
Surviving a Search Engine Overload

Aaron Koehl
Department of Computer Science

College of William and Mary
Williamsburg, VA, USA

amkoeh@cs.wm.edu

Haining Wang
Department of Computer Science

College of William and Mary
Williamsburg, VA, USA
hnw@cs.wm.edu

ABSTRACT
Search engines are an essential component of the web, but
their web crawling agents can impose a significant burden on
heavily loaded web servers. Unfortunately, blocking or de-
ferring web crawler requests is not a viable solution due to
economic consequences. We conduct a quantitative mea-
surement study on the impact and cost of web crawling
agents, seeking optimization points for this class of request.
Based on our measurements, we present a practical caching
approach for mitigating search engine overload, and imple-
ment the two-level cache scheme on a very busy web server.
Our experimental results show that the proposed caching
framework can effectively reduce the impact of search en-
gine overload on service quality.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Reliability, Availability, and Serviceability

Keywords
Web Crawler, Overload, Caching, Dynamic Web Site

1. INTRODUCTION
Crawler-based search engines are widely recognized as an

essential and positive component of the web by both web
users and site owners. Specifically, they provide a means
for web users to efficiently locate desired content on the In-
ternet, while providing site owners with the means to have
their content discovered. Behind the scenes, web crawlers
are the software tools that operate on behalf of search en-
gines, responsible for continually sifting through web sites,
downloading pages and related links, and ultimately aiming
to discover and subsequently index new content. Often un-
derestimated is the impact that these web crawling agents
can have on heavily loaded dynamic web sites, and the re-
sultant cost to the user population and site owners. These
web crawlers can sometimes overburden dynamic web sites,
threatening quality of service for paying clients. It is not
uncommon to observe an entire large site being crawled us-
ing hundreds of simultaneous hosts, and from a multitude of
web crawlers. Such heavy, distributed traffic can manifest
as a denial of service from the server’s perspective [19].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

Figure 1: Mean static vs dynamic time to first byte

(TTFB) over two weeks, from a production web server.

Dynamic websites are those that serve script-generated
content, usually backed by a database, and encompass much
of the Web 2.0 we experience today: blogs, forums, so-
cial networking tools, and other web applications. These
dynamic websites are more costly in terms of server re-
sources than their static counterparts [16]. Current research
progress allows static websites to scale well in capacity with
the amount of hardware deployed, primarily due to file sys-
tem optimizations, kernel and network stack improvements,
load balancing techniques, and proxy caching. While the
processing time required to serve a static file from the file
system is relatively constant, serving dynamic content can
introduce considerable variability. Aside from the load on
the web server, variations in processing time are introduced
by script length, number of includes, nature of the computa-
tion, database responsiveness, and network latency to other
servers. Because of the complexity of these interactions,
dynamic scripts are much more expensive than their static
counterparts, as shown in Figure 1. When search engine
crawlers request more dynamic scripts than the server can
reliably handle, we call such a condition crawler overload.

A contemporary problem faced by site administrators is
how to effectively manage crawler overload on dynamic web-
sites. Table 1 illustrates the overall load induced by crawlers
on a very popular site we manage. Although crawlers only
represent 6.68% of all requests, they consume an astonish-
ing 31.76% of overall server processing time. Many large
dynamic sites operate at or near capacity, providing the
motivation for site administrators to selectively introduce
software optimizations as the site grows, until additional
hardware becomes the only alternative. At peak times, the

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

171



Figure 2: Google Analytics of traffic referrals for a pop-

ular site we manage.

Crawler Human
Requests (%) 6.68 93.32

Load (%) 31.76 68.24

Table 1: Crawlers compete with humans for server pro-

cessing time.

additional load caused by search engine crawlers is critical.
It competes heavily for resources with human users, and
can result in a denial of service, manifesting as unserved re-
quests or unbearably slow responses to a human user. Under
non-peak times, crawlers still collectively keep a web server
busy. Though not competing with humans for resources, the
crawlers nonetheless impact energy consumption, preventing
low-power states from being achieved.

To mitigate the overload effects caused by web crawlers, a
simple strategy is to ignore requests from search engines, but
this can have devastating economic consequences. Google
Analytics from one very popular site we manage shows that
81% of human traffic comes as a result of referrals from
search engines, as shown in Figure 2. Furthermore, a site
which appears unresponsive to a crawler can negatively im-
pact search engine rankings [4].

We therefore seek to quantify the effects and costs that
web crawlers pose to the dynamic web community, and sub-
sequently propose a solution for mitigating overload risk.
We begin our approach with an analysis of the variations in
surfing patterns between humans and crawlers. As expected,
the patterns are starkly contrasting in both frequency and
distribution, providing insight which leads to our solution.
We find that crawlers are indeed “greedier”, “hungrier”, and
“heavier” than their human counterparts. On a busy web
server receiving hundreds of page requests per second, and in
turn executing thousands of database queries, crawler load
from dynamic requests quickly adds up.

As dynamic websites become richer and more personal-
ized, the amount of cacheable content decreases, reducing
the applicability of traditional caching methods. For exam-
ple, clickable links for options such as pagination, “printable
versions”, and various sorting schemes of interest only to
human users are often implemented as distinct URLs. The
number of possible combinations to cache can quickly be-
come insurmountable. However, by nature, crawlers do not
require this level of personalization and crawl at the lowest
security level—that of “guest” users. By studying crawler
activity, we expose optimization potential for this class of
request, and develop a two-level caching scheme for mitigat-
ing crawler-induced load.

