Automata Theory (aka Foundations of CS) CISC 303

Instructor: Prof. llya Safro, 430 Smith Hall
Office hours: Wednesdays 9am-10am or by appointment
TA: Sristy Sangskriti, Connor Nagle

Course Structure

waow ey L ine | vane [s e

Homework 12-14 1 week > 89.00
Midterm exam | 1 1.25 hours 20 > 79.00 B
Midterm exam Il 1 1.25 hours 20 > 65.00 C
Final exam 1 1.25 hours 20

2 50.00 D
Pop-up or online 10-15 5-7 min 10
quizzes 20 7
Total 100.00

Bonuses work in class, extra work in homework exercises, etc. - up to 10 points. We do not
want to miss the next Turing, Fields and Nobel laureates, so any submitted
conference/journal paper written during and as a result of this course - 100
points, and new interesting ideas - up to 100 points (both are based on
instructor's subjective judgment).

NO ELECTRONIC DEVICES IN THIS CLASSROOM!

All slides will be available online after each class

Average over all midterms = 89.00
+

Average over all homework assignments = 89.00
+
Average over all quizzes 2 89.00
(which also means the attendance)

No final exam

Pop-up or online quizzes: no unexcused absences are allowed; unexcused
absences get counted as zeros

If any curve will be used, a minimum score of 40 is still required to pass this
course

No curves will be given in the middle of the semester. Your grade reflects
your knowledge.

In the end of the semester a curve of at most N required points will be given
to satisfy two conditions (if they are not satisfied without the curve)

* Top 15% of students will have an A

 The last student in the top 70% will have a C

No curve will be applied to students who missed midterm or final exams.

Recommended Book

Assumption:

Introduction t Languages You have all prerequisites
and the and you know

Theory of Computation * mathematical induction

* basics of set theory (sets,
inclusion, difference, union,
proofs of equality, etc.)

* basics of mathematical logic
(operators and/or/not/—2,
proofs “if and only if”, etc.)

SUANG Vel You can find this material in

Chapter I.

Grimaldi “Discrete and Combinatorial Mathematics: An Applied
Introduction “ (very good introductory book to cover math that
you may need)

Linz “Formal Languages and Automata” (not easy but very good)
Hopcroft, Motwani, Ullman “Introduction to Automata Theory,
Languages, and Computation” (one of the best classical textbooks)
Sipser “Introduction to the Theory of Computation” (one of the
best classical textbooks)

Meduna “Automata and Languages”

Sudkamp “Languages and Machines”

Arora, Barak “Computational Complexity: A Modern Approach”
(recommended to students who are interested in algorithms and
theory; especially if you plan to continue for MSc or PhD)

https://en.wikipedia.org/wiki/JFLAP JFLAP is a software for
experiments with languages, finite automata and Turing machines.
Use it when we will start with finite automata (in 1-2 weeks)

https://en.wikipedia.org/wiki/JFLAP

Important

In some homework assighments, new
definitions, principles, and algorithms will be
introduced. Exams can include them! All
exams are cumulative over any and all
previous and current material.

Exams will be closed book, closed notes and
closed any other aids. A score of O will be
given to anyone not present at the beginning
of the exam.

Very important

You cannot copy-paste solutions from the Internet, books,
friends, etc. If you don’t solve them by yourself, this will
be the best way to fail the exams.

Solve as many exercises from the textbook as you can. Try
to solve more than what you get in the assignments. This
is not a passive learning course.

Common mistake: you are sure that you understand
some chapter (which is easy) but you did not solve 30-40
problems from that chapter by yourself (which is hard).
All chapters are cumulative. Do not neglect any material.
There are no dumb questions. Certainly, not in such a
challenging course. You can ask anything. It is normal if
you don’t understand something. It is not normal if you
don’t understand something and immediately start
working on it at home.

Triviality

Sometimes | will say, or you will read in books that something is trivial. It
does not mean that | and the book author are smart, and if you do not
understand then you are not.

