppose M = (Q, Σ, q0, A, δ) is an NFA, and
S ⊆ Q is a set of states
– The Λ-closure of S is the set Λ(S) that can be defined

recursively as follows:
• S ⊆ Λ(S)
• For every q ∈ Λ(S), δ(q, Λ) ⊆ Λ(S)

Foundations of Computer Science 20

• Definition: Suppose M = (Q, Σ, q0, A, δ) is an NFA, and
S ⊆ Q is a set of states
– The Λ-closure of S is the set Λ(S) that can be defined

recursively as follows:
• S ⊆ Λ(S)
• For every q ∈ Λ(S), δ(q, Λ) ⊆ Λ(S)

Foundations of Computer Science 21

• Definition: Suppose M = (Q, Σ, q0, A, δ) is an NFA, and
S ⊆ Q is a set of states
– The Λ-closure of S is the set Λ(S) that can be defined

recursively as follows:
• S ⊆ Λ(S)
• For every q ∈ Λ(S), δ(q, Λ) ⊆ Λ(S)

• As for any finite set that is defined recursively, we
can easily formulate an algorithm to calculate Λ(S):
– Initialize T to be S, as in the basis part of the definition
– Make a sequence of passes, in each pass considering

every q ∈ T and adding every state in δ(q, Λ) not
already there

– Stop after the first pass in which T does not change
– The final value of T is Λ(S)

Foundations of Computer Science 22

Nondeterministic Finite Automata
• Definition: Let M=(Q, Σ, q0, A, δ) be an NFA

Define the extended transition function
δ* : Q × Σ* → 2Q as follows:

– For every q ∈ Q, δ*(q,Λ) = Λ({q})
– For every q ∈ Q, every y ∈ Σ*, and every σ ∈ Σ

• δ*(q, yσ) = Λ(∪ {δ(p, σ) | p ∈ δ*(q, y)})
– A string x ∈ Σ* is accepted by M if δ*(q0, x) ∩ A ≠ ∅
(i.e., some sequence of transitions involving the symbols of

x and Λ’s leads from q0 to an accepting state)
• The language L(M) accepted by M is the set of all strings

accepted by M

Foundations of Computer Science 23

See also
example
3.15 in the
textbook

Foundations of Computer Science 24

An NFA that accepts strings that contain aa or bb as a
substring.

Foundations of Computer Science 25

An NFA that accepts strings that contain aa or bb as a
substring.

Foundations of Computer Science 26

An NFA that accepts strings over {a,b} that contain b
either at the third position from the right or at the
second position from the right.

Foundations of Computer Science 27

An NFA that accepts strings over {a,b} that contain b
either at the third position from the right or at the
second position from the right.

Foundations of Computer Science 28

Simultaneous Pattern: NFA for a*+(ab)*

Foundations of Computer Science 29

Simultaneous Pattern: NFA for a*+(ab)*

Foundations of Computer Science 30

Simultaneous Pattern: NFA for (a*+(ab)*)b*

Foundations of Computer Science 31

Simultaneous Pattern: NFA for (a*+(ab)*)b*

Foundations of Computer Science 32

Simultaneous Pattern: NFA for all strings over
{a,b,c} that are missing at least one letter. For
example: ab,ccccc, bcbcbb, cacaaa

Foundations of Computer Science 33

Simultaneous Pattern: NFA for all strings over
{a,b,c} that are missing at least one letter. For
example: ab,ccccc, bcbcbb, cacaaa

Foundations of Computer Science 34

L = (a+b)*b

a

b

b a

a

b

FA

a,b

b NFA

Foundations of Computer Science 35

Foundations of Computer Science 36

Foundations of Computer Science 37

Foundations of Computer Science 38

Foundations of Computer Science 39

Foundations of Computer Science 40

Proof by structural induction is given in Exercise 3.30. Learn it!

Foundations of Computer Science 41

The Nondeterminism in an NFA Can Be
Eliminated

• Two types of nondeterminism have arisen:
– 1) Different arcs for the same input symbol (or no arcs), and

2) Λ-transitions
– Both can be eliminated

• For the second type, introduce new transitions so
that we no longer need the Λ-transitions
– When there is no σ-transition from p to q but the NFA

can go from p to q by using one or more Λ-transitions
as well as σ, we introduce the σ-transition

– The resulting NFA may have more nondeterminism of
the first type, but it will have no Λ-transitions

Foundations of Computer Science 42

The Nondeterminism in an NFA Can Be
Eliminated (cont’d.)

• Theorem: For every language L ⊆ Σ* accepted by
an NFA M = (Q, Σ, q0, A, δ), there is an NFA M1 with
no Λ-transitions that also accepts L

• Define M1 = (Q, Σ, q0, A1,δ1), where
– for every q∈ Q, δ1(q, Λ) = ∅, and
– for every q ∈ Q and every σ ∈ Σ, δ1(q, σ) = δ*(q, σ)

δ*(q, yσ) = Λ(∪ {δ(p, σ) | p ∈ δ*(q, y)})
δ*(q, Λσ) = Λ(∪ {δ(p, σ) | p ∈ δ*(q, Λ)})

original definition of δ*

here we need y= Λ

Foundations of Computer Science 43

The Nondeterminism in an NFA Can Be
Eliminated (cont’d.)