A key observation is the relatively low frequency with
which individual pages are crawled for new content. While

humans always expect the freshest content, our analysis
shows that we can treat search engine crawlers differently, by
generating the requests offline and amortizing the load. On
average, we find that a static file (102µs) can be served three
orders of magnitude faster than the same dynamic request
(170, 100µs). Thus, in order to mitigate the risk of crawler
overload, a static caching scheme is implemented, and pop-
ulated during off-peak hours. When a request is identified
as coming from a web crawler, the URL is rewritten to serve
the page from the cache, avoiding the database and server
side scripting altogether. The site is still properly indexed
and remains responsive to both crawler and human, and the
crawler has no idea the URL is being rewritten. More im-
portantly, due to the access patterns we identify, the crawler
always receives fresh content from its perspective.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the measurement-based characterization of
web crawling agents. Section 3 details our caching frame-
work. Section 4 discusses our implementation. Section 5
evaluates the proposed solution on a real site. Section 6
highlights related work, and Section 7 concludes.

2. WEB CRAWLER CHARACTERISTICS
We motivate our analysis by mining web server logs on a

very high traffic web server serving roughly 47,000 unique
visitors per day. The server is used for a popular online
forum running the vBulletin forum software [18]. The access
logs, collected over a 2-week period between February 26 and
March 13, 2011, produced about 17 GB of data, representing
over 41.8 million requests. Using specialized scripts, the logs
were parsed and stored into a MySQL database. Malformed
requests were discarded, URLs were decoded and parsed,
and request strings were further cross-referenced with post
and thread identifiers from the online community to support
our analysis.

The logs were provided in the Apache common log for-
mat, and include the host IP address, timestamp, url, http
status code, the number of bytes transferred, the referring
URL, and the user agent string provided by the browser.
We also configured the web server to log each request’s total
processing time for further analysis. However, in our first ef-
fort on data collection conducted in January 2011, we found
the total processing times to be extremely heteroscedastic:
the values collected by default include in aggregate both the
server processing time and the time to transfer the content
to the user, and with a high degree of variation in connec-
tion speed, this adversely reduces the utility of the data
collected. Thus, the Apache server was modified to log the
time to first byte (TTFB) for each request, providing a much
better indicator of script processing time [2].

The load generated by search engine web crawlers can be
considerable. In one instantaneous snapshot from January
2011, of the one thousand connected clients, we identified
close to 300 continuous guest sessions from 26 unique search
engine crawlers.

2.1 Crawler Identification
Whereas sophisticated methods of crawler detection have

been proposed, our requirements for crawler identification
differ slightly from previous research. Our goal is to develop
a classifier with extremely low overhead, as it must be exe-
cuted at every request, and the classifier is accurate enough

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

172



Σ Processing Time Cumulative (%) Rank
242425514986 18.95 1
30270206599 30.23 5
3796494907 50.26 36

59815901 90.00 1900
13655020 95.00 4041

100 100 47928

Table 2: Distribution of user agent strings on cumula-

tive server processing time is extremely long-tailed.

to identify only the subset of crawlers which contribute high
load to our server.

Several existing systems attempt to classify search en-
gine crawlers by producing a list of hosts that request the
robots.txt file from the server [1, 6]. In assessing this
approach, we found that of the 374 positively identified
crawlers in our logs, only 155 (41%) bothered requesting
the file. Robots.txt allows site administrators to provide
guidance to crawlers on how a site should or should not
be crawled. Ideally, this file is used to protect non-public
data from being indexed, to prevent deep search in virtual
trees, to prevent crawlers from being fed duplicate or tran-
sient content, and to limit the rate of the crawl. In addi-
tion to accuracy, there are two other problems with using
this approach for identification: (1) a hash of hosts must be
maintained and checked at every request, which can grow
exceedingly large, and (2) the hosts continually change and
become stale.

The approach we used is classification based on the user
agent string, which is provided by the browser for each re-
quest. The following includes a common user agent string
from Microsoft’s Bing. We found that it is typical to include
a URL for server administrators to obtain more information
about the crawler.

Mozilla/5.0 (compatible; bingbot/2.0;

+http://www.bing.com/bingbot.htm)

For the period of time we studied, we found 47,927 dis-
tinct user agents in the server logs, with varying frequency.
Most of these belong to human browsers and include various
combinations of browsers, operating systems, and software
identifiers like the following:

Mozilla/5.0 (Macintosh; U; Intel Mac

OS X 10_6_6; en-us) AppleWebKit/533.19.4

(KHTML, like Gecko) Version/5.0.3

Safari/533.19.4

In order to identify the subset of user agents which con-
tribute the highest impact on our server, we grouped all of
the user agent strings and ranked them in descending order
by total aggregate processing time. Ranking them by fre-
quency of requests proved unfruitful, as the requests with the
highest frequency are dominated by static file requests issued
by human users, and contribute little to overall processing
load. We then proceeded in a manual effort to identify user
agents as crawler or human, stopping when we reached a
reasonable threshold representing a cumulative 97.5% of the
total processing time for the two and a half week period. A
histogram of the user agents appearing in our logs shows an
extremely long-tailed distribution, and is summarized in Ta-
ble 2. Due to this long-tailed distribution, a manual screen-
ing of the remaining 3.5% of processing load would require

analyzing an additional 38,090 user agents, for very little
additional benefit. Of the 47,928 user agent strings, 30% of
all processing time is attributed to the top five hosts, and
perhaps unsurprisingly, Googlebot consumes 18.95% all on
its own. Furthermore, of the top 5 individual consumers
of processing load, four are known crawlers (Google, Bing,
Msnbot, Google Adsense)—the remaining user agent string
is the one listed above. In terms of request frequency, only
one bot is even in the top 18 user agents, further illustrating
the fallacy in using hits alone when optimizing for perfor-
mance, an effective metric for static websites.

