
Foundations of Computer Science 2

Automata Theory (aka Foundations of CS) CISC 303
Instructor: Prof. Ilya Safro, 430 Smith Hall
Office hours: Wednesdays 9am-10am or by appointment
TA: Sristy Sangskriti, Connor Nagle

Course Structure

What How many Time Points

Homework 12-14 1 week 30

Midterm exam I 1 1.25 hours 20

Midterm exam II 1 1.25 hours 20

Final exam 1 1.25 hours 20

Pop-up or online
quizzes

10-15 5-7 min 10

Total 100.00

Bonuses Work in class, extra work in homework exercises, etc. - up to 10 points. We do not
want to miss the next Turing, Fields and Nobel laureates, so any submitted
conference/journal paper written during and as a result of this course - 100
points, and new interesting ideas - up to 100 points (both are based on
instructor's subjective judgment).

Points Grade

≥ 89.00 A

≥ 79.00 B

≥ 65.00 C

≥ 50.00 D

≥ 0 F

Foundations of Computer Science 3

NO ELECTRONIC DEVICES IN THIS CLASSROOM!

All slides will be available online after each class

Average over all midterms ≥ 89.00
+

Average over all homework assignments ≥ 89.00
+

Average over all quizzes ≥ 89.00
(which also means the attendance)

=
No final exam

• Pop-up or online quizzes: no unexcused absences are allowed; unexcused
absences get counted as zeros

• If any curve will be used, a minimum score of 40 is still required to pass this
course

• No curves will be given in the middle of the semester. Your grade reflects
your knowledge.

• In the end of the semester a curve of at most N required points will be given
to satisfy two conditions (if they are not satisfied without the curve)
• Top 15% of students will have an A
• The last student in the top 70% will have a C

• No curve will be applied to students who missed midterm or final exams.

Foundations of Computer Science 4

Recommended Book

Foundations of Computer Science 5

Assumption:
You have all prerequisites
and you know
• mathematical induction
• basics of set theory (sets,

inclusion, difference, union,
proofs of equality, etc.)

• basics of mathematical logic
(operators and/or/not/,
proofs “if and only if”, etc.)

You can find this material in
Chapter I.

Foundations of Computer Science 6

• Grimaldi “Discrete and Combinatorial Mathematics: An Applied
Introduction “ (very good introductory book to cover math that
you may need)

• Linz “Formal Languages and Automata” (not easy but very good)
• Hopcroft, Motwani, Ullman “Introduction to Automata Theory,

Languages, and Computation” (one of the best classical textbooks)
• Sipser “Introduction to the Theory of Computation” (one of the

best classical textbooks)
• Meduna “Automata and Languages”
• Sudkamp “Languages and Machines”
• Arora, Barak “Computational Complexity: A Modern Approach”

(recommended to students who are interested in algorithms and
theory; especially if you plan to continue for MSc or PhD)

• https://en.wikipedia.org/wiki/JFLAP JFLAP is a software for
experiments with languages, finite automata and Turing machines.
Use it when we will start with finite automata (in 1-2 weeks)

https://en.wikipedia.org/wiki/JFLAP

Important

• In some homework assignments, new
definitions, principles, and algorithms will be
introduced. Exams can include them! All
exams are cumulative over any and all
previous and current material.

• Exams will be closed book, closed notes and
closed any other aids. A score of 0 will be
given to anyone not present at the beginning
of the exam.

Foundations of Computer Science 7

Very important
• You cannot copy-paste solutions from the Internet, books,

friends, etc. If you don’t solve them by yourself, this will
be the best way to fail the exams.

• Solve as many exercises from the textbook as you can. Try
to solve more than what you get in the assignments. This
is not a passive learning course.

• Common mistake: you are sure that you understand
some chapter (which is easy) but you did not solve 30-40
problems from that chapter by yourself (which is hard).

