

Fínite Automata and the Languages They Accept

You can start using JFLAP. It is helpful for understanding the concepts of computational models that we will learn in the next 2 months. https://en.wikipedia.org/wiki/JFLAP

Note that you still need to use our notation in homework, quizzes and tests.

Intuition about finite automaton model requirements

- A *finite automaton* is a simple type of computer
 - Its output is limited to "yes" or "no"
 - It has very primitive memory capabilities
- Our primitive computer that answers yes or no acts as a *language acceptor*
- For this model, consider that:
 - The input comes in the form of a string of individual input symbols
 - The computer gives an answer for the *current* prefix (the string of symbols that have been read so far)

Finite automaton that accepts language $L = \{(ab)^n \mid n \in N_{>1}\}.$

4

- A finite automaton (FA) or *finite state machine* is always in one of a finite number of *states*
- At each step FA makes a move (from state to state) that depends only on the **current state** and the **input symbol**

- The move is to enter a particular state (possibly the same as the one it was already in)
- States are either *accepting* () or *nonaccepting* (
 - Entering an accepting state means answering "yes"
 - Entering a nonaccepting state means "no"
- An FA has an initial state

Finite Automata: Example

- This FA accepts the language of strings that end in *aa*
 - The three states represent strings that end with no *a*'s, one *a*, and two *a*'s, respectively
 - From each state, if the input is anything but an *a*, go back to the initial state, because now the current string doesn't end with *a*

Draw FA for language L={a,b}*

Draw FA for the empty language

Draw FA for the language that contains only empty string and nothing else

Draw FA for the language L={b}* over alphabet {a,b}

Draw FA for the language that contain strings ending with *b* and not containing *aa*

Finite Automata: Example

- This FA accepts the strings ending with *b* and not containing *aa*
 - The idea is to go to a permanently-non-accepting state if you ever read two *a*'s in a row
 - Go to an accepting state if you see a *b* (and haven't read two *a*'s),
 a, *b*

Finite Automata: Example

- This FA accepts strings that contain *abbaab*
- What do we do when a prefix of *abbaab* has been read but the next symbol doesn't match?
 - Go back to the state representing the longest prefix of abbaab at the end of the new current string
 - Example: If we've read *abba* and the next symbol is *b*, go to q₂, because *ab* is the longest prefix at the end of *abbab*

Finite Automata: the language of strings that are the binary representations of natural numbers divisible by 3.

If x represents n, and n mod 3 is r, then what are $2n \mod 3$ and $(2n + 1) \mod 3$? It is almost correct that the answers are 2r and 2r + 1; the only problem is that these numbers may be 3 or bigger, and in that case we must do another mod 3 operation.

- States 0, 1, and 2 represent the current "remainder"
- The initial state is non-accepting: at least one bit is required
- Leading zeros are prohibited
- Transitions represent multiplication by two, then addition of the input bit

n	bin	r	n	bin	r
0	0	0	16	10000	1
1	1	1	17	10001	2
2	10	2	18	10010	0
3	11	0	19	10011	1
4	100	1	20	10100	2
5	101	2	21	10101	0
6	110	0	22	10110	1
7	111	1	23	10111	2
8	1000	2	24	11000	0
9	1001	0	25	11001	1
10	1010	1	26	11010	2
11	1011	2	27	11011	0
12	1100	0	28	11100	1
13	1101	1	29	11101	2
14	1110	2	30	11110	0
15	1111	0	31	11111	1

Finite Automata: Lexical Analysis Example

Finite Automata: Lexical Analysis Example

- FAs are ideally suited for lexical analysis, the first stage in compiling a computer program
- A lexical analyzer takes a string of characters and provides a string of "tokens" (indecomposable units)
- Tokens have a simple structure: e.g., "41.3", "main", "="
- The next slide shows an FA that accepts tokens for a simple language based on C
 - The only tokens are identifiers, semicolons, =, *aa*, and numeric literals; tokens are separated by spaces
 - Accepting states represent scanned tokens; each accepting state represents a category of token

- The input alphabet contains the 26 lowercase letters, the 10 digits, a semicolon, an equals sign, a decimal point, and the blank space.
- *D* is any digit
- *L* is a lowercase letter other than *a*
- M is D or L
- Nis Dor Lor a
- Δ is a space
- All transitions not shown explicitly go to an error state and stay there

Definition (Finite Automata) A finite automaton (FA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where

- Q is a finite set of states;
- Σ is a finite input alphabet;
- $q_0 \in Q$ is the initial state;
- $A \subseteq Q$ is the set of accepting states;
- $\delta: Q \times \Sigma \to Q$ is the transition function.

