
Foundations of Computer Science 1

Chapter 2

Finite Automata and the
Languages They Accept

You can start using JFLAP. It is helpful for understanding the concepts of computational
models that we will learn in the next 2 months.
https://en.wikipedia.org/wiki/JFLAP
Note that you still need to use our notation in homework, quizzes and tests.

https://en.wikipedia.org/wiki/JFLAP

Foundations of Computer Science 2

Computer

String
of characters

Yes/NoComputation

This device plays a role of a
language acceptor

Model
Chapter 1

Chapter 2

my $mystring;

$mystring = "Hello world!";

if($mystring =~ m/world/) { print "Yes"; } else { print “No”;}

S

Code in Perl

Foundations of Computer Science 3

• A finite automaton is a simple type of computer
– Its output is limited to “yes” or “no”
– It has very primitive memory capabilities

• Our primitive computer that answers yes or no acts
as a language acceptor

• For this model, consider that:
– The input comes in the form of a string of individual

input symbols
– The computer gives an answer for the current prefix

(the string of symbols that have been read so far)

Intuition about finite automaton
model requirements

Foundations of Computer Science 4

Nobabababa
order 8 7 6 5 4 3 2 1

Nobababab a

Yesbababa ba

Nobabab aba

Yesbaba baba

Nobab ababa

empty string

Foundations of Computer Science 5

• A finite automaton (FA) or finite state machine is always in
one of a finite number of states

• At each step FA makes a move (from state to state) that
depends only on the current state and the input symbol

• The move is to enter a particular state (possibly the same
as the one it was already in)

• States are either accepting or nonaccepting
– Entering an accepting state means answering “yes”
– Entering a nonaccepting state means “no”

• An FA has an initial state

p qa

Foundations of Computer Science 7

• This FA accepts the language of strings that end in aa
– The three states represent strings that end with no a’s, one

a, and two a’s, respectively
– From each state, if the input is anything but an a, go back

to the initial state, because now the current string doesn’t
end with a

Finite Automata: Example

8

Draw FA for language L={a,b}*

9

Draw FA for the empty language

10

Draw FA for the language that contains only empty
string and nothing else

11

Draw FA for the language L={b}* over alphabet {a,b}

12

Draw FA for the language that contain strings ending
with b and not containing aa

13

Foundations of Computer Science 14

Finite Automata: Example
• This FA accepts the strings ending with b and not

containing aa
– The idea is to go to a permanently-non-accepting state if

you ever read two a’s in a row
– Go to an accepting state if you see a b (and haven’t read

two a’s), leave it when you see anything else

Foundations of Computer Science 15

Finite Automata: Example
• This FA accepts strings that contain abbaab
• What do we do when a prefix of abbaab has been

read but the next symbol doesn’t match?
– Go back to the state representing the longest prefix of

abbaab at the end of the new current string
– Example: If we’ve read abba and the next symbol is b,

go to q2, because ab is the longest prefix at the end of
abbab

Foundations of Computer Science 16

Finite Automata: the language of strings that are the binary
representations of natural numbers divisible by 3.

– States 0, 1, and 2 represent the
current “remainder”

– The initial state is non-accepting: at
least one bit is required

– Leading zeros are prohibited
– Transitions represent

multiplication by two, then
addition of the input bit

If x represents n, and n mod 3 is r, then what are 2n mod 3 and
(2n + 1) mod 3? It is almost correct that the answers are 2r and 2r + 1;
the only problem is that these numbers may be 3 or bigger, and in that
case we must do another mod 3 operation.

Foundations of Computer Science 17

n bin r n bin r

0 0 0 16 10000 1

1 1 1 17 10001 2

2 10 2 18 10010 0

3 11 0 19 10011 1

4 100 1 20 10100 2

5 101 2 21 10101 0

6 110 0 22 10110 1

7 111 1 23 10111 2

8 1000 2 24 11000 0

9 1001 0 25 11001 1

10 1010 1 26 11010 2

11 1011 2 27 11011 0

12 1100 0 28 11100 1

13 1101 1 29 11101 2

14 1110 2 30 11110 0

15 1111 0 31 11111 1

Foundations of Computer Science 18

Finite Automata: Lexical Analysis
Example

Diagrams are taken from

Foundations of Computer Science 19

• FAs are ideally suited for lexical analysis, the first
stage in compiling a computer program