• Theorem: For every language L ⊆ Σ* accepted by
an NFA M = (Q, Σ, q0, A, δ), there is an NFA M1 with
no Λ-transitions that also accepts L

• Define M1 = (Q, Σ, q0, A1,δ1), where
– for every q∈ Q, δ1(q, Λ) = ∅, and
– for every q ∈ Q and every σ ∈ Σ, δ1(q, σ) = δ*(q, σ)

• Define A1 = A ∪ {q0} if Λ ∈ L, and A1 = A otherwise
• We can prove, by structural induction on x, that for

every q and every x with |x| ≥ 1, δ1*(q, x) = δ* (q, x)

Homework: prove this theorem (see Theorem 3.17 in the textbook)

Foundations of Computer Science 44

means 5 will be connected to 1, 2, and 4

Example: Λ-transition elimination

Foundations of Computer Science 45

Eliminate Lambda-transition

Foundations of Computer Science 46

Eliminate Lambda-transition

Foundations of Computer Science 47

Foundations of Computer Science 48

Foundations of Computer Science 49

The Nondeterminism in an NFA Can Be Eliminated
• Theorem: For every language L ⊆ Σ* accepted by an NFA

M = (Q, Σ, q0, A, δ), there is an FA M1 = (Q1, Σ, q1, A1, δ1)
that also accepts L

• We can assume M has no Λ-transitions. Let Q1 = 2Q (for this
reason, this is called the subset construction); q1 = {q0}; for
every q ∈ Q1 and σ ∈ Σ,

δ1(q, σ) = ∪{δ(p,σ) | p ∈ q} …
subset of Q

Foundations of Computer Science 50

The Nondeterminism in an NFA Can Be Eliminated
• Theorem: For every language L ⊆ Σ* accepted by an NFA

M = (Q, Σ, q0, A, δ), there is an FA M1 = (Q1, Σ, q1, A1, δ1)
that also accepts L

• We can assume M has no Λ-transitions. Let Q1 = 2Q (for this
reason, this is called the subset construction); q1 = {q0}; for
every q ∈ Q1 and σ ∈ Σ,

δ1(q, σ) = ∪{δ(p,σ) | p ∈ q}
A1 = {q ∈ Q1 | q ∩ A ≠ ∅}

• M1 is clearly an FA
– It accepts the same language as M because for every x ∈ Σ*,

δ1*(q1, x) = δ*(q0, x)
• The proof is by structural induction on x
Homework: prove this theorem (see Thm 3.18 in the textbook)

subset of Q

Foundations of Computer Science 51

NFA to accept {aa,aab}*{b}
M = (Q, Σ, q0, A, δ)
Example: Subset construction to eliminate nondeterminism

M1 = (2Q, Σ, {q0}, A1, δ1)

• No need to generate 2n subsets; consider
only reachable states

• It is recommended to use a transition table
• Example: δ1({1,2},a) = δ(1,a)∪δ(2,a)={0,3}
• All reachable states that contain elements

from A are in A1

FA to accept {aa,aab}*{b}

Foundations of Computer Science 52

Foundations of Computer Science 53

Foundations of Computer Science 54

Foundations of Computer Science 55

Foundations of Computer Science 56

Foundations of Computer Science 57

Foundations of Computer Science 58

Foundations of Computer Science 59

Foundations of Computer Science 60

Foundations of Computer Science 61

Foundations of Computer Science 62

Construct FA from NFA: 1) eliminate all lambda transitions.

Foundations of Computer Science 63

Construct FA from NFA:

2) create a table of transitions.

You need this only if you don’t
eliminate Lambda’s

Foundations of Computer Science 64

3) Construct
FA.

a

Foundations of Computer Science 65

q δ(q,a) δ(q,b)

1 {2} ∅
2 ∅ {3}

3 {1,4,5} ∅
4 {5} ∅
5 {1} ∅

Foundations of Computer Science 66

This is what we know about languages …
All languages

Languages
of NFA
=
Languages
of FA

• Palindromes
• AnBn
• Etc.

Regular languages =
Languages accepted
by regular
expressions

• {a,b}=
a+b

?

Foundations of Computer Science 67

Kleene’s Theorem, Part 1

• Theorem: For every alphabet Σ, every regular
language over Σ can be accepted by a finite
automaton

• Because of what we have just shown, it is enough to
show that every regular language over Σ can be
accepted by an NFA

• The proof is by structural induction, based on the
recursive definition of the set of regular languages
over Σ

Homework: Learn both parts of Kleene’s theorem (including proofs).

Foundations of Computer Science 68

Kleene’s Theorem, Part 1 (cont’d.)