Through this manual classification effort, we discovered an
incredibly simple heuristic to identify user agents as crawler
or human, achieving our goal for fast classification. Re-
call that our primary motivation is to identify the largest
consumers of processing time; the following heuristic meets
this goal with 100% accuracy for currently dominating user
agents.

Heuristic 1 IdentifyBotFromUserAgent

Input: ua, a user agent string.
Output: true if probably a bot, false otherwise.

1: if ua contains bot or crawler then
2: return true
3: if ua contains slurp and not Firefox then
4: return true
5: if ua contains Mediapartners or PubSub then
6: return true
7: if ua contains http then
8: if ua contains bsalsa or browser then
9: return false

10: else
11: return true
12: return false

We also found two scenarios where the user agent string
was not reported in the request, or was simply reported as
“-”, but found the frequency of these cases to be too insignif-
icant (0.25%) to warrant special treatment. Through our
manual screening effort of over 9,600 user agent strings, we
identified 374 user agents as crawlers, all of which were accu-
rately classified by our heuristic with no false positives. It is
worthwhile to mention that in our experience, new search en-
gines appear in our logs every month. In the extremely likely
event that a new search engine is developed, our heuristic
can be easily modified to accommodate its detection. Of
course, this would not be necessary until the new search en-
gine begins to exhibit anomalously high load, which as the
long-tailed distribution of user agents shows, is not all that
likely. Should a user masquerade as a bot by changing its
user agent string to match our heuristic, it could be misclas-
sified, but that may be the user’s intent. Nonetheless, we
have found this classifier to be very useful in practice.

2.2 Crawler Access Pattern
While the forum serves requests from 189 countries and

territories, the majority of the subscriber base is located in
anglophonic North America. Figure 3 shows a predictable,
diurnal pattern of usage, with a daily peak exhibited at
noon, a slight valley at 6:00pm building up to a crest at
9:00pm, and dropping off rapidly thereafter. Search engine
crawlers, in contrast, exhibit a relatively uniform frequency
of access (with a slight spike at noon), as the figure also
shows. Two observations can be reaped from Figure 3. First,

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

173



Figure 3: Daily traffic pattern for a popular website,

peaking at 4M hits. Humans exhibit a predictable, di-

urnal access pattern, while crawler access is relatively

uniform.

4:00am provides an ideal circumstance for batch processing,
which we can utilize to populate our cache. Second, due to
the uniform nature of crawler accesses, a targeted reduction
in crawler load theoretically provides an overall increase in
server capacity.

A straightforward application of Amdahl’s Law to the
measurement results in Table 1 and Figure 1 provides an
upper bound on the reduction in overall processing load. If
static requests are served three orders of magnitude faster
than dynamic requests, we can approximate the potential
improvement in performance from servicing crawler requests
from the static cache.

Overall Improvement =

[
31.76%

1000
+

68.24%

1

]−1

= 1.46

Based on this workload, we would be able to decrease ag-
gregate processing time by factor of 1.46. For a server oper-
ating at capacity, this overall reduction could shield human
users from overload conditions during peak times. Clearly,
the peak hours from 10am to 10pm would benefit greatly
from a uniform reduction in server load.

2.2.1 Distribution of Load
As indicated in Table 1, crawlers are responsible for un-

der 7% of all requests, yet are nonetheless responsible for
around 32% of overall server load. This implies the types of
requests made by crawlers are fundamentally different than
those made by humans. We found that crawlers are “heav-
ier” than humans, consuming much more expensive scripts
in general, and by a large margin. Indeed, crawlers down-
load dynamically generated HTML as human users do, but
ignore most of the sub-requests for CSS, banners, small im-
ages, bullets, and icons embedded in the page that provide
an enhanced visual experience for human users. These are
of little use to web indexes. Instead, the crawlers prefer dy-
namic requests containing a high degree of textual content,
which are typically the most expensive to generate.

Human users tend to take time to read a page of con-
tent before moving on to a new page, exhibiting what Bar-
ford and Crovella identified as an “active-inactive” behav-
ioral pattern [10]. Crawlers, on the other hand, are “hun-

Figure 4: Crawlers exhibit lower reference locality com-

pared to humans, crawling a full 92% of the entire forum

in about 2 weeks.

gry”, in that they tend to request expensive pages at a much
higher rate per host than human users. Whereas a human
user might space out their requests by five minutes or more,
crawlers make multiple requests within seconds. Table 3
shows the sustained crawl rate (interarrival times averaged
over 2 weeks) for several crawlers found in our logs. Dozens
of crawlers had mean interarrival times under 1 second, ex-
erting heavy pressure on the server during the crawl, yet
did not continuously crawl the site; rather their behavior
was bursty. These types of crawls tend to be more likely to
introduce server instability under load, as the requests are
not spaced appropriately. Even Googlebot, with an average
interarrival time of 4.8s per visit, frequently had periods of
activity with 3 to 5 requests per second for several minutes
at a time. Note that the robots.txt file in all of these cases
had a crawl-delay set to 3 seconds, indicating the degree
to which this approach can be relied upon.

2.2.2 Breadth of Crawl
In order to validate the intuition that crawlers exhibit

fundamentally reduced locality by nature, we resolve user
GET requests from the web server logs to individual thread
and post identifiers from the forum database. In this way,
we are able to analyze the breadth of the crawl as a result
of sustained visits from search engine crawlers.