Triviality in math refers to: the mathematically most simple case; any
result which requires little or no effort to derive or prove; very simple

object structure; something that directly follows from the definition.

There are several mathematical definitions of triviality that depend on
the context.

Example: For 10x+5y-92=0 x=y=z=0 is called a trivial solution

See https://en.wikipedia.org/wiki/Triviality (mathematics) or many
books in mathematical reasoning.

https://en.wikipedia.org/wiki/Triviality_(mathematics)

Major reasons for D and F in this course

 Some students start preparing for midterms or
finals one week in advance. You must work during
the semester.

 Copy-pasting homework solutions

e Students don’t understand theorems and proofs.
Just memorizing them is not the best idea.

* Students start this course without knowing
mathematical induction

 Student don’t read and solve additional examples
in the textbook

* Not attending lectures

* Not taking quizzes

-

o

Software

engineering,
Programming

\

Z

-~

o

Data
analytics

~

/

o

Theory,
Algorithms

o\

_J

Hardware,
Networks,
Systems

\

You will

Discuss computer science in the
language of mathematics

Think about programming using
mathematical objects

Define the notion of an algorithm
Compare algorithms

Learn computational models
Understand their fundamental
limitations and advantages

Study ideas behind compilers
Distinguish between solvable and
unsolvable problems (no matter
what computers you use)

Learn fundamentals of computing
that explain what we can expect to
solve with reasonable resources
Use rigorous proofs to confirm the
conclusions where we can

Discuss various complexity classes
and the P vs NP millennium
problem

Solve a lot of brain teasers

See some counterintuitive things

Set Operations and Venn Diagrams
Sets

Set A A’ the complement of A
U u
A : : B A
A and B are disjoint sets B is proper Bc 4
subset of A
u u

A B A
Both Aand B ANB Either Aor B AUB
Aintersect B A union B

https://www.onlinemathlearning.com/venn-diagrams.htmi

ANB

AAB=(AUB)-(ANB)

n

ANnB’

A'NB

A'UB =(ANB)

A'NB =(AUB)

P

Cardinal “Sets, Graphs, and Things We Can See: A Formal Combinatorial Ontology for Empirical Intra-Site Analysis”

How to prove that sets A and B are equal?
In order to prove that A = B you need to prove that

e ACRKB
e BCA

How to prove that A C B? Without loss of generality
take any element x € A and prove that it is also an
element of B.

Model

Computer

String Yes/No

Computation

of characters

This computer plays a role of
a language acceptor

Examples:
* We enter a string and ask whether this string is a legal
algebraic expression or not.
a+b/c - the answer is YES
aa+++b--- 2 the answer is NO

* We enter a string and ask whether this string includes
exactly 3 characters a, and 5 characters b or not.

Definition (Alphabet)

e An alphabet (usually denoted by)) is a finite set
of symbols, e.g., {a,b}, {0,1}, {A,B,C,...,Z}, or
{‘7 *7 @}

e A string over) is a finite sequence of symbols in
> . For a string z, |z| stands for the length of x.

Example: |Odk | = 4.

e n,(x) is the number of occurrences of the symbol o
in the string x. Example: n,(abbba) = 2.

e The null string A is a string over > |, no matter what
the alphabet) is. By definition, |A| = 0.

Definition (Alphabet)

e The set of all strings over > will be written as X*.
For ¥ = {a, b}, we have

{a,b}* = {A,a,b,aa,ab,ba,bb, aaa, aabd, ...}
T~ canonical order
Remark: There exist infinite alphabets but not in this

course.

@/ Canonical order, the order in which shorter strings precede longer strings and strings
K of the same length appear alphabetically. Canonical order is different from
lexicographic, or strictly alphabetical order, in which aa precedes b.

Definition A language over X is a subset of >*.

Examples:

s empty set
e The empty language (.

e {A a,aab}

e The language PAL of palindromes over {a, b} (strings
such as aba or baab that are unchanged when the
order of the symbols is reversed).

o {x €{a,b}* | ny(x) >ny(x)}
e {x € {a,b}" | |xr| > 2 and z begins and ends with b}

Definition A language over X is a subset of >*.