• A lexical analyzer takes a string of characters and
provides a string of “tokens” (indecomposable units)

• Tokens have a simple structure: e.g., “41.3”, “main”, “=“
• The next slide shows an FA that accepts tokens for a

simple language based on C
– The only tokens are identifiers, semicolons, =, aa, and

numeric literals; tokens are separated by spaces
– Accepting states represent scanned tokens; each

accepting state represents a category of token

Finite Automata: Lexical Analysis
Example

Foundations of Computer Science 20

• The input alphabet contains
the 26 lowercase letters, the
10 digits, a semicolon, an
equals sign, a decimal point,
and the blank space .

• D is any digit
• L is a lowercase letter

other than a
• M is D or L
• N is D or L or a
• ∆ is a space
• All transitions not shown

explicitly go to an error
state and stay there

Foundations of Computer Science 21

Identifier a

Reserved word aa

Any other identifier

Numeric literals without decimal point

Numeric literals with decimal point

Foundations of Computer Science 22

Foundations of Computer Science 23

Foundations of Computer Science 24

Foundations of Computer Science 25

Evaluation of δ*(q0, baa)
• δ*(q0, baa) = δ(δ*(q0, ba), a) = δ(δ(δ*(q0, b), a), a)

= δ(δ(δ*(q0, Λb), a), a)
= δ(δ(δ(δ*(q0, Λ), b), a), a)
= δ(δ(δ(q0, b), a), a) = δ(δ(q0, a), a)
= δ(q1, a) = q1

Foundations of Computer Science 26

What language is accepted by this finite automaton?

The language of all strings that have exactly two letters “a”:
at the beginning and at the end of the string

Foundations of Computer Science 27

What language is accepted by this finite automaton?

Add missing transitions; The language contains all chains
(without spaces) of
• I like apples!
• I don’t like apples!
• I like tomatoes!
• I don’t like tomatoes!
• I like CISC303 very very* much!
• I don’t like CISC303 very very* much!
Can you propose a smaller FA that accepts the same
language?
Merge states 8, 9 and 6

The alphabet is
• I
• like
• don’t
• CISC303
• tomatoes
• apples
• very
• much
• !

CISC303

Foundations of Computer Science 28

Foundations of Computer Science 29

Foundations of Computer Science 30

• Definition:
– Let M=(Q, Σ, q0, A, δ) be an FA, and let x ∈ Σ*. Then x is

accepted by M if δ*(q0, x) ∈ A and rejected otherwise

babbbbabb is accepted by M
bbbbaaaab is rejected by M

• The language accepted by M is
L(M) = {x ∈ Σ* | x is accepted by M}

Foundations of Computer Science 31

Accepting the Union, Intersection, or
Difference of Two Languages

• Suppose that L1 and L2 are languages over Σ
– Given an FA that accepts L1 and another FA that

accepts L2, we can construct one that accepts L1 ∪ L2 ,
L1 ∩ L2 , L1 - L2

How to construct an FA for L1 ∪ L2 ?

Foundations of Computer Science 32

Accepting the Union, Intersection, or
Difference of Two Languages

• Suppose that L1 and L2 are languages over Σ
– Given an FA that accepts L1 and another FA that

accepts L2, we can construct one that accepts L1 ∪ L2 ,
L1 ∩ L2 , L1 - L2

How to construct an FA for L1 ∪ L2 ?

– The idea is to construct an FA that executes both of the
original FAs at the same time

– This works because if x ∈ Σ*, then knowing whether
x ∈ L1 and whether x ∈ L2 is enough to determine
whether x ∈ L1 ∪ L2

Foundations of Computer Science 33

Accepting the Union, Intersection, or
Difference of Two Languages (cont’d.)