As of June 2011, our forum hosts about 153, 100 threads
containing 1.67 million posts. Each thread is accessible
through a unique thread ID. Our results show that a full
92% of the forum threads were crawled within the two week
monitoring window, with earlier data sets showing 99% of
the forum crawled within 3 weeks. Figure 4 is illustrative of
the difference between human users and crawlers over time.
The crawlers exhibit reduced locality, continuing to follow
links deeper into the site, while human users tend to dwell
on popular topics of discussion.

As in [10], our human users reliably follow the well-known
Zipf distribution [12], visiting only a popular subset of the
overall forum content per day. The presence of this distribu-
tion is usually a good indicator of cache potential. Unfortu-
nately, each page is customized for individual human users,
reducing cacheability. When the data is analyzed over a two
week period, we find that crawlers also exhibit a Zipf-like
distribution in their access pattern, as shown in Figure 5.

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

174



Figure 5: Crawler access pattern is Zipfian as a result of

human access patterns. Humans heavily influence con-

tent of top-level pages, where crawlers begin their crawl.

Crawler Interarrival (s) Requests
Googlebot 4.8 1,500,815

Google Adsense 1.50 172,416
Yahoo Slurp/3.0 1.02 64,125

Yahoo Slurp 33.90 88,455
Exabot 5.20 14,484

Unknown Crawler 0.17 2,613

Table 3: Sustained crawl rate for several bots. Crawl-

delay was set to 3 seconds.

These results may be surprising to some, but do consider
that a crawler begins its crawl on the top-level pages of a
site; content of top-level pages is directly influenced by hu-
man access patterns in many online communities. Namely,
in the majority of implementations, the top level pages con-
sist of the most popular (or most recently modified) threads,
so the most popular pages for humans on our forum are also
where crawlers begin their crawl. Still, the crawlers do dig
far deeper into the site than human users.

3. CACHING FRAMEWORK
In this section, we describe our caching framework, whose

design is mainly based on our measurement observations
summarized below.

• Static files can be served from the file system two to
three orders of magnitude faster than an equivalent
dynamically generated file, even with many optimiza-
tions already in place.

• Crawlers consume a high overall server processing time
with a uniform access pattern, which makes crawlers
an ideal target for reducing server load.

• High-load crawlers are easy and economical to identify
using efficient heuristics.

• Crawlers exhibit lower reference locality and differ from
humans in their access characteristics, which means a
separate caching scheme is ideally suited to this class
of request.

Figure 6: Overview of our framework with respect to

caching schemes in dynamic web sites.

• Crawlers do not log in, so their accesses are those of
“guest” users. Due to the archival nature of their ac-
cesses, crawlers do not require the same content that
generally makes dynamic requests unsuitable for caching.

In order to mitigate the overload risk posed by web crawlers
on a typical dynamic website, we propose a two-level, light-
weight static cache which sits on the originating server, and
interposes on behalf of web crawlers. The static cached
pages are generated during off-peak hours, and reside in
the file system in gzip-compressed state. When a page is
requested, the cache need only serve the pre-compressed re-
quest to the crawler with little additional processing over-
head. Storing in compressed state provides several benefits
including reduced latency when the crawler requests the file,
and more importantly, it increases the number of RAM-
cacheable objects by 5 to 6 times. Cache storage is split
into two-levels; a least recently used (LRU) cache in RAM
which is continually maintained on each request, and a file-
system cache which is populated daily, or more frequently
if desired. Figure 6 provides a high-level overview of where
our approach fits in with existing cache points for dynamic
websites.

3.1 Existing Cache Points
The study of caching for dynamic websites is not new, but

different approaches for caching are continually proposed for
various points in the web serving process and for specific
classes of users. Our proposed cache framework sits directly
on the web server, and caches content generally provided
to the lowest-security accounts on a dynamic website (so
called “guest” accounts which do not have login capability),
providing publicly available content for search engines to
index. The right side of Figure 6 illustrates the caching
mechanisms typically deployed in servers hosting dynamic
websites.

Opcode cache. Since php is an interpreted language, each
script must be read, parsed, and compiled into intermediate
opcodes which are then interpreted by the Zend engine. This
overhead is repeated needlessly for millions of requests. The
opcode cache allows new requests to be served faster, by
jumping directly to the interpreting phase. Opcode caches
are shared across user sessions, and only repopulated when
the server is reloaded or the source file is changed.

Session cache. As each request arrives, a session identi-
fier for the user is passed to the web server via url or cookie.

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

175



Random 12.1 ms
Trace-driven 7.8 ms
Trace-driven + DB 4.5 ms
Sequential 1.2 ms

Table 4: Mean seek times for L2-only cache simulations.

Sessions allow for statefulness on top of http, and by default
are generally stored in the file system. For fast lookup and
retrieval, session caches are often stored in RAM-resident
tables in the database or mounted temporary RAM file sys-
tems, and periodically garbage collected.

Query cache. The query cache is a database level cache,
which selectively stores SQL queries along with the query
results sent to clients. Caching avoids the parsing and re-
peated execution of identical queries, a frequent occurrence
with template-based dynamic websites. For tables that are
not updated often, the query cache can be very efficient.
Query caches are typically shared across sessions.

Web object cache. The web object cache is a memory resi-
dent cache for small chunks of arbitrary data. Object caches
such as [3] are typically used directly by web applications to
alleviate database server load for small, repeated requests.
For content management systems (CMS), template and con-
figuration data are often generated from the database and
stored here for speedy retrieval over multiple requests.

