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Chapter 2

Finite Automata and the 
Languages They Accept

You can start using JFLAP. It is helpful for understanding the concepts of computational 
models that we will learn in the next 2 months.
https://en.wikipedia.org/wiki/JFLAP
Note that you still need to use our notation in homework, quizzes and tests.

https://en.wikipedia.org/wiki/JFLAP
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Computer

String
of characters

Yes/NoComputation

This device plays a role of a 
language acceptor

Model
Chapter 1

Chapter 2

my $mystring;

$mystring = "Hello world!";

if($mystring =~ m/world/) { print "Yes"; } else { print “No”;}

S

Code in Perl
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• A finite automaton is a simple type of computer
– Its output is limited to “yes” or “no”
– It has very primitive memory capabilities

• Our primitive computer that answers yes or no acts 
as a language acceptor

• For this model, consider that:
– The input comes in the form of a string of individual 

input symbols
– The computer gives an answer for the current prefix 

(the string of symbols that have been read so far)

Intuition about finite automaton 
model requirements
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Nobabababa
order   8 7 6 5 4 3 2 1

Nobababab a

Yesbababa ba

Nobabab aba

Yesbaba baba

Nobab ababa

empty string
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• A finite automaton (FA) or finite state machine is always in 
one of a finite number of states

• At each step FA makes a move (from state to state) that 
depends only on the current state and the input symbol

• The move is to enter a particular state (possibly the same 
as the one it was already in)

• States are either accepting or nonaccepting
– Entering an accepting state means answering “yes”
– Entering a nonaccepting state means “no”

• An FA has an initial state

p qa
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• This FA accepts the language of strings that end in aa
– The three states represent strings that end with no a’s, one 

a, and two a’s, respectively
– From each state, if the input is anything but an a, go back 

to the initial state, because now the current string doesn’t 
end with a

Finite Automata: Example
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Draw FA for language L={a,b}*
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Draw FA for the empty language
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Draw FA for the language that contains only empty 
string and nothing else
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Draw FA for the language L={b}* over alphabet {a,b}
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Draw FA for the language that contain strings ending 
with b and not containing aa



13
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Finite Automata: Example
• This FA accepts the strings ending with b and not 

containing aa
– The idea is to go to a permanently-non-accepting state if 

you ever read two a’s in a row
– Go to an accepting state if you see a b (and haven’t read 

two a’s), leave it when you see anything else
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Finite Automata: Example
• This FA accepts strings that contain abbaab
• What do we do when a prefix of abbaab has been 

read but the next symbol doesn’t match?
– Go back to the state representing the longest prefix of 

abbaab at the end of the new current string
– Example: If we’ve read abba and the next symbol is b,

go to q2, because ab is the longest prefix at the end of 
abbab
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Finite Automata: the language of strings that are the binary 
representations of natural numbers divisible by 3.

– States 0, 1, and 2 represent the 
current “remainder”

– The initial state is non-accepting: at 
least one bit is required

– Leading zeros are prohibited
– Transitions represent 

multiplication by two, then 
addition of the input bit

If x represents n, and n mod 3 is r, then what are 2n mod 3 and          
(2n + 1) mod 3? It is almost correct that the answers are 2r and 2r + 1; 
the only problem is that these numbers may be 3 or bigger, and in that 
case we must do another mod 3 operation.
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n bin r n bin r

0 0 0 16 10000 1

1 1 1 17 10001 2

2 10 2 18 10010 0

3 11 0 19 10011 1

4 100 1 20 10100 2

5 101 2 21 10101 0

6 110 0 22 10110 1

7 111 1 23 10111 2

8 1000 2 24 11000 0

9 1001 0 25 11001 1

10 1010 1 26 11010 2

11 1011 2 27 11011 0

12 1100 0 28 11100 1

13 1101 1 29 11101 2

14 1110 2 30 11110 0

15 1111 0 31 11111 1
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Finite Automata: Lexical Analysis 
Example