• All chapters are cumulative. Do not neglect any material.
• There are no dumb questions. Certainly, not in such a

challenging course. You can ask anything. It is normal if
you don’t understand something. It is not normal if you
don’t understand something and immediately start
working on it at home. 8

Triviality

Sometimes I will say, or you will read in books that something is trivial. It
does not mean that I and the book author are smart, and if you do not
understand then you are not.

Triviality in math refers to: the mathematically most simple case; any
result which requires little or no effort to derive or prove; very simple
object structure; something that directly follows from the definition.

There are several mathematical definitions of triviality that depend on
the context.

Example: For 10x+5y-9z = 0 x=y=z=0 is called a trivial solution

See https://en.wikipedia.org/wiki/Triviality_(mathematics) or many
books in mathematical reasoning.
Foundations of Computer Science 9

https://en.wikipedia.org/wiki/Triviality_(mathematics)

Major reasons for D and F in this course

• Some students start preparing for midterms or
finals one week in advance. You must work during
the semester.

• Copy-pasting homework solutions
• Students don’t understand theorems and proofs.

Just memorizing them is not the best idea.
• Students start this course without knowing

mathematical induction
• Student don’t read and solve additional examples

in the textbook
• Not attending lectures
• Not taking quizzes 10

Foundations of Computer Science 11

Software
engineering,
Programming

Theory,
Algorithms

Data
analytics

Hardware,
Networks,
Systems

You will
• Discuss computer science in the

language of mathematics
• Think about programming using

mathematical objects
• Define the notion of an algorithm
• Compare algorithms
• Learn computational models
• Understand their fundamental

limitations and advantages
• Study ideas behind compilers
• Distinguish between solvable and

unsolvable problems (no matter
what computers you use)

• Learn fundamentals of computing
that explain what we can expect to
solve with reasonable resources

• Use rigorous proofs to confirm the
conclusions where we can

• Discuss various complexity classes
and the P vs NP millennium
problem

• Solve a lot of brain teasers
• See some counterintuitive things

Foundations of Computer Science 12https://www.onlinemathlearning.com/venn-diagrams.html

Sets

Foundations of Computer Science 13Cardinal “Sets, Graphs, and Things We Can See: A Formal Combinatorial Ontology for Empirical Intra-Site Analysis”

Foundations of Computer Science 14

Foundations of Computer Science 15

Languages

Foundations of Computer Science 16

Computer

String
of characters

Yes/NoComputation

Examples:
• We enter a string and ask whether this string is a legal

algebraic expression or not.
a+b/c  the answer is YES
aa+++b--- the answer is NO

• We enter a string and ask whether this string includes
exactly 3 characters a, and 5 characters b or not.

This computer plays a role of
a language acceptor

Model

Foundations of Computer Science 17

Foundations of Computer Science 18

canonical order

Canonical order, the order in which shorter strings precede longer strings and strings
of the same length appear alphabetically. Canonical order is different from
lexicographic, or strictly alphabetical order, in which aa precedes b.

Foundations of Computer Science 19

empty set

Foundations of Computer Science 20

empty set

Foundations of Computer Science 21

Foundations of Computer Science 22

Foundations of Computer Science 23

Foundations of Computer Science 24

Foundations of Computer Science 25

Mathematical Induction

Simple (or regular) induction

Set S

x0

x1

x2

xk

Xk+1

.

.

.

.

.

.

Strong induction

Set S

x0

x1

x2

xk

Xk+1

.

.

.

.

.

.

1. Prove P(x0) for the smallest
relevant element in S

2. Assume P(xk) is true for xk

2. Assume P(xk) is true for all
elements up to xk

3. Prove P(xk+1) for the next
relevant element in S

Foundations of Computer Science 26

Foundations of Computer Science 27

Proofs by contradiction

X Y X  Y ˥Y ˥YX

T T T F T

T F F T T

F T T F T

F F T T F

Foundations of Computer Science 28

Example of a proposition with proof by contradiction:

There is no smallest positive real number (SPRN).

Proof by contradiction:

- Suppose that 𝑥𝑥 is SPRN.