• Theorem: Suppose M1=(Q1, Σ, q1, A1, δ1) and
M2=(Q2, Σ, q2, A2, δ2) are FAs accepting L1 and L2. Let
M=(Q, Σ, q0, A, δ) be defined as follows:
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ((p, q), σ) = (δ

1
(p, σ), δ

2
(q, σ))

• Then, if :
– A = {(p, q) | p ∈ A1 or q ∈ A2}, M accepts L1 ∪ L2

– A = {(p, q) | p ∈ A1 and q ∈ A2}, M accepts L1 ∩ L2

– A = {(p, q) | p ∈ A1 and q ∉ A2}, M accepts L1 - L2

Foundations of Computer Science 34

L1 = all strings that include “a”

L2 = all strings that do not include “a”

Union of L1 and L2

Foundations of Computer Science 35

Strings with exactly 2 a’s Strings with at least 2 b’s

Construct an FA to accept strings with exactly 2 a’s and at least 2 b’s

a,

Intersection

Foundations of Computer Science 36

Strings with exactly 2 a’s Strings with at least 2 b’s

Difference, i.e., strings with exactly 2 a’s and at most 1 b

a,

Foundations of Computer Science 37

We prove the first part of the theorem.
• Theorem: Suppose M1=(Q1, Σ, q1, A1, δ1) and M2=(Q2, Σ, q2, A2,
δ2) are FAs accepting L1 and L2. Let M=(Q, Σ, q0, A, δ) be
defined as follows:
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ((p, q), σ) = (δ

1
(p, σ), δ

2
(q, σ))

then, if A = {(p, q) | p ∈ A1 or q ∈ A2}, M accepts L1 ∪ L2.

Prove by structural induction at home

Foundations of Computer Science 38

Homework: Make sure you learn how to
prove the full version of this theorem
including the structural induction, union,
intersection and difference (see textbook).
Don’t submit!

Foundations of Computer Science 40

Accepting the Union, Intersection, or
Difference of Two Languages (cont’d.)

• Given two machines, create the Cartesian product of
the state sets, and draw the necessary transitions

No string can
reach this state

“aa” is not a substring

strings end with “ab”

Foundations of Computer Science 41

Accepting the Union, Intersection, or
Difference of Two Languages (cont’d.)

• Simplify the resulting machine, if possible, and
designate the appropriate accepting states

• The machine below accepts the union of the two
languages

Foundations of Computer Science 42

Accepting the Union, Intersection, or
Difference of Two Languages (cont’d.)

• For the intersection, we can simplify further, and we end
up with the machine on the right

• The simplification involved turning states CP, CQ, and CR
into a single state (none of them was accepting, and there
was no way to leave them)

Contains 3 merged states

Foundations of Computer Science 43

L1∪L2 L1∩L2 L1-L2

_ AP y n y

a BQ y n y

b AR y y n

b AP y n y

a BQ y n y

a CQ n n n

FA for L1

FA for L2

Input: abbaa

Foundations of Computer Science 44

Example: FA accepting strings that contain either “ab” or “bba”

x contains “ab”

x contains “bba”

We can try to build FA with
12 states but we can do less
with “if”-like fork

Foundations of Computer Science 45

• Can we construct FA with fewer states?
• Can we be sure that this number of states is enough?
• We will study the connection between the

“complexity” of input and the “complexity” of
algorithm.

Note that this is not a traditional notion of
algorithm complexity in the theory of
computer science that we will study later

Foundations of Computer Science 46

Distinguishing One String from Another

• Any FA, ignores, or “forgets”, a lot of information
• An FA doesn’t remember which string has been seen

– aba and aabbabbabaaaba lead to the same state;
– aba and ab, however, lead to different states; the essential

difference is that one ends with a and the other doesn’t
– aba and ab are distinguishable with respect to the language

accepted by the FA; there is at least one string z (such as a) so
that abaz is in the language (i.e., is accepted) and abz is not, or
vice versa

Strings ending in aa

Foundations of Computer Science 47

Distinguishing One String from Another (cont’d.)

• Definition:
– If L is a language over Σ, and x, y ∈ Σ*, then x and y are

L-distinguishable, if there is a string z ∈ Σ* such that
either xz ∈ L and yz ∉ L, or xz ∉ L and yz ∈ L

– A string z having this property is said to distinguish x and y
with respect to L

– Equivalently, x and y are L-distinguishable if L/x ≠ L/y, where
L/x = {z ∈ Σ * | xz ∈ L}

x

y

z

z

Foundations of Computer Science 48

• Theorem: Suppose M=(Q, Σ, q0, A, δ) is an FA accepting
L ⊆ Σ*
– If x, y ∈ Σ* are L-distinguishable, then δ*(q0, x) ≠ δ*(q0, y)
– For all n ≥ 2, if there is a set of n pairwise L-distinguishable

strings in Σ*, then Q must contain at least n states

This shows why we need at least three states in any FA that
accepts the language L of strings ending in aa: {Λ, a, aa}
contains 3 pairwise L-distinguishable strings

Distinguishing One String from Another (cont’d.)