Diagrams are taken from



Foundations of Computer Science 19

• FAs are ideally suited for lexical analysis, the first 
stage in compiling a computer program

• A lexical analyzer takes a string of characters and 
provides a string of “tokens” (indecomposable units)

• Tokens have a simple structure: e.g., “41.3”, “main”, “=“
• The next slide shows an FA that accepts tokens for a 

simple language based on C
– The only tokens are identifiers, semicolons, =, aa, and 

numeric literals; tokens are separated by spaces
– Accepting states represent scanned tokens; each 

accepting state represents a category of token

Finite Automata: Lexical Analysis 
Example
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• The input alphabet contains 
the 26 lowercase letters, the 
10 digits, a semicolon, an 
equals sign, a decimal point, 
and the blank space .

• D is any digit
• L is a lowercase letter

other than a
• M is D or L
• N is D or L or a
• ∆ is a space
• All transitions not  shown 

explicitly go to an error 
state and stay there
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Identifier a

Reserved word aa

Any other identifier

Numeric literals without decimal point

Numeric literals with decimal point
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Evaluation of δ*(q0, baa)
• δ*(q0, baa) = δ(δ*(q0, ba), a) = δ(δ(δ*(q0, b), a), a) 

= δ(δ(δ*(q0, Λb), a), a) 
= δ(δ(δ(δ*(q0, Λ), b), a), a) 
= δ(δ(δ(q0, b), a), a) = δ(δ(q0, a), a) 
= δ(q1, a) = q1
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What language is accepted by this finite automaton?

The language of all strings that have exactly two letters “a”: 
at the beginning and at the end of the string
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What language is accepted by this finite automaton?

Add missing transitions; The language contains all chains 
(without spaces) of 
• I like apples!
• I don’t like apples!
• I like tomatoes!
• I don’t like tomatoes!
• I like CISC303 very very* much!
• I don’t like CISC303 very very* much!
Can you propose a smaller FA that accepts the same 
language?
Merge states 8, 9 and 6

The alphabet is
• I
• like
• don’t
• CISC303
• tomatoes
• apples
• very
• much
• !

CISC303
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• Definition: 
– Let M=(Q, Σ, q0, A, δ) be an FA, and let x ∈ Σ*.  Then x is 

accepted by M if δ*(q0, x) ∈ A and rejected otherwise

babbbbabb is accepted by M
bbbbaaaab is rejected by M

• The language accepted by M is 
L(M) = {x ∈ Σ* | x is accepted by M}
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Accepting the Union, Intersection, or 
Difference of Two Languages

• Suppose that L1 and L2 are languages over Σ
– Given an FA that accepts L1 and another FA that 

accepts L2, we can construct one that accepts  L1 ∪ L2 , 
L1 ∩ L2 , L1 - L2

How to construct an FA for L1 ∪ L2 ?
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Accepting the Union, Intersection, or 
Difference of Two Languages

• Suppose that L1 and L2 are languages over Σ
– Given an FA that accepts L1 and another FA that 

accepts L2, we can construct one that accepts  L1 ∪ L2 , 
L1 ∩ L2 , L1 - L2

How to construct an FA for L1 ∪ L2 ?

– The idea is to construct an FA that executes both of the 
original FAs at the same time

– This works because if x ∈ Σ*, then knowing whether    
x ∈ L1 and whether  x ∈ L2 is enough to determine
whether x ∈ L1 ∪ L2
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Accepting the Union, Intersection, or 
Difference of Two Languages (cont’d.)