Examples: __~ empty set
e The empty language 0.

e {A a,aab}

e The language PAL of palindromes over {a, b} (strings such as

aba or baab that are unchanged when the order of the symbols
is reversed).

o {x €{a, b} | ny(x) > ny(x)}
o {x €{a,b}* | |x| > 2 and = begins and ends with b}

A is always an element of X*, but other languages over > may or
may not contain it. More real examples:

e The language of numeric literals in Java such as 0.3 and 5.0E-3.

e The language of legal Java programs. ¥ = {numbers, letters, ... }.

e Concatenation: if x and y are two strings, the concatenation of
x and y is written xy and consists of the symbols of x followed
by those of .

Example: if £ = ab and y = bab then ry = abbab and yxr =
babab.
For every string x, tA = Ax = .

e If sis a string and
S = tuv

for three strings ¢ , u, and v, then ¢ is a prefix of s, v is a suffix
of s, and u is a substring of s.

e Fach of them is not necessarily non-empty string.

e Concatenation of languages L, and L, is the language
LiLy={xy|x€ Ly and y € Ly}
Example: {a,aa}{A,b,ab} = {a,ab, aab, aa,aaab}.

X 23 275?

Exponents:

o Ifac)

a” =aa...a (k times)

o [fx el

e We define L¥ for a language L

Lk:{xlah...xk_lxk]xiEL, 1§Z§]‘€}

e For pairs of alphabets and languages we can define union, in-
tersection, and difference operations (U, N, —)

Y1UXs = {a|a€Xiorac s}
1Ny = {a|a€eX;and a € 3y}
Y1 =% = {a|a€eX;anda ¢ sy}

Same for languages L, and Ls.

e The Kleene star (or Kleene closure) operation on a language L
L*=L0UL'uL?uLl?- = J{L* | ke N},

where LY = {A}
e Precedence rules are similar to the algebraic rules. Example:

LiULyL: = Ly U (Lo(L%))

Mathematical Induction

Simple (or regular) induction Strong induction

Sets ﬁﬁsl' ¢ 5%5{}’ Sets

1. Prove P(x,) for the smallest
relevant elementin S

X N
__ e
kK
I
2. Assume P(x,) is true for x, : X2
I |
|$ | |
Hyp othags skep e
I |
2. Assume P(x,) is trueforall | | '
elementsupto x, — : :
P Xk
[—

Trdunction g‘\

3. Prove P(x,,,) for the next
relevant element in S

P
+
~

Prove by induction on n that

T@ _ n—l—l)

1= 1

e Basisstep: n=1,1=1(1+1)/2

Z

me n = k, e Hypothesis: Suppose the claim is true for so:
k
N = k‘(L]{J +1)/2
i=1

1e claim forn =k + 1 e Induction step: We need to prove tl

c4+1)/2+ (k+1) = (k+1)(k+2)/2 ZZ—ZH— (k+1) = k(!

true for all n. Thus the claim is -

Proofs by contradiction

For every proposition p, p is equivalent to the conditional

roposition
PP OAETICEEES
true — p, 77 | F T
whose contrapositive is T [E [
F T T F T
-p — false. F F T T F
A proof of p by contradiction means

1. assuming that p is false and

2. deriving a contradiction (i.e., deriving false state-
ment).

Proofs by contradiction

Example of a proposition with proof by contradiction:
There is no smallest positive real number (SPRN).

Proof by contradiction:

- Suppose that x is SPRN.

- Then x>0 because it is given that x is positive.

- But if we take O<%<1, and multiply by x we obtain O<% X<X.