3.2 Two-Level Caching
With the large disparity between static and dynamic re-

quests, some might question why we include a two-level
cache in our design, rather than relying on the static file-
system cache alone. In fact, this approach commands our
attention initially; we suspected that crawler locality would
be so low that caching in RAM would be pointless. Our mea-
surement study in the previous section invalidates this intu-
ition, as Figure 5 shows that crawlers are indeed influenced
by human access patterns. Thus, we can take advantage of
this locality in a two-layer cache design.

In our early simulation studies, we conducted four tests
to investigate using only the L2 cache on the file system1.
The first test is a sequential read of all of the static cache
files, followed by a randomized read of all the files in the L2
cache, which should represent two bounds of the hard drive
seek time spectrum. The sequential read yields a mean seek
time of 1.2ms per file, while the random read yields 12ms
per file—an order of magnitude slower and close to the disk’s
expected seek time.

With these bounds as a starting point, we conducted two
trace-driven tests. First, we read all the files in the order
in which they were originally requested in the web server
traces, resulting in a 7.8ms mean seek time per file. Then,
we loaded all the files into a table in a MySQL database,
which includes the benefit of a query cache and other op-
timizations, such as not having to continually retrieve the
status of new files. This reduces the average seek time per
file by nearly half, to 4.5 ms per file, as listed in Table 4.

Note that the time reduction between the random read
and trace-driven read tests further evidences the locality of
the request pattern. The addition of a RAM-resident cache

1The L2 seek tests are performed on the SATA drives, not
the solid state drives used in our production server.

120 MB 250 MB 500 MB
LRU 54.76 61.22 68.67
LRU-human 60.67 67.93 76.55

Table 5: Comparison of cache replacement policies and

L1 cache sizes on cache hit ratio.

allows us to reduce processing time even further, below the
(ideal) sequential hard drive seek time. Ultimately, we aug-
mented our approach with a RAM-resident cache for a fur-
ther reduction in processing time.

3.3 Cache Replacement Policy
Using three reasonable cache sizes (120MB, 250MB, and

500MB), we investigated several cache replacement policies
for our L1 cache. The engineering goal for our replacement
policy is that it be very fast, as the algorithm must be ex-
ecuted on every incoming dynamic request. Accordingly,
we quickly abandoned the least frequently used policy, as its
O(n lg n) behavior is much too slow for our needs.

Similarly, we tried several experiments with both online
and offline replacement algorithms, with varying degrees of
success. One online policy requires maintaining the cache
with only those pages that have been requested within the
last hour. This produces a meager 16% cache hit ratio.
We then extended this notion to an offline replacement pol-
icy: caching only the previous day’s most popular requests,
which improves the cache hit ratio to 49% at 500MB. As an
upper bound, it is worthwhile to note that a perfect cache
(unlimited size, fully clairvoyant) on our data set yields a
90% cache hit ratio.

Nonetheless, we ultimately found that an LRU (least re-
cently used) cache eviction policy provides an ideal hit ratio.
This policy is implemented using a queue to keep track of
cached entries, augmented with two fast hash tables index-
ing into the queue data structure to reference count each
entry. This system allows older entries to be renewed in the
event that a request comes in for a page about to be evicted,
preventing an accidental cache eviction, and to prevent the
same page from taking up multiple cache slots. Ultimately,
the LRU policy meets our goals of being both fast (O(1)
operations) and capable of producing a desirable hit ratio:
68% at 500MB.

3.3.1 Human-Induced Prefetching
Building upon this success, we were able to achieve a

considerable bump in cache hit ratio with the inclusion of
human-induced prefetching into the cache monitor. Initially,
we applied the crawler identification heuristic early in the
process, completely ignoring all human requests with re-
spect to the crawler cache. Rather, we found that if we
passively monitor page identifiers from human requests and
use them to continually pre-fetch files into the L1 cache, we
can achieve an additional 8% cache hit ratio for crawlers.
Table 5 summarizes the two LRU policies (with and with-
out human-induced prefetching) for each of the cache sizes
previously identified.

3.4 Crawler Cache Structure
Our approach can be readily implemented on a variety

of web servers. We have chosen to implement our cache
system using the combination of Apache [5], memcached [3],

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

176



Figure 7: Cache operation

c, and php [8]. Figure 7 illustrates our cache structure, which
consists of two main components: the cache monitor and the
crawler cache.

3.4.1 Cache Monitor
The cache monitor is a resident daemon started by the

web server, and consists of data structures that control the
cache contents and record useful statistics such as the cache
hit ratio. Each dynamic request is passed to the cache mon-
itor first for processing and possible URL-rewriting. The
daemon is single threaded and is used by all web server
threads. It does not terminate until the web server is ter-
minated. As each dynamic URL request comes into the
web server, its query string (if any) is augmented with a
URL-encoded key/value pair including the user agent string
provided by the client. If no user agent is present, the URL
processing stops and the request is served normally. The
augmented query string for the request is then passed to the
cache monitor via Apache’s RewriteMap mechanism, which
communicates with the daemon using the standard input
and output.

The cache monitor itself can be written in any language
that supports reading and writing from the standard input
and output. We implemented versions of the cache monitor
in both php and C. The daemon reads a new-line terminated
URL and query string from the standard input, which is
then parsed for the user agent and identifier for the page
being requested. The cache monitor is thus aware of every
dynamic request coming into the web server. If a request is
malformed or otherwise unrecognized, the daemon returns
a sentinel value indicating failure and then the original URI
is handled by the web server without further involvement of
the cache.