• Theorem: Suppose M1=(Q1, Σ, q1, A1, δ1) and           
M2=(Q2, Σ, q2, A2, δ2) are FAs accepting L1 and L2.  Let 
M=(Q, Σ, q0, A, δ) be defined as follows:
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ((p, q), σ) = (δ

1
(p, σ), δ

2
(q, σ))

• Then, if :
– A = {(p, q) | p ∈ A1 or q ∈ A2},  M accepts L1 ∪ L2

– A = {(p, q) | p ∈ A1 and q ∈ A2},  M accepts L1 ∩ L2

– A = {(p, q) | p ∈ A1 and  q ∉ A2},  M accepts L1 - L2
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L1 = all strings that include “a”

L2 = all strings that do not include “a”

Union of L1 and L2
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Strings with exactly 2 a’s Strings with at least 2 b’s

Construct an FA to accept strings with exactly 2 a’s and at least 2 b’s

a,

Intersection
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Strings with exactly 2 a’s Strings with at least 2 b’s

Difference, i.e., strings with exactly 2 a’s and at most 1 b

a,
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We prove the first part of the theorem.
• Theorem: Suppose M1=(Q1, Σ, q1, A1, δ1) and M2=(Q2, Σ, q2, A2, 
δ2) are FAs accepting L1 and L2.  Let M=(Q, Σ, q0, A, δ) be 
defined as follows:
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ((p, q), σ) = (δ

1
(p, σ), δ

2
(q, σ))

then, if A = {(p, q) | p ∈ A1 or q ∈ A2},  M accepts L1 ∪ L2.

Prove by structural induction at home
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Homework: Make sure you learn how to 
prove the full version of this theorem 
including the structural induction, union, 
intersection and difference (see textbook). 
Don’t submit!
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Accepting the Union, Intersection, or 
Difference of Two Languages (cont’d.)

• Given two machines, create the Cartesian product of 
the state sets, and draw the necessary transitions

No string can 
reach this state

“aa” is not a substring

strings end with “ab”
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Accepting the Union, Intersection, or 
Difference of Two Languages (cont’d.)

• Simplify the resulting machine, if possible, and 
designate the appropriate accepting states

• The machine below accepts the union of the two 
languages
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Accepting the Union, Intersection, or 
Difference of Two Languages (cont’d.)

• For the intersection, we can simplify further, and we end 
up with the machine on the right

• The simplification involved turning states CP, CQ,  and CR 
into a single state (none of them was accepting, and there 
was no way to leave them)

Contains 3 merged states
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L1∪L2 L1∩L2 L1-L2

_ AP y n y

a BQ y n y

b AR y y n

b AP y n y

a BQ y n y

a CQ n n n

FA for L1

FA for L2

Input: abbaa
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Example: FA accepting strings that contain either “ab” or “bba”

x contains “ab”

x contains “bba”

We can try to build FA with 
12 states but we can do less 
with “if”-like fork
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• Can we construct FA with fewer states? 
• Can we be sure that this number of states is enough?
• We will study the connection between the 

“complexity” of input and the “complexity” of  
algorithm.

Note that this is not a traditional notion of 
algorithm complexity in the theory of 
computer science that we will study later
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Distinguishing One String from Another

• Any FA, ignores, or “forgets”, a lot of information
• An FA doesn’t remember which string has been seen

– aba and aabbabbabaaaba lead to the same state; 
– aba and ab, however, lead to different states; the essential 

difference is that one ends with a and the other doesn’t
– aba and ab are distinguishable with respect to the language 

accepted by the FA; there is at least one string z (such as a) so 
that abaz is in the language (i.e., is accepted) and abz is not, or 
vice versa 

Strings ending in aa
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Distinguishing One String from Another (cont’d.)

• Definition: 
– If L is a language over Σ, and x, y ∈ Σ*, then x and y are             

L-distinguishable, if there is a string z ∈ Σ* such that 
either xz ∈ L and yz ∉ L, or  xz ∉ L and yz ∈ L

– A string z having this property is said to distinguish x and y
with respect to L