1. . . .
-JXis smaller than x, so this is a contradiction to the assumption

- Hence, there is no SPRN

Claim. Let Ly and Lo be subsets of {a,b}*. Prove that if L; C Lo,
then L C L3. x
L2

X ‘56 \ X\ X1 xy\.‘,_ K!_\

. ~—
xel, => x€ Lz Basis (= | sy

Hyeothesis for e cuRsh§s
xe s Yor € 12

y *
T A/*(_‘('\OV‘ X { 2
slese .>' \L 2

Claim. Let Ly and Lo be subsets of {a,b}*. Prove that if L1 C Lo,
then L7 C L3.

e We will prove this claim by contradiction.

e The claim says: if Ly C Lo, then L7 C L3, ie., given the
condition Ly C Lo, we need to prove that all elements of L] are
also elements of L3.

e A contradiction to it is when we assume that there exist some-
thing that contradicts the statement, and then we’ll show that
this is not true.

. "an
..........
.............

.* "

[3d L

. .
* ‘e
. .

. *
''''

gy [5d
. s
.....

....................

This is what we will prove by induction, i.e., all
three induction steps will be contradictions.

If you need to prove that A C B, you need to prove that every x € A is also in B.

Claim. Let Ly and Lo be subsets of {a,b}*. Prove that zf L1 C Lo,
then LT C L3,

Proof sketch. Let’s assume that dz € L7 such that :1391 L5,

By definition of L], x is a concatenation @f k strings
x; € L, Ogig:]{;—l, 1.e

\. T = ToTy...Th—1 OF T =/

L WYE RN v O VO e Jikny e*atevsm%%ufemﬂuy“f T ARV
tradiction. ’

e Basis step.;-’"j

le claim 1s cofrect becAuse K & Ly by = —k=U =z ="n-"t
/ the definition of x*;

o F Nthenx e [y =€ Ly = x € L. — k=1 =2 =2

Claim. Let Ly and Lo be subsets of {a,b}*. Prove that if L1 C Lo,
then L7 C L3.

Proof sketch (cont).

e Hypothesis: The claim is correct for k& — 1 strings (i.e., the
contradiction is wrong).

e Induction step:
— T = Tox1- - Tp_oTrp—1 then x = yxy_q1, where y is a con-
catenation of k£ — 1 strings,
— By induction hypothesis y € L3.
— However, x,_1 € Ly and since L1 C Lo then x,_1 € L.

— Then, x € Lj because x = yxy_1, where y € L}
and 1 € Ls.

Claim. Let L1 and Ly be subsets of {a,b}*. Prove that
LTULS C (LU Lsy)™.

Proof sketch.
L1 CLiULy, = LT C (Ll U LQ)*
LQ C Ll U L2 = L; C (L1 U Lg)*

= LiULLC (LU Ly)*.

Recursive definitions

e A recursive definition of a set begins with a basis statement
that specifies one or more elements in the set. The recursive
part of the definition involves one or more operations that can
be applied to elements already known to be in the set, so as to

produce new elements of the set.

Example: let AnBn be the language over ¥ = {a,b} defined as
AnBn = {a"b" | n € N}. Its recursive definition is

1. A e AnBn
2. For every x € AnBn, axrb € AnBn.

Example: recursive definition of PAL over ¥ = {a, b}

Recursive definitions

e A recursive definition of a set begins with a basis statement
that specifies one or more elements in the set. The recursive
part of the definition involves one or more operations that can
be applied to elements already known to be in the set, so as to

produce new elements of the set.

Example: let AnBn be the language over ¥ = {a,b} defined as
AnBn = {a"b" | n € N}. Its recursive definition is

1. A e AnBn
2. For every x € AnBn, axrb € AnBn.

Example: recursive definition of PAL over ¥ = {a, b}

1. A,a,be PAL
2. For every x € PAL, axa € PAL and bxb € PAL.

Recursive definitions of functions
Example 1: factorial function n!=n-(n—1)-(n—2)-...- 1
f(0)=1; forevery n e N, f(n+1)=(n+1)- f(n)

Different notation

f(n){l n=~0

nf(n—1) otherwise
Example 2

The function f(n) = 2n + 1 for natural numbers n can be defined
recursively

f(0)=1; forevery n € N, f(n+1) = f(n)+2

Example: EX PR is a language of legal algebraic expressions involv-
ing the identifier a, the binary operations + and *, and parenthe-
ses,l1.e.,

Y ={a,+,%(,)}.