• The basis cases are easy
• The automata pictured below accept the languages ∅

and {σ}, respectively

• Induction hypothesis: both L1 and L2 are regular
languages can be accepted by NFAs

• Induction step: L(M1) ∪ L(M2), L(M1)L(M2), and
L(M1)* can be accepted by NFAs

Foundations of Computer Science 69

Union
Concatenation

Kleene’s *

Each FA is shown as having 2 accepting states

Foundations of Computer Science 70

concatenation

aba

Foundations of Computer Science 71

Kleene’s Theorem, Part 2

• Theorem: For every finite automaton
M=(Q, Σ, q0, A, δ), the language L(M) is regular

• Proof: First, for two states p and q, we define the
language L(p, q) = {x ∈ Σ* | δ*(p, x)=q}

Foundations of Computer Science 72

Kleene’s Theorem, Part 2

• Theorem: For every finite automaton
M=(Q, Σ, q0, A, δ), the language L(M) is regular

• Proof: First, for two states p and q, we define the
language L(p, q) = {x ∈ Σ* | δ*(p, x)=q}

• If we can show that for every p and q in Q, L(p, q) is
regular, then it will follow that L(M) is, because …

– L(M) = ∪ {L(q0, q) | q ∈ A}

Each of these languages is
regular, so is their union

Foundations of Computer Science 73

Kleene’s Theorem, Part 2

• Theorem: For every finite automaton
M=(Q, Σ, q0, A, δ), the language L(M) is regular

• Proof: First, for two states p and q, we define the
language L(p, q) = {x ∈ Σ* | δ*(p, x)=q}

• If we can show that for every p and q in Q, L(p, q) is
regular, then it will follow that L(M) is, because …

– L(M) = ∪ {L(q0, q) | q ∈ A}
– The union of a finite collection of regular languages is

regular
• We will show that L(p, q) is regular by expressing it

in terms of simpler languages that are regular

Foundations of Computer Science 74

Kleene’s Theorem, Part 2 (cont’d.)

• We will consider the distinct states through which M
passes as it moves from p to q

• If x ∈ L(p, q), we say x causes M to go from p to q
through a state r if there are non-null strings x1 and
x2 such that x = x1x2, δ*(p, x1) = r, and δ*(r, x2) = q

– In using a string of length 1 to go from p to q, M does
not go through any state

– How can we construct an inductive proof on what
happens between p and q?

Foundations of Computer Science 75

Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n

Foundations of Computer Science 76

Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n
• For p, q ∈ Q and j ≥ 0

L(p, q, j) = strings in L(p, q) that cause M to go from p
to q without going through any state numbered higher
than j

Foundations of Computer Science 77

Kleene’s Theorem, Part 2 (cont’d.)

• Assume Q has n elements numbered 1 to n
• For p, q ∈ Q and j ≥ 0

L(p, q, j) = strings in L(p, q) that cause M to go from p
to q without going through any state numbered higher
than j
• Suppose that for some number k ≥ 0, L(p, q, k) is

regular for every p, q ∈ Q and consider how a string
can be in L(p, q, k+1)
– The easiest way is for it to be in L(p, q, k)
– If not, it causes M to go to k+1 one or more times, but

M goes through nothing higher (i.e., no state k+2 for
example)

Foundations of Computer Science 78

Kleene’s Theorem, Part 2 (cont’d.)

• Every string in L(p, q, k+1) can be described in one of
those two ways and every string that has one of these
two forms is in L(p, q, k+1). This leads to the formula
– L(p, q, k+1) = L(p, q, k) ∪

L(p, k+1, k) L(k+1, k+1, k)* L(k+1, q, k)
• This is the main point of a proof by induction on k and

for an algorithm

Foundations of Computer Science 79

M

we need accepting states only

Foundations of Computer Science 80

M

Example:

Foundations of Computer Science 81

Regular languages
=

Languages of regular expressions
=

Languages accepted by FA
=

Languages accepted by NFA

Foundations of Computer Science 82

• Tools such as grep, awk, and sed
• Email servers
• Pattern matching

Regular expressions and
finite automata

• Software testing/QC
• TCP/IP, HTTP, and other

protocols
• Hardware

Finite automata

• Biomolecular finite automata
• DNA/RNA Turing machines

Future computers

• GUI
• Lexical analysis in compilers of

programming languages like
C/C++, Java, and many more

Grammars, Automata,
Regular Expressions

Foundations of Computer Science 83

• Find duplicate occurrences of a phrase (Reg Exp).
• Does a program contain an assertion violation? Does a

device driver respect certain protocols? (Properties of Lang)
• Can your software be stuck in an infinite loop? (Lang Incl)
• Does a distributed algorithm contain a livelock? (Lang Incl)
• Detect malicious Javascript entered into a web application.

The set of malicious strings is a language. (Langs Inters)
• Run-time monitoring of reactive and mission-critical

systems (nuclear reactors, chemical procs). (FA, Incl/Inters)
• Bioinformatics: pattern matching  build a language
• AI: FAs are used in simulation of character behavior

More questions

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83