– Equivalently, x and y are L-distinguishable if L/x ≠ L/y, where 
L/x = {z ∈ Σ * | xz ∈ L}

x

y

z

z
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• Theorem: Suppose M=(Q, Σ, q0, A, δ) is an FA accepting       
L ⊆ Σ*
– If x, y ∈ Σ* are L-distinguishable, then δ*(q0, x) ≠ δ*(q0, y)
– For all n ≥ 2, if there is a set of n pairwise L-distinguishable 

strings in Σ*, then Q must contain at least n states

This shows why we need at least three states in any FA that 
accepts the language L of strings ending in aa: {Λ, a, aa} 
contains 3 pairwise L-distinguishable strings  

Distinguishing One String from Another (cont’d.)
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Part I: If x and y are two strings in Σ* that are L-
distinguishable, then δ*(q0, x) ≠ δ*(q0, y)
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Part II: For all n ≥ 2, if there is a set of n pairwise L-
distinguishable strings in Σ*, then Q must contain at 
least n states

x

y

z

z
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Distinguishing One String from Another (cont’d.)
• To create an FA to accept L = L1L2={aa, aab}*{b}, we notice 

first that Λ,a ∉ L,  b ∈ L,  and Λ,b, and a are L-distinguishable 
(for example, Λb ∈ L, ab ∉ L)
– We need at least the states in the first diagram
– L contains b but nothing else that begins with b, so we add a 

state s to take care of illegal prefixes
– If the input starts with aa we, need to leave state p because a

and aa are L-distinguishable; create state t
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• δ(t, b) must be accepting, because 
aab ∈ L but distinguishable from b; 
call that new state u

• Let δ(u,b) be r, because aabb is in L
but not a prefix of any other string 
in L

• States t and u can be thought of as 
representing the end of an 
occurrence of aa or aab; if the next 
symbol is a it’s the start of a new 
occurrence, so go back to p

• The result is shown here

Distinguishing One String from Another (cont’d.)
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Distinguishing One String from Another (cont’d.)
Λ a b aab aa ab

Λ - b Λ Λ bb b
a - Λ b b ab
b - aab bb Λ
aab - bb Λ
aa - b
ab -

FA to accept L = {aa, aab}*{b}

These are 
strings z’s 
that 
distinguish 
between 
x, and y
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So, what do we know about languages …

All languages

Languages accepted 
by finite automata

 PAL
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The Pumping Lemma
• Suppose that M=(Q, Σ , q0, A, δ) is an FA accepting L and 

that it has n states
– If it accepts a string x such that |x| ≥ n, then by the time n

symbols have been read, M must …
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The Pumping Lemma
• Suppose that M=(Q, Σ , q0, A, δ) is an FA accepting L and 

that it has n states
– If it accepts a string x such that |x| ≥ n, then by the time n

symbols have been read, M must have entered some state 
more than once; i.e., there must be two different prefixes u and 
uv such that             δ *(q0,u)= δ *(q0,uv)

There must be a path 
containing a loop
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The Pumping Lemma (cont’d.)

• This implies that there are many more strings in L, 
because we can traverse the loop  v any number of 
times (including leaving it out altogether)

• In other words, all of the strings uviw for i ≥ 0 are in L
• This fact is known as the Pumping Lemma for Finite 

Automata (or for Regular Languages)
There must be a path 
containing a loop
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The Pumping Lemma

• Theorem:  Suppose L is a language over Σ
If L is accepted by the FA M=(Q, Σ, q0, A, δ), and |Q| =n, 
then for every x in L satisfying |x| ≥ n, there are three 
strings u, v, and w such that x = uvw and 

– |uv| ≤ n
– |v| > 0  (i.e. v ≠ Λ)
– For every i ≥ 0, the string uviw belongs to L

• The way we found n was to take the number of states 
in an FA accepting L.  In many applications we don’t 
need to know this, only that there is such an n
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The Pumping Lemma (cont’d.)

• The most common application of the pumping lemma 
is to show that a language cannot be accepted by an 
FA, because  it doesn’t have the properties that the 
pumping lemma says are required for every language 
that can be.  