For any element $q \in Q$ and any symbol $\sigma \in \Sigma$, we interpret $\delta(q, \sigma)$ as the state to which the FA moves, if it is in state q and receives the input σ .

Definition (Finite Automata) A finite automaton (FA) is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where

- Q is a finite set of states;
- Σ is a finite input alphabet;
- $q_0 \in Q$ is the initial state;
- $A \subseteq Q$ is the set of accepting states;
- $\delta: Q \times \Sigma \to Q$ is the transition function.

Definition (The Extended Transition Function δ^*) Let $M = (Q, \Sigma, q_0, A, \delta)$ be FA. We define the extended transition function

$$\delta^*: Q \times \Sigma^* \to Q$$

- For every $q \in Q$, $\delta^*(q, \Lambda) = q$
- For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$,

$$\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma). \qquad \overleftarrow{\mathbf{F}} \mathbf{\Lambda}$$

Evaluation of $\delta^*(q_0, baa)$

• $\delta^*(q_0, baa) = \delta(\delta^*(q_0, ba), a) = \delta(\delta(\delta^*(q_0, b), a), a)$ $= \delta(\delta(\delta^*(q_0, \Lambda b), a), a)$ $= \delta(\delta(\delta(\delta^*(q_0, \Lambda), b), a), a)$ $= \delta(\delta(\delta(q_0, b), a), a) = \delta(\delta(q_0, a), a)$ $= \delta(q_1, a) = q_1$

What language is accepted by this finite automaton?

The language of all strings that have exactly two letters "a": at the beginning and at the end of the string

What language is accepted by this finite automaton?

The alphabet is

- •
- like
- don't
- CISC303
- tomatoes
- apples
- very
- much
- !

Add missing transitions; The language contains all chains (without spaces) of

- I like apples!
- I don't like apples!
- I like tomatoes!
- I don't like tomatoes!
- I like CISC303 very very* much!
- I don't like CISC303 very very* much!

Can you propose a smaller FA that accepts the same language?

Merge states 8, 9 and 6

Claim. For every $x, y \in \Sigma^*$ $\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$

Claim. For every $x, y \in \Sigma^*$ $\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$

Proof. For every $y \in \Sigma^*$ we need to prove that P(y) is true, where P(y) is the statement "for every $x \in \Sigma^*$, $\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$ ".

- BS: $\forall x \in \Sigma^* \ \delta^*(q, x\Lambda) = \delta^*(\delta^*(q, x), \Lambda)$. This is true beacause $\delta^*(\delta^*(q, x), \Lambda) = \delta^*(q, x)$, i.e., we have $\delta^*(q, x\Lambda) = \delta^*(q, x)$.
- IH: $y \in \Sigma^*$, and $\forall x \in \Sigma^*$, $\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$.
- IS: $\forall x \in \Sigma^*, \ \delta^*(q, x(y\sigma)) = \delta^*(\delta^*(q, x), y\sigma)$

$$\begin{array}{lll} \delta^*(q, x(y\sigma)) &=& \delta^*(q, (xy)\sigma) &=\\ \delta(\delta^*(q, xy), \sigma) &=& \delta(\delta^*(\delta^*(q, x), y), \sigma) &=\\ \delta^*(\delta^*(q, x), y\sigma) & \end{array}$$

- Definition:
 - Let $M=(Q, \Sigma, q_0, A, \delta)$ be an FA, and let $x \in \Sigma^*$. Then x is *accepted* by M if $\delta^*(q_0, x) \in A$ and *rejected* otherwise

• The *language* accepted by *M* is $L(M) = \{x \in \Sigma^* \mid x \text{ is accepted by } M\}$

- Suppose that L_1 and L_2 are languages over Σ
 - Given an FA that accepts L_1 and another FA that accepts L_2 , we can construct one that accepts $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$

How to construct an FA for $L_1 \cup L_2$?