Some of the strings in the language are
a, a+axa, and (a+ax*(a+a)).

Its recursive definition:

Example: EX PR is a language of legal algebraic expressions involv-
ing the identifier a, the binary operations + and *, and parenthe-
ses,l1.e.,

Y ={a,+,%(,)}.

Some of the strings in the language are
a, a+axa, and (a+ax*(a+a)).

Its recursive definition: These are just strings, you don’t

need to compute them

1. a € EXPR]

2. Ve,ye EXPR, x+yand xxy € EXPR
3.V € EXPR, (vr) € EXPR

Example: a recursive definition of a set of languages over {a,b}. We
denote by F the set 2{%%" (the set of languages over {a, b}) defined

as follows: \ set of subsets

1. 0, {A}, {a}, and {b} are elements of F

2. VL, Ly e F, Ly ULy € F JC
3. VL, Lo € F, 1Ly € F) r l&rgaagﬂ
[} o .

Given language L, typical questions that one can ask are to
(dis)prove that:

e string x belongsto L

 all (some)xin L have some property
 another language is a subset of L, etc.
e L* can contain certain strings

* recursive definition of Lis ...

(Example: compiler + source code.)

Mathematical induction with
integers

Basis: Prove the proposition
for the smallest integer(s).

Hypothesis: Assume that the
proposition is true for all
integers up to a certain k.

Induction: Prove the
proposition for the next
integer k+1 using assumption
about smaller integers.

Recursive definition of a
language (or set)

Basis: Starts with the shortest
string(s) that initiate
generation of set. These
strings cannot be
decomposed or reduced.

Condition: Define strings that
will participate in generation
of new strings (or elements of
set)

Recursive part: Define rules
to generate new strings (or
elements of set) using the
strings in condition,

Structural induction always
works with recursive
definition

Basis: Prove the proposition
for the all the basis cases
(shortst strings) of the
recursive definition.

Hypothesis: Assume that the
proposition is true for all
strings generated until some
step.

Induction: Prove the
proposition for the newly
generated strings using rules
in the recursive part.

l.ae EXPR
2. Ve, y e EXPR, x+yand xxy € EXPR
3. Vi €« EXPR, (vr) € EXPR

Suppose we want to prove that every string x € £ X PR satisfies the
statement P(x).

The principle of structural induction uses recursive definition of
language. It says that in order to show that P(x) is true for every
xr € FXPR, it is sufficient to show:

1. P(a) is true '”dUCtiZf‘/thothesis

———————————h———————

———————————————————

~~~~~~~~~~~~~~ ~-._ operations on x, y generate
strings for which P() is true



length of x

Claim. For every element v of EXPR, |z| is odd.
Proof.

e Basis step. We wish to show that |a| is odd. This is true
because |a| = 1.

e Induction hypothesis. z,y € FEXPR, and |z|,|y| are odd.

e Statement to be proved in the induction step.

lz +y|, |x*xy|, and |(z)| are odd.



length of x

Claim. For every element v of EXPR, |z| is odd.
Proof.

Proof of induction step.

e The lengths
|z + y| and |z * y]

are both |z|+|y|+ 1, because the symbols of z+ 1 include those
in x, those in y, and the additional “operator” symbol.

e The length |(z)| is |z| + 2, because two parentheses have been
added to the symbols of x.

e The first number is odd because the induction hypothesis im-
plies that it is the sum of two odd numbers plus 1, and the
second number is odd because the induction hypothesis implies
that it is an odd number plus 2.

[]



Sometimes stronger statements are easier to prove

EXPR is a language of legal algebraic expressions.

l.ae EXPR

2. Ve, yec EXPR, v +yand zxy € EXPR

3. Ve €« EXPR, (vr) € EXPR

Prove that no string in £ X PR can contain the substring +-+.

No problem with basis step, hypothesis, and concluding about
rxy, and (x). Proving that x+y doesn’t contain ++ is more difficult.
Neither x nor y contains ++ as a substring, but if x ended with +
or y started with +, then ++4 would occur in the concatenation.

Stronger statement: Vr € EX PR, xr doesn’t begin or end with +
and doesn’t contain ++. Complete prootf at home.



Defining functions on sets defined recursively

e For ¥ = {a,b}, we have {a,b}* = {A, a,b, aa, ab, ba, bb, aaa, aab, . ..}

e Recursive definition of set S = {a, b}* is

ANe §S; Vee Sxa,xbe S

e Eixample: let us consider the reverse function

r : X* — X* that is defined recursively by referring to the
recursive definition of >*

r(x) = <ar(y) |ZC —ya, Yy € Z*'

Lo (y): :C =yb, y € Z*

output of r ifinputofris.

Reverse function r(x) reverses input string x. Example: x = abac, r(x) = caba



To illustrate the close relationship between the recursive definition
of {a, b}*, the recursive definition of r, and the principle of structural
induction, we prove the following fact about the reverse function.

Claim. Vx,y € {a,b}*, r(zy) = r(y)r(x).

Note that we have two variables z, and vy, 1.e., “Va,y” is trans-
lated to “Vz, and Vy”. In such cases the quantifiers are nested; we
can write the statement in the form Vy P(y), where P(y) is itself a
quantified statement, Vx(...), and so we can attempt to use struc-
tural induction on y.

We prove Yy € ¥* P(y) is true, where P(y) is the statement
Vr e X r(zy) =r(y)r(x)”.



Proof. We prove Yy € ¥* P(y) is true, where P(y) is the statement
Vx € E*a “I"(Jl;’y) — T(y)r(x)”. l.e., y is an empty string

}
Basic step. We need to prove the statement “Vx € ¥* r(zA) =

r(A)r(x).” (complete at home)
Induction hypothesis. y € ¥*, and Vx € ¥*, r(xy) = r(y)r(x).

Statement to be proved in induction step. Va € ¥*, r(z(ya)) =
r(ya)r(z), and r(z(yb)) = r(yb)r(z).

r(x(ya)) = r((xy)a)  concatenation is associative
= a(r(xy)) by the definition of r
= a(r(y)r(z)) by the induction hypothesis
= (ar(y))r(x)  concatenation is associative

— r(ya)r(xz) by the definition of r.

The second part of the proof is similar. Complete it in the assignment! (]



Claim. Prove that for every non-empty language L C {a,b}*,

if L*C L, then LL*C L.




Claim. Prove that for every non-empty language L C {a,b}",
if L* C L, then LL*C L.
Proof sketch. It x € LL* then x = x1x9, where r1 € L, and x5 € L*.
o if zo = A - trivial; if x = A - trivial

e otherwise dy1, -+ ,yr € L s.t. x = 11Y2 - * Y,
where Vy, = A, 1 <1 < k.

e We prove by induction on k£ (the number of strings ;)
— Basis: k=1 - trivial
— Hypothesis: the statement is true for £ — 1

— Induction: * = Y1y - - -y = 2y, Where z = Y1ys -+ -+ Yp_1.
By the hypothesis z € L, then zy, € L? and then z € L,