• The proof is by contradiction.  We suppose that the 
language can be accepted by an FA, and we let n=|Q| 
be the integer in the pumping lemma

• Then we choose a string x with |x| ≥ n to which we 
can apply the lemma so as to get a contradiction
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Example: language that cannot be accepted by an FA, 
one way to use the pumping lemma

Let L be the language AnBn = {aibi | i ≥ 0}; let us prove 
that it cannot be accepted by an FA

– Suppose, for the sake of contradiction, that L is 
accepted by an FA; let n be as in the pumping lemma

– Choose x = anbn; then x ∈ L and |x| ≥ n
– Therefore, by the pumping lemma, there are strings    

u, v, and w such that x = uvw and the 3 conditions hold
– Because |uv| ≤ n and x starts with n a’s, all the symbols 

in u and v are a’s; therefore, v = ak for some k > 0

x = aa-----------aaabb------------bbb
n n

1) uv is here
2) v is also here and consists of a’s
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Example: language that cannot be accepted by an FA, 
one way to use the pumping lemma

Let L be the language AnBn = {aibi | i ≥ 0}; let us prove 
that it cannot be accepted by an FA

– Suppose, for the sake of contradiction, that L is 
accepted by an FA; let n be as in the pumping lemma

– Choose x = anbn; then x ∈ L and |x| ≥ n
– Therefore, by the pumping lemma, there are strings    

u, v, and w such that x = uvw and the 3 conditions hold
– Because |uv| ≤ n and x starts with n a’s, all the symbols 

in u and v are a’s; therefore, v = ak for some k > 0
– uvvw ∈ L,  so an+kbn ∈ L.  This is our contradiction, and 

we conclude that L cannot be accepted by an FA

aa-----------aaaaa---aabb------------bbb = an+kbn is not in L
n n

1) uv is here
2) v is also here and consists of a’s

k
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So, what do we know about languages …

All languages

Languages accepted 
by finite automata

 PAL

 AnBn
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Let’s show L = {a i 2 | i ≥ 0} is not accepted by an FA
– Suppose L is accepted by an FA, and let n be the integer in the 

pumping lemma
– Choose x = an2 

(note that the next longer string will be  a(n+1)2)

– x = uvw, where 0 < |v| ≤ n
– Then n2 = |uvw| < |uv2w| = n2 + |v| ≤ n2 + n < (n+1)2

– This is a contradiction, because |uv2w| must be i2 for some 
integer i (because uv2w ∈ L), but there is no integer i whose 
square is strictly between n2 and (n+1)2

Example 2: language that cannot be accepted by an FA, 
one way to use the pumping lemma
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So, what do we know about languages …

All languages

Languages accepted 
by finite automata

 PAL

 AnBn

 a i 2
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The Pumping Lemma (cont’d.)

• There are other languages that are not accepted by 
any FA, among them:
– Balanced, the set of balanced strings of parentheses
– Expr, the language of simple algebraic expressions
– The set of legal C programs

• In all three examples, because of the nature of these 
languages, a proof using the pumping lemma might 
look a lot like the proof for AnBn, our first example

• For example, this string “main(){{{ ... }}}” cannot be 
accepted by an FA (because of {n}n).
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So, what do we know about languages …

All languages

Languages accepted 
by finite automata

 PAL

 AnBn

 a i 2
 Balanced

 Expr  C programs
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The Pumping Lemma (cont’d.)
• We can formulate several “decision problems” 

involving the language L accepted by an FA 
– The membership problem (Given x, is x ∈ L(M)?)
– Given an n-state FA M, is the language L(M) empty?
• It follows from the PL that this can be solved by looking at all 

possible strings of length 0 to n -1;  if none of those is 
accepted, the language is empty, i.e., if we find x that is longer 
than n, we can always extract a middle part v.

– Given an n-state FA M, is L(M) infinite?
• The pumping lemma implies that the language is infinite 

if and only if at least one of the strings with length from 
n to 2n -1  is accepted
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Strings 
accepted by 
neither
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