- Suppose that L_1 and L_2 are languages over Σ
 - Given an FA that accepts L_1 and another FA that accepts L_2 , we can construct one that accepts $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$

How to construct an FA for $L_1 \cup L_2$?

- The idea is to construct an FA that executes both of the original FAs at the same time
- This works because if $x \in \Sigma^*$, then knowing whether $x \in L_1$ and whether $x \in L_2$ is enough to determine whether $x \in L_1 \cup L_2$

• Theorem: Suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ are FAs accepting L_1 and L_2 . Let $M = (Q, \Sigma, q_0, A, \delta)$ be defined as follows:

$$- Q = Q_1 \times Q_2$$

$$-q_0 = (q_1, q_2)$$

$$- \delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$$

• Then, if :

-
$$A = \{(p, q) | p \in A_1 \text{ or } q \in A_2\}, M \text{ accepts } L_1 \cup L_2$$

- $A = \{(p, q) | p \in A_1 \text{ and } q \in A_2\}, M \text{ accepts } L_1 \cap L_2$
- $A = \{(p, q) | p \in A_1 \text{ and } q \notin A_2\}, M \text{ accepts } L_1 \cap L_2$

L1 = all strings that include "a"

Union of L1 and L2

L2 = all strings that do not include "a"

Construct an FA to accept strings with exactly 2 a's and at least 2 b's

Strings with exactly 2 a's

Strings with at least 2 b's

Difference, i.e., strings with exactly 2 a's and at most 1 b

We prove the first part of the theorem.

• Theorem: Suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ are FAs accepting L_1 and L_2 . Let $M = (Q, \Sigma, q_0, A, \delta)$ be defined as follows:

$$- Q = Q_1 \times Q_2$$

$$-q_0 = (q_1, q_2)$$

- $\delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$
- then, if $A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}$, M accepts $L_1 \cup L_2$. *Proof sketch.* At any point during the operation of M, if (p, q) is the current state, then p, and q are the current states of M_1 , and M_2 . This follows from \checkmark Prove by structural induction at home

$$\delta^*(q_0, x) = (\delta_1^*(q_1, x), \delta_2^*(q_2, x)) \quad \forall x \in \Sigma^*.$$

For every $x \in \Sigma^*$, x is accepted by M iff $\delta^*(q_0, x) \in A$ but according to defs of A and δ^* , this is true if $\delta_1^*(q_1, x) \in A_1$ or $\delta_2^*(q_2, x) \in A_2$, i.e., if $x \in L_1 \cup L_2$. Homework: Make sure you learn how to prove the full version of this theorem including the structural induction, union, intersection and difference (see textbook). Don't submit!

• Given two machines, create the Cartesian product of the state sets, and draw the necessary transitions

strings end with "ab"

- Simplify the resulting machine, if possible, and designate the appropriate accepting states
- The machine below accepts the <u>union</u> of the two languages

- For the **intersection**, we can simplify further, and we end up with the machine on the right
- The simplification involved turning states CP, CQ, and CR into a single state (none of them was accepting, and there was no way to leave them)

Example: FA accepting strings that contain either "ab" or "bba"

x contains "bba" ^{(a}

We can try to build FA with 12 states but we can do less with "if"-like fork

- Can we construct FA with fewer states?
- Can we be sure that this number of states is enough?
- We will study the connection between the "complexity" of input and the "complexity" of algorithm.