When the cache monitor is being initialized for the first
time, it establishes a connection with a memcached server.
Memcached [3] is a simple, configurable RAM-resident web
object cache, which can be interfaced using APIs for numer-
ous programming languages. We deployed our memcached
daemon directly on the web server, with an ample 500MB,
though it is common to scale memcached with several ded-
icated servers. We used memcached to store any L1-cached
pages, with the LRU cache-eviction policy being managed
directly by the cache monitor. The cache monitor communi-
cates with the memcached server using asynchronous (non-
blocking) requests, to provide failover for the web server if
the memcached server is unavailable. The cache monitor is
easily configured to use multiple memcached servers.

For each page identified (whether human or crawler), the
cache monitor determines whether or not the request is con-
tained within the L1 cache (memcached). If not, the monitor
sends a request to the memcached server to prefetch content
from the L2 (file-system) cache. When the cache size is ex-
ceeded, the cache monitor will selectively evict older cache
entries from the memcached server until the cache size is
within the desired threshold. By allowing both humans and
crawlers to trigger prefetches into the cache, we observed an
average 8% increase in the L1 cache hit ratio for crawlers,
over using crawler requests alone.

Finally, a heuristic is applied to the user agent string to
determine if the request is likely coming from a high-load
crawler. If not, the cache monitor strips the user agent
key/value pair from the augmented query string, returns
the original URL back to the web server, and the request
is served normally. If the request is coming from a crawler,
the URL is rewritten internally to be served from the crawler
cache (without an external redirect).

3.4.2 Crawler Cache
The rewritten URL is then passed back to the web server

to be processed by a worker thread. The crawler cache it-
self is very simple, and is implemented as a php script. The
script first parses the crawler request for the key identifying
the cached entry, and then establishes a connection with the
memcached server. The script does not interface with the
cache monitor, so it must query the memcached server (L1
cache) to serve the requested content back to the crawler.
If the L1 cache misses for some reason (the prefetch failed
or has not yet completed before a second identical request
comes in), the crawler cache loads the requested content
from the file system (L2 cache). In the event of an L1 cache
miss, the crawler cache does not propagate L2 cache content
into the L1 cache—the crawler cache does not have access
to the cache monitor data structures. If for some reason the
desired content does not exist in the L2 cache (newly created
pages), a proxy sub-request is initiated to dynamically gen-
erate the content. These results are then gzip-compressed
and stored in the L2 cache for future retrieval.

4. IMPLEMENTATION
Our prototype system is implemented on a modest 8-core

Intel Xeon, 1.6GHz 64-bit Ubuntu Linux web server with 2
GB RAM and SATA drives, loaded with Apache, MySQL,
php, and memcached. The production system is a quad-core
Intel Xeon, 2 GHz 64-bit CentOS dedicated Linux server
with 12GB RAM, and two solid-state drives arranged in
mirrored RAID configuration. The php installation makes
use of the memcached dynamic extension, while the Apache
installation requires both the php and rewrite engine exten-
sions. The rewrite rules are straightforward, and are used
to escape and subsequently feed the user agent and URL to
the cache monitor.

We originally implemented the cache monitor in php, for
several reasons: the language allows for rapid prototyping,
the memcached libraries are readily available, URI process-
ing functions are included in the language, and the internal
array hash implementation is both convenient and fast. Unit
testing on the php implementation takes about 180 seconds
to process an entire trace. Unfortunately, the amount of
metadata stored in the cache monitor combined with the
size of our inputs result in nearly 1GB of RAM usage by the

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

177



end of the test. Thus, we re-implemented the cache moni-
tor using C, the libmemcached library [7], the UriParser [9]
library, and straightforward C data types. The C implemen-
tation, by comparison, requires only 2.5 seconds to process
the trace, and peaks at 39MB RAM usage for the 2 weeks
worth of web server logs. With this implementation, the
overhead from the cache monitor is negligible. The crawler
cache script is implemented in php, and since it is not in the
critical path, it is not optimized for performance.

Our use of the memcached server allows both the C cache
monitor and php crawler cache implementations to commu-
nicate with the same server with no language translations.
Memcached is not a requirement, however, as the cache
could easily be implemented using another web object cache
with appropriate language bindings, or even shared mem-
ory. On the other hand, memcached is scalable to multiple
servers, available on a variety of platforms, and supports
multiple language interface libraries.

4.1 Space Requirements
The test site in our case study consists of about 153,100

accessible thread pages, ranging in size from 50K to well
over 250K for the HTML alone. After gzip-compression, the
average page size is around 14K. Most (if not all) high-load
crawlers accept gzip encoding, and as such, the cached pages
are all stored in a pre-compressed state, rather than wast-
ing cycles by compressing pages at the time of the request.
As an added advantage, we found that the compression en-
ables storage for 5-6 times more content in the L1 cache,
dramatically improving hit ratios.

As each php process consumes anywhere between 30MB
and 300MB of RAM, we deemed 120, 250, and 500MB to
be reasonable sizes for the memcached server. Most impor-
tantly, the cache size should be set so as not to cause mem-
cached to swap, which can produce very undesirable results
(one order of magnitude slower processing time). Our cho-
sen cache size is 500MB for our production server. With
12GB of RAM available, this amount is only 4.1% of the to-
tal primary memory resource. Recall that crawlers account
for 33% of all server processing time, and this number is
easily justified.

To store all of the static pages in the L2 cache, it requires
2.2 GB of storage in the file system for our test site. This
number is small considering our test site produces nearly
4GB worth of access logs per week, and serves 15GB of image
attachments. In order to prevent running out of inodes, the
numeric ID of each page is used to determine a file’s location
in the file system modulo some maximum number of files.
For instance, an ID of 20593 (mod 250) = 93 can be stored
in the file system under the directory /cache/9/3/20593.gz,
saving inodes in the process and providing some degree of or-
ganization. Of course, the crawler cache can easily interface
with a lightweight database if desired.