Foundations of Computer Science 49

Part I: If x and y are two strings in Σ* that are L-
distinguishable, then δ*(q0, x) ≠ δ*(q0, y)

Foundations of Computer Science 50

Part II: For all n ≥ 2, if there is a set of n pairwise L-
distinguishable strings in Σ*, then Q must contain at
least n states

x

y

z

z

Foundations of Computer Science 51

Distinguishing One String from Another (cont’d.)
• To create an FA to accept L = L1L2={aa, aab}*{b}, we notice

first that Λ,a ∉ L, b ∈ L, and Λ,b, and a are L-distinguishable
(for example, Λb ∈ L, ab ∉ L)
– We need at least the states in the first diagram
– L contains b but nothing else that begins with b, so we add a

state s to take care of illegal prefixes
– If the input starts with aa we, need to leave state p because a

and aa are L-distinguishable; create state t

Foundations of Computer Science 52

• δ(t, b) must be accepting, because
aab ∈ L but distinguishable from b;
call that new state u

• Let δ(u,b) be r, because aabb is in L
but not a prefix of any other string
in L

• States t and u can be thought of as
representing the end of an
occurrence of aa or aab; if the next
symbol is a it’s the start of a new
occurrence, so go back to p

• The result is shown here

Distinguishing One String from Another (cont’d.)

Foundations of Computer Science 53

Distinguishing One String from Another (cont’d.)
Λ a b aab aa ab

Λ - b Λ Λ bb b
a - Λ b b ab
b - aab bb Λ
aab - bb Λ
aa - b
ab -

FA to accept L = {aa, aab}*{b}

These are
strings z’s
that
distinguish
between
x, and y

Foundations of Computer Science 54

Foundations of Computer Science 55

Foundations of Computer Science 56

Foundations of Computer Science 57

Foundations of Computer Science 58

So, what do we know about languages …

All languages

Languages accepted
by finite automata

 PAL

Foundations of Computer Science 59

The Pumping Lemma
• Suppose that M=(Q, Σ , q0, A, δ) is an FA accepting L and

that it has n states
– If it accepts a string x such that |x| ≥ n, then by the time n

symbols have been read, M must …

Foundations of Computer Science 60

The Pumping Lemma
• Suppose that M=(Q, Σ , q0, A, δ) is an FA accepting L and

that it has n states
– If it accepts a string x such that |x| ≥ n, then by the time n

symbols have been read, M must have entered some state
more than once; i.e., there must be two different prefixes u and
uv such that δ *(q0,u)= δ *(q0,uv)

There must be a path
containing a loop

Foundations of Computer Science 61

The Pumping Lemma (cont’d.)

• This implies that there are many more strings in L,
because we can traverse the loop v any number of
times (including leaving it out altogether)

• In other words, all of the strings uviw for i ≥ 0 are in L
• This fact is known as the Pumping Lemma for Finite

Automata (or for Regular Languages)
There must be a path
containing a loop

Foundations of Computer Science 62

The Pumping Lemma

• Theorem: Suppose L is a language over Σ
If L is accepted by the FA M=(Q, Σ, q0, A, δ), and |Q| =n,
then for every x in L satisfying |x| ≥ n, there are three
strings u, v, and w such that x = uvw and

– |uv| ≤ n
– |v| > 0 (i.e. v ≠ Λ)
– For every i ≥ 0, the string uviw belongs to L

• The way we found n was to take the number of states
in an FA accepting L. In many applications we don’t
need to know this, only that there is such an n

Foundations of Computer Science 63

The Pumping Lemma (cont’d.)

• The most common application of the pumping lemma
is to show that a language cannot be accepted by an
FA, because it doesn’t have the properties that the
pumping lemma says are required for every language
that can be.