- Then 𝑥𝑥>0 because it is given that x is positive.

- But if we take 0<1
2
<1, and multiply by x we obtain 0<1

2
𝑥𝑥<𝑥𝑥.

- 1
2
𝑥𝑥 is smaller than 𝑥𝑥, so this is a contradiction to the assumption

- Hence, there is no SPRN

Proofs by contradiction

Foundations of Computer Science 29

Foundations of Computer Science 30

This is what we will prove by induction, i.e., all
three induction steps will be contradictions.

Foundations of Computer Science 31

Foundations of Computer Science 32

Foundations of Computer Science 33

Foundations of Computer Science 34

Foundations of Computer Science 35

Foundations of Computer Science 36

Foundations of Computer Science 37

Foundations of Computer Science 38

These are just strings, you don’t
need to compute them

Foundations of Computer Science 39

set of subsets

Foundations of Computer Science 40

Given language L, typical questions that one can ask are to
(dis)prove that:

• string x belongs to L

• all (some) x in L have some property

• another language is a subset of L, etc.

• L* can contain certain strings

• recursive definition of L is …

(Example: compiler + source code.)

Foundations of Computer Science 41

Mathematical induction with
integers

Recursive definition of a
language (or set)

Structural induction always
works with recursive
definition

Basis: Prove the proposition
for the smallest integer(s).

Basis: Starts with the shortest
string(s) that initiate
generation of set. These
strings cannot be
decomposed or reduced.

Basis: Prove the proposition
for the all the basis cases
(shortst strings) of the
recursive definition.

Hypothesis: Assume that the
proposition is true for all
integers up to a certain k.

Condition: Define strings that
will participate in generation
of new strings (or elements of
set)

Hypothesis: Assume that the
proposition is true for all
strings generated until some
step.

Induction: Prove the
proposition for the next
integer k+1 using assumption
about smaller integers.

Recursive part: Define rules
to generate new strings (or
elements of set) using the
strings in condition,

Induction: Prove the
proposition for the newly
generated strings using rules
in the recursive part.

Foundations of Computer Science 42

operations on x, y generate
strings for which P() is true

Induction hypothesis

Foundations of Computer Science 43

length of x

Foundations of Computer Science 44

length of x

Foundations of Computer Science 45

Sometimes stronger statements are easier to prove

Foundations of Computer Science 46

Defining functions on sets defined recursively

Reverse function r(x) reverses input string x. Example: x = abac, r(x) = caba

output of r if input of r is …

Foundations of Computer Science 47

To illustrate the close relationship between the recursive definition
of {a, b}∗, the recursive definition of r, and the principle of structural
induction, we prove the following fact about the reverse function.

Foundations of Computer Science 48

The second part of the proof is similar. Complete it in the assignment!

i.e., y is an empty string

Foundations of Computer Science 49

Foundations of Computer Science 50You can also prove it by induction on Lk without splitting into substrings.

Foundations of Computer Science
51

Intuition:
1. In L strings are generated with more a’s than b’s
2. In L0 strings look like aaaa…aaaabb…bb

i ≥ j

Foundations of Computer Science 52

Foundations of Computer Science 53

Foundations of Computer Science 54

Foundations of Computer Science 55>>> Part 1 is easy: complete a home.

Foundations of Computer Science 56

Summary

• In typical proofs by mathematical induction, we choose an integer
that is
• The length of string
• The number of substrings whose concatenation gives string x
• The exponent of the language in the * of some expression

• Typical proofs by structural induction (SI):
• SI doesn’t work without recursive definition (RD) of the language
• The basis of SI corresponds to the basis of the RD
• Formulate induction hypothesis on all input elements of the

recursive rules
• Prove induction step on all recursive rules in RD
• Break down the problem you need to prove in induction step to

easier problems in which you can apply the hypothesis, basis
statement, etc.

Foundations of Computer Science 57

Foundations of Computer Science 58

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