5. EVALUATION
We evaluated the effectiveness of our approach using a

live, busy web server. Our test site is a very busy online
community with over 65,000 members, running the popular
vBulletin [18] forum software. The site receives on average of
2 million hits per day, with around 900 users online contin-
uously. Like many dynamic websites, the server hardware
can be excessively taxed when crawled by multiple search
engines. For instance, in January 2011, overload conditions

were introduced to the server when Microsoft Bing 2.0 crawl-
ing agents were released to crawl the site. Yahoo’s Slurp has
been routinely blocked around the Internet in previous years
for similar reasons. Excessive slowdowns appeared sporad-
ically for nearly three weeks until the crawl subsided to a
more manageable rate.

The two primary benefits of our approach from the per-
spective of performance are reduced response time and in-
creased throughput. Under extremely heavy crawler load,
targeting crawlers directly with caching is very effective at
staving off overload conditions, enabling uninterrupted ser-
vice to human users.

5.1 Experimental Setup
We developed a parallel tool written in php to test our

cache setup, which takes as input the web server traces gath-
ered over a two week window. The script is parameterized
by the number of child threads to use, with each child thread
responsible for a portion of the trace, and allows a test with
nearly 90% CPU utilization on all cores. A snapshot of
the online community database is configured and used along
with the traces pulled from the web server logs. As a result,
we created a live and accurate environment for experimen-
tal tests. We limited our trace to only dynamic requests for
page listings. The trace includes 2, 208, 145 bot requests and
1, 052, 332 human requests for the page.php script, which is
the primary workhorse for our case study.

5.2 Reduced Response Time
We first run the trace through the web server to gather

baseline measurements, and we found the mean page gener-
ation time to be 162, 109µs, on order with our production
server. This is the average latency experienced for all hu-
man users, as well as crawlers without the cache. With the
addition of the crawler cache, we gained a reduction in la-
tency of three orders of magnitude for crawler requests, to
1, 367µs. As an additional benefit of the crawler cache, the
user-perceived response time for human users is reduced by
31%, to 111, 722µs. These results are summarized in Figure
8.

5.3 Increased Throughput
Achieving the reduced latency, we also observed a consid-

erable increase in server throughput, as shown in Figure 9.
The throughput for the traces without the crawler cache is
117 satisfied requests per second. With the addition of the
crawler cache, throughput nearly doubles to 215 requests
per second. With a higher throughput, overall aggregate re-
sponse time for the entire trace is cut in half. Under periods
of heavy load, this added capacity would be enough to stave
off overload conditions caused by benign-yet-heavy crawlers.

5.4 Cache Generation
Ideally, most sites dependent on human activities (blogs,

online communities, social networks) will have considerable
dips in server load, providing an opportunity for L2 cache
generation. In our case, based on diurnal usage patterns,
we chose 4am to generate or update any new cache entries,
though this parameter will depend heavily on the site’s usage
characteristics. To fully generate our cache from scratch on
our test machine, we spent 1 hour and 22 minutes in using
a parallel php script with 8 threads. This initialization need
only be performed when the cache is deployed.

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

178



Figure 8: Crawler cache reduces server latency, improv-

ing user response time for human users.

Cache refreshing will also depend heavily on the site’s
database write characteristics. In our case, human users
only modify around 200 unique threads per day on aver-
age (with multiple updates to those threads throughout the
day). With only 200 modified pages to generate daily, this
implies that the L2 cache can be refreshed in under 1 sec-
ond. For sites like ours, the L2 cache can be updated mul-
tiple times per day, always providing fresh content to the
crawlers as threads are updated.

5.5 Limits to Our Approach
For busy dynamic sites such as online communities, fo-

rums, and blogs, caching can be very beneficial to mitigate
crawler overload risk. Unfortunately, for sites with an ex-
tremely high degree of transient data, such as event times
and stock prices, static caching may not be the best ap-
proach. However, given the archival nature of the search
engines, sites with a large amount of transient data are not
well suited to crawling in general. These sites might better
benefit from rewriting the URL to a static page explaining
the possible benefits of visiting the page live.

In our live site, each dynamic request requires loading ses-
sion and site configuration data, validating the security of
the request, and making several trips to the database to as-
semble a complete page from various compound templates.
This induces a considerable disparity between the time re-
quired to serve dynamic and static requests, between two
and three orders of magnitude. Very simple, lightly-featured
templated systems may have a smaller gap, and might not
benefit as drastically from our approach. However, the cur-
rent trend is toward richer, more complex, programmable
content management systems.

In our case (as in most dynamic communities), the static
cache is not applicable to human users. We rely on the prop-
erty that crawlers are fed “guest-level” content, which makes
this segment of the population cacheable. For instance, each
page loaded by a logged-in human user includes a check for
private messages and online chat updates, as well as filter-
ing out posts from “ignored” users, and an applied security
model to control access to paid-subscription areas; this tran-
sient data and high degree of customization make the pages
uncacheable for human users with these techniques.

Figure 9: Crawler cache reduces server workload and as

a result increases throughput.

6. RELATED WORK
Caching has long been studied and recognized as an ef-

fective way to improve performance in a variety of environ-
ments and at all levels of abstraction, including operating
system kernels, file systems, memory subsystems, databases,
interpreted programming languages, and server daemons.
Caching in general is a method for transparently storing
data such that future requests for the same data can be
served faster. Our work, to our knowledge, is the first to
methodically study crawlers in the context of caching to re-
duce server load, and to suggest how these crawler over-
load can be mitigated as a result of a few readily observable
crawler properties. A distinguishing feature of our work is a
uniform increase in throughput without resorting to caching
for human users.