Note that this is not a traditional notion of algorithm complexity in the theory of computer science that we will study later

Distinguishing One String from Another

Strings ending in *aa*

- Any FA, ignores, or "forgets", a lot of information
- An FA doesn't remember which string has been seen
 - *aba* and *aabbabbabaaaba* lead to the <u>same state</u>;
 - *aba* and *ab*, however, lead to <u>different states</u>; the essential difference is that one ends with *a* and the other doesn't
 - *aba* and *ab* are *distinguishable* with respect to the language accepted by the FA; there is at least one string *z* (such as *a*) so that *abaz* is in the language (i.e., is accepted) and *abz* is not, or vice versa

- Definition:
 - If *L* is a language over Σ , and $x, y \in \Sigma^*$, then *x* and *y* are *L*-distinguishable, if there is a string $z \in \Sigma^*$ such that

either $xz \in L$ and $yz \notin L$, or $xz \notin L$ and $yz \in L$

- A string *z* having this property is said to distinguish *x* and *y* with respect to *L*
- Equivalently, x and y are L-distinguishable if $L/x \neq L/y$, where $L/x = \{z \in \Sigma^* \mid xz \in L\}$

- **Theorem**: Suppose $M=(Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$
 - If $x, y \in \Sigma^*$ are *L*-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$
 - For all *n* ≥ 2, if there is a set of *n* pairwise *L*-distinguishable strings in Σ*, then *Q* must contain **at least** *n* states

This shows why we need at least three states in any FA that accepts the language *L* of strings ending in *aa*: { Λ , *a*, *aa*} contains 3 pairwise *L*-distinguishable strings

Part I: If x and y are two strings in Σ^* that are *L*-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$

Proof sketch. x, and y are L-distinguishable \Rightarrow $\exists z \in \Sigma^* \text{ s.t. } xz \in L, \text{ and } yz \notin L \text{ (or vice versa). Because } M \text{ accepts}$ L then either $\delta^*(q_0, xz) \in A$ and $\delta^*(q_0, yz) \notin A$ (or vice versa), i.e.,

$$\delta^*(q_0, xz) \neq \delta^*(q_0, yz).$$

However,

$$\delta^*(q_0, xz) = \delta^*(\delta^*(q_0, x), z)$$

$$\delta^*(q_0, yz) = \delta^*(\delta^*(q_0, y), z).$$

Because the left sides are different, the right sides must be also, and then

$$\delta^*(q_0, x) \neq \delta^*(q_0, y).$$

Part II: For all $n \ge 2$, **if** there is a set of n pairwise Ldistinguishable strings in Σ^* , **then** Q must contain at least n states

Proof sketch. The second part of the theorem follows from the first. If M had fewer than n states, then at least two of the n strings would cause M to end up in the same state. This is contradiction because these strings are L-distinguishable.

- To create an FA to accept $L = L_1L_2 = \{aa, aab\}^*\{b\}$, we notice first that $\Lambda, a \notin L, b \in L$, and Λ, b , and a are L-distinguishable (for example, $\Lambda b \in L, ab \notin L$)
 - We need at least the states in the first diagram
 - *L* contains *b* but nothing else that begins with *b*, so we add a state *s* to take care of illegal prefixes
 - If the input starts with *aa* we, need to leave state *p* because *a* and *aa* are *L*-distinguishable; create state *t*

- δ(*t*, *b*) must be accepting, because
 aab ∈ *L* but distinguishable from *b*;
 call that new state *u*
- Let δ(u,b) be r, because aabb is in L but not a prefix of any other string in L
- States *t* and *u* can be thought of as representing the end of an occurrence of *aa* or *aab*; if the next symbol is *a* it's the start of a new occurrence, so go back to *p*
- The result is shown here

	Λ	а	b	aab	aa	ab	
Λ	-	b	Λ	Λ	bb	b	
а		-	Λ	b	b	ab	~
b			-	aab	bb	Λ	
aab				-	bb	Λ	
аа					-	b	
ab						-	
							/
							(

These are strings z's that distinguish between x, and y

 q_0

а

a

a

b

b

a, b

a, *b*

U

FA to accept $L = \{aa, aab\}^*\{b\}$

Theorem. For every $L \subseteq \Sigma^*$, if there is an infinite set S of pairwise L-distinguishable strings, then L cannot be accepted by FA.

Proof sketch. If S is infinite then for every n, S has a subset with n elements. If M was FA accepting L, then previous theorem would say that for every n, M would have at least n states. No FA has this property.