• The proof is by contradiction. We suppose that the
language can be accepted by an FA, and we let n=|Q|
be the integer in the pumping lemma

• Then we choose a string x with |x| ≥ n to which we
can apply the lemma so as to get a contradiction

Foundations of Computer Science 64

Example: language that cannot be accepted by an FA,
one way to use the pumping lemma

Let L be the language AnBn = {aibi | i ≥ 0}; let us prove
that it cannot be accepted by an FA

– Suppose, for the sake of contradiction, that L is
accepted by an FA; let n be as in the pumping lemma

– Choose x = anbn; then x ∈ L and |x| ≥ n
– Therefore, by the pumping lemma, there are strings

u, v, and w such that x = uvw and the 3 conditions hold
– Because |uv| ≤ n and x starts with n a’s, all the symbols

in u and v are a’s; therefore, v = ak for some k > 0

x = aa-----------aaabb------------bbb
n n

1) uv is here
2) v is also here and consists of a’s

Foundations of Computer Science 65

Example: language that cannot be accepted by an FA,
one way to use the pumping lemma

Let L be the language AnBn = {aibi | i ≥ 0}; let us prove
that it cannot be accepted by an FA

– Suppose, for the sake of contradiction, that L is
accepted by an FA; let n be as in the pumping lemma

– Choose x = anbn; then x ∈ L and |x| ≥ n
– Therefore, by the pumping lemma, there are strings

u, v, and w such that x = uvw and the 3 conditions hold
– Because |uv| ≤ n and x starts with n a’s, all the symbols

in u and v are a’s; therefore, v = ak for some k > 0
– uvvw ∈ L, so an+kbn ∈ L. This is our contradiction, and

we conclude that L cannot be accepted by an FA

aa-----------aaaaa---aabb------------bbb = an+kbn is not in L
n n

1) uv is here
2) v is also here and consists of a’s

k

Foundations of Computer Science 66

So, what do we know about languages …

All languages

Languages accepted
by finite automata

 PAL

 AnBn

Foundations of Computer Science 67

Let’s show L = {a i 2 | i ≥ 0} is not accepted by an FA
– Suppose L is accepted by an FA, and let n be the integer in the

pumping lemma
– Choose x = an2

(note that the next longer string will be a(n+1)2)

– x = uvw, where 0 < |v| ≤ n
– Then n2 = |uvw| < |uv2w| = n2 + |v| ≤ n2 + n < (n+1)2

– This is a contradiction, because |uv2w| must be i2 for some
integer i (because uv2w ∈ L), but there is no integer i whose
square is strictly between n2 and (n+1)2

Example 2: language that cannot be accepted by an FA,
one way to use the pumping lemma

Foundations of Computer Science 68

So, what do we know about languages …

All languages

Languages accepted
by finite automata

 PAL

 AnBn

 a i 2

Foundations of Computer Science 69

The Pumping Lemma (cont’d.)

• There are other languages that are not accepted by
any FA, among them:
– Balanced, the set of balanced strings of parentheses
– Expr, the language of simple algebraic expressions
– The set of legal C programs

• In all three examples, because of the nature of these
languages, a proof using the pumping lemma might
look a lot like the proof for AnBn, our first example

• For example, this string “main(){{{ ... }}}” cannot be
accepted by an FA (because of {n}n).

Foundations of Computer Science 70

So, what do we know about languages …

All languages

Languages accepted
by finite automata

 PAL

 AnBn

 a i 2
 Balanced

 Expr C programs

Foundations of Computer Science 71

The Pumping Lemma (cont’d.)
• We can formulate several “decision problems”

involving the language L accepted by an FA
– The membership problem (Given x, is x ∈ L(M)?)
– Given an n-state FA M, is the language L(M) empty?
• It follows from the PL that this can be solved by looking at all

possible strings of length 0 to n -1; if none of those is
accepted, the language is empty, i.e., if we find x that is longer
than n, we can always extract a middle part v.

– Given an n-state FA M, is L(M) infinite?
• The pumping lemma implies that the language is infinite

if and only if at least one of the strings with length from
n to 2n -1 is accepted

Foundations of Computer Science 72

Strings
accepted by
neither

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72