Caching techniques for static websites have been studied
thoroughly [12, 21, 24]. Most of these techniques do not
apply generally to dynamic websites, due to the inherent
customization in dynamic sites. As a result, many differ-
ent caching approaches for dynamic websites have been pro-
posed. Research into caching for dynamic websites is usually
implemented at various layers of abstraction. For instance,
a dynamic website may include a half dozen cache mecha-
nisms: at the database layer [11, 25], data interface layer
[11], scripting layer, virtual file system, and the network
proxy layer [14]. Several cache systems for dynamic web-
sites attempt to map underlying queries to cache objects for
intelligent invalidation [13, 20, 25]. The web application as
a whole may also include several programmatic caches to
cache repeated function results, web objects, and templates
[3].

One phenomenon related to our work is the Flash Crowd;
non-malicious, sudden onslaught of web traffic that can crip-
ple server performance [19]. While burdensome to servers,
high load crawlers are relatively uniform in their accesses
and do not fall under the guise of flash crowds. Other recent
works study the mitigation of flash crowds [15, 26], but these
techniques rely on CDN’s and additional servers to disperse
load. Furthermore, our work targets crawlers specifically,
which allows server throughput to increase uniformly while
still providing dynamic content for human users.

Our work includes a measurement study of web crawler
access characteristics on a busy dynamic website to motivate

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

179



our two-level cache design. Previous work measures crawler
activity [17] in detail, but do not study dynamic sites at
our scale, and as a result, the crawlers behave differently.
Our work shows that crawlers can consume a considerable
percentage of overall server load, and hence, should be han-
dled differently than human users. Other works include de-
tection of crawlers through examination of access logs and
probabilistic reasoning [22, 23]. Our requirements are more
relaxed, only that we can detect high-load crawlers quickly
and efficiently.

7. CONCLUSION
Search engines are essential for users to locate resources

on the web, and for site administrators to have their sites
discovered. Unfortunately, crawling agents can overburden
servers, resulting in blank pages and crawler overload. For-
tunately, high load crawlers are easy to identify using sim-
ple heuristics. We conducted a measurement study to show
that crawlers exhibit very different usage patterns from hu-
man users, and thus can be treated differently than humans.
By generating a static version of a dynamic website during
off-peak hours, crawlers can be adequately served fresh con-
tent from the crawler’s perspective, reducing load on the
server from repeated dynamic page requests. Crawlers are
archival in nature and do not require the same level of up-
dates as human users, and this property should be taken
advantage of by site administrators. Since static requests
can be served two to three orders of magnitude faster than
dynamic requests, overall server load can be practically re-
duced by serving crawlers using a static cache mechanism.
We have developed a two-level cache system with an LRU
policy, which is fast, straightforward to implement and can
achieve a high cache hit ratio. Through a real website, we
have demonstrated that our caching approach can effectively
mitigate the overload risk imposed by crawlers, providing a
practical strategy to survive the search engine overload.

8. REFERENCES
[1] Robots.txt - standard for robot exclusion.

http://www.robotstxt.org, 1994.

[2] Apache ttfb module.
http://code.google.com/p/mod-log-firstbyte,
2008.

[3] Memcached - open source distributed memory object
caching system. http://memcached.org, 2009.

[4] Google official blog: Using site speed in web search
ranking. http:
//googlewebmastercentral.blogspot.com/2010/04/

using-site-speed-in-web-search-ranking.html,
2010.

[5] Apache httpd server. http://httpd.apache.org,
2011.

[6] Controlling crawling and indexing with robots.txt.
http://code.google.com/web/controlcrawlindex/

docs/robots_txt.html, 2011.

[7] libmemcached client library for the memcached server.
http://libmemcached.org, 2011.

[8] Php: Hypertext preprocessor. http://www.php.net,
2011.

[9] Uriparser, rfc 3986 compliant uri parsing library.
http://uriparser.sourceforge.net, 2011.

[10] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance
evaluation. In ACM SIGMETRICS’98, pages 151–160,
Madison, WI, 1998.

[11] S. Bouchenak, A. Cox, S. Dropsho, S. Mittal, and
W. Zwaenepoel. Caching dynamic web content:
Designing and analysing an aspect-oriented solution.
In Middleware’06, Melbourne, Australia, 2006.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In IEEE INFOCOM’99,
New York City, NY, 1999.

[13] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and
D. Agrawal. Enabling dynamic content caching for
database-driven web sites. In ACM SIGMOD’01,
pages 532–543, Santa Barbara, CA, 2001.

[14] P. Cao, J. Zhang, and K. Beach. Active cache: caching
dynamic contents on the web. In Middleware’98,
London, UK, 1998.

[15] C.-H. Chi, S. Xu, F. Li, and K.-Y. Lam. Selection
policy of rescue servers based on workload
characterization of flash crowd. In Sixth International
Conference on Semantics Knowledge and Grid, pages
293–296, Ningbo, China, 2010.

[16] E. Courtwright, C. Yue, and H. Wang. Efficient
Resource Management on Template-based Web
Servers. In IEEE DSN’09, Lisbon, Portugal, 2009.

[17] M. D. Dikaiakos, A. Stassopoulou, and
L. Papageorgiou. An investigation of web crawler
behavior: characterization and metrics. In Computer
Communications, 28:8, 80–897, Elsevier, May 2005.

[18] JelSoft, Inc. vBulletin Forum Software.
www.vbulletin.com.

[19] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
crowds and denial of service attacks: characterization
and implications for cdns and web sites. In WWW’02,
pages