Example. For every pair of distinct x and y in $\{a, b\}^*$, x, and y are distinguishable wrt PAL.

Consider the language of palindromes, PAL, over $\{a, b\}^*$. Let's take two strings x, and y.

• If $x \neq y$, |x| = |y|, then r(x) distinguishes between x, and y, because $xr(x) \in PAL$, and $yr(x) \notin PAL$.

Example. For every pair of distinct x and y in $\{a, b\}^*$, x, and y are distinguishable wrt PAL.

Consider the language of palindromes, PAL, over $\{a, b\}^*$. Let's take two strings x, and y.

• If $|x| \neq |y|$, w.l.o.g. we assume |x| < |y|. If x is not a prefix of y, then $xr(x) \in PAL$, and $yr(x) \notin PAL$.

Example. For every pair of distinct x and y in $\{a, b\}^*$, x, and y are distinguishable wrt PAL.

*. Let's Consider the language of palindromes, PAL, over $\{a, b\}$ take two strings x, and y.

is not a prefix of • If
$$|x| \neq |y|$$
, w.l.o.g. we assume $|x| < |y|$. If $x \in AL$.
AL.
 y , then $xr(x) \in PAL$, and $yr(x) \notin PL$.

 $\text{or some } z. \text{ If we choose } \bullet \text{ If } x \text{ is a prefix of } y, \text{ then } y = xz \text{ for } y \text{ perturbed } y \text{ sumbol } \sigma_{\mathcal{S}} g \rho_{\mathcal{S}} \text{ then } y = xz \text{ for } y \text{ perturbed } y \text{ sumbol } \sigma_{\mathcal{S}} g \rho_{\mathcal{S}} \text{ then } y = xz \text{ for } y \text{ perturbed } y \text{ pertu$

 $y\sigma r(x) = xz\sigma r(x) \notin PAL,$ $x\sigma r(x) \in PAL$ and

by FA because we can find infinitely many PAL cannot be accepted l is. (Requires infinite memory to remember PAL-distinguishable string $r(\cdot)$)

So, what do we know about languages ...

The Pumping Lemma

- Suppose that M=(Q, Σ, q₀, A, δ) is an FA accepting L and that it has n states
 - If it **accepts** a string *x* such that $|x| \ge n$, then by the time *n* symbols have been read, *M* must ...

The Pumping Lemma

- Suppose that M=(Q, Σ, q₀, A, δ) is an FA accepting L and that it has n states
 - If it **accepts** a string *x* such that $|\mathbf{x}| \ge \mathbf{n}$, then by the time *n* symbols have been read, *M* must have entered some state more than once; i.e., there must be two different prefixes *u* and uv such that $\delta^*(q_0, u) = \delta^*(q_0, uv)$

The Pumping Lemma (cont'd.)

- This implies that there are many more strings in *L*, because we can traverse the loop *v* any number of times (including leaving it out altogether)
- In other words, all of the strings $uv^i w$ for $i \ge 0$ are in L
- This fact is known as the Pumping Lemma for Finite Automata (or for Regular Languages)

The Pumping Lemma

• **Theorem**: Suppose *L* is a language over Σ

If *L* is accepted by the FA $M=(Q, \Sigma, q_0, A, \delta)$, and |Q| = n, then for every *x* in *L* satisfying $|x| \ge n$, there are three strings *u*, *v*, and *w* such that x = uvw and

- $|uv| \le n$
- -|v| > 0 (i.e. $v \neq \Lambda$)
- For every $i \ge 0$, the string $uv^i w$ belongs to *L*
- The way we found *n* was to take the number of states in an FA accepting *L*. In many applications we don't need to know this, only that there is such an *n*

The Pumping Lemma (cont'd.)