because L? C L.

You can also prove it by induction on L¥ without splitting into substrings.



Claim. Suppose L C {a,b}" is defined recursively as fol-
lows:

ANe L:Vx e L ax,azxb € L.
Show that L = Lo, where Ly = {a'’|i > j}.

Proof sketch. Proving L. = Ly means that we need to
prove both

Lg LQ, and L() C L.

/ I

VrelL x e L Vre Ly x € L

Intuition:
1. In L strings are generated with more a’s than b’s
2. In Ly strings look like aaaa...aaaabb...bb

Y Y

i > j



Claim. Suppose L C {a,b}* is defined recursively as follows:
AN € L; for every x € L, both ax and axb are in L.
Show that L = Ly, where Ly = {a't’|t > j}.
Proof sketch.
Part 2 (Ly € L). We show by induction on n
Vn € N, if y € Ly, and |y| = n, then y € L.

Basis step: y € Lo, and |y| =0 = y € L. This is true
because if |y| =0 then y = A, and A € L.

Induction Hypothesis: £ € N, Yy € L such that

y <k = yelL



Claim. Suppose L C {a,b}* is defined recursively as follows:
AN € L; for every x € L, both ax and axb are in L.
Show that L = Ly, where Ly = {a't’|i > j}.

Proof sketch (cont).
IS:ye Ly, ly=k+1 = y=a'¥/,and i +j =k + 1.

e y#+ Abecause k >0and |y| =k+1 =
we must show that y = az or y = axb for some z € L.




Claim. Suppose L C {a,b}* is defined recursively as follows:
AN e L; for every x € L, both ax and axb are in L.
Show that L = Ly, where Ly = {a't’|i > j}.

Proof sketch (cont).
IS:ye Ly, lyy=k+1 = y=a'¥,and 1 +j =k + 1.

ey #* A because k >0 and |y =k+1 = we must
show that y = ax or y = axb for some x € L.

e We know that 1+ 7 >0, and 7> 57 = 7 > 0, 1L.e.,
y = ax for some x; if 5 > 0 then y = axb for some x.



Claim. Suppose L C {a,b}* is defined recursively as follows:
AN e L; for every x € L, both ax and axb are in L.
Show that L = Ly, where Ly = {a't’|i > j}.

Proof sketch (cont).
IS:ye Ly, lyy=k+1 = y=a'¥,and 1 +j =k + 1.

e y# A because k >0 and |y =k+1 = we must
show that y = ax or y = axb for some x € L.

e We know that 1 +7 >0, and 7> 7 = 7 > 0, 1.e.,
y = ax for some x; if 4 > 0 then y = axb for some x.

o If j > 0 then y = azb, where x = o' '¥~!, and
1—1>9—1,1e.,x € Ly and by IH x € L and then
also y € L. Case 7 = 0 is similar.

>>> Part 1 is easy: complete a home.

| e |



Summary

* In typical proofs by mathematical induction, we choose an integer
that is

* The length of string

* The number of substrings whose concatenation gives string x
 The exponent of the language in the * of some expression

* Typical proofs by structural induction (Sl):

Sl doesn’t work without recursive definition (RD) of the language
The basis of Sl corresponds to the basis of the RD

Formulate induction hypothesis on all input elements of the
recursive rules

Prove induction step on all recursive rules in RD
Break down the problem you need to prove in induction step to

easier problems in which you can apply the hypothesis, basis
statement, etc.



Claim. Suppose that x,y € {a,b}* and neither A. Show that
vy =yr = Jz € {a,b}*, andi,j € N, such that x = 2", andy = 2’.

Proof sketch. Let d be the greatest common divisor of |x|, and |y|.
We rewrite x and y as

r = T1T2 " Tp, andy:ylyQ"'yQ7

where all |x;| = |y;| = d for all 4, ;.

Since zy = yx then z%y? = yPz? (begin with z%P, and run re-
peated transpositions, i.e., switch z and y).



Claim. Suppose that x,y € {a,b}* and neither A. Show that

vy =yr = 3z € {a,b}*, and i,j €N, such that x = 2", and y = 2’.
Proof sketch.

Both z%”, and yPx? have the same length 2pgd.e.g.,

| ..a..DlI A

| - CoALt .. IS
|:L.4yr| — |;U1 ...ijl‘...q LllI1es ...;L”l ..a!:’l/pyil = . ¢S :7 qua,

q dq,P p Poed
e the . a.Jn both cases _nrefixes 2 Lof r%Q®) cand 22 (of 2Pad) hax
same length and thus are equal.

1, pd+1, 2pd+1, e Ifx? = (z;---x,)?then z; appears in positions

. ,(q—1)pd—+1.
ound at ipd+1, where e In ¢, the substring y,. of length d can be
ave  nutunianchr ractrs, air 7y =hper d mddyn s surce'prahor g n
t all y; are equal (z). Same r; are different. Then, it follows tha

== ~0r @;.



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58