- The most common application of the pumping lemma is to show that a language *cannot* be accepted by an FA, because it doesn't have the properties that the pumping lemma says are required for every language that can be.
- The proof is by contradiction. We suppose that the language can be accepted by an FA, and we let *n*=|*Q*| be the integer in the pumping lemma
- Then we choose a string x with $|x| \ge n$ to which we can apply the lemma so as to get a contradiction

Example: language that cannot be accepted by an FA, one way to use the pumping lemma Let *L* be the language $AnBn = \{a^i b^i \mid i \ge 0\}$; let us prove that it cannot be accepted by an FA

- Suppose, for the sake of contradiction, that *L* is accepted by an FA; let *n* be as in the pumping lemma
- Choose $x = a^n b^n$; then $x \in L$ and $|x| \ge n$
- Therefore, by the pumping lemma, there are strings
 u, *v*, and *w* such that *x* = *uvw* and the 3 conditions hold
- Because $|uv| \le n$ and x starts with n a's, all the symbols in u and v are a's; therefore, $v = a^k$ for some k > 0

$$x = aa - aaabb - bbb$$
1) uv is here
2) v is also here and consists of a's

Example: language that cannot be accepted by an FA, one way to use the pumping lemma Let *L* be the language $AnBn = \{a^i b^i \mid i \ge 0\}$; let us prove that it cannot be accepted by an FA

- Suppose, for the sake of contradiction, that *L* is accepted by an FA; let *n* be as in the pumping lemma
- Choose $x = a^n b^n$; then $x \in L$ and $|x| \ge n$
- Therefore, by the pumping lemma, there are strings
 u, *v*, and *w* such that *x* = *uvw* and the 3 conditions hold
- Because $|uv| \le n$ and x starts with n a's, all the symbols in u and v are a's; therefore, $v = a^k$ for some k > 0
- $uvvw \in L$, so $a^{n+k}b^n \in L$. This is our contradiction, and we conclude that L cannot be accepted by an FA

So, what do we know about languages ...

Example 2: language that cannot be accepted by an FA, one way to use the pumping lemma

Let's show $L = \{a^{i^2} | i \ge 0\}$ is not accepted by an FA

- Suppose *L* is accepted by an FA, and let *n* be the integer in the pumping lemma
- Choose $x = a^{n^2}$ (note that the next longer string will be $a^{(n+1)^2}$)
- -x = uvw, where $0 < |v| \le n$
- Then $n^2 = |uvw| < |uv^2w| = n^2 + |v| \le n^2 + n < (n+1)^2$
- This is a contradiction, because $|uv^2w|$ must be i^2 for some integer *i* (because $uv^2w \in L$), but there is no integer *i* whose square is strictly between n^2 and $(n+1)^2$

So, what do we know about languages ...

The Pumping Lemma (cont'd.)

- There are other languages that are not accepted by any FA, among them:
 - *Balanced*, the set of balanced strings of parentheses
 - *Expr*, the language of simple algebraic expressions
 - The set of legal C programs
- In all three examples, because of the nature of these languages, a proof using the pumping lemma might look a lot like the proof for *AnBn*, our first example
- For example, this string "main(){{{ ... }}}" cannot be accepted by an FA (because of {ⁿ}ⁿ).

So, what do we know about languages ...

The Pumping Lemma (cont'd.)

- We can formulate several "decision problems" involving the language *L* accepted by an FA
 - The membership problem (Given *x*, is $x \in L(M)$?)
 - Given an *n*-state FA *M*, is the language *L*(*M*) empty?
 - It follows from the PL that this can be solved by looking at all possible strings of length 0 to *n* -1; if none of those is accepted, the language is empty, i.e., if we find *x* that is longer than *n*, we can always extract a middle part *v*.
 - Given an *n*-state FA *M*, is *L*(*M*) infinite?
 - The pumping lemma implies that the language is infinite if and only if at least one of the strings with length from *n* to 2*n* -1 is accepted

Example: Given two FAs M_1 and M_2 , are there any strings that are accepted by neither?

- We know how to construct an FA for the complement of a language L for a given FA, i.e., for $\overline{L} = \Sigma^* L$.
- Apply this for finding \overline{M}_1 , and \overline{M}_2 , accepting $\overline{L(M_1)}$, and $\overline{L(M_2)}$.
- We can construct an FA accepting $\overline{L(M_1)} \cap \overline{L(M_2)}$.
- Run the algorithm for determining if this FA accepts any strings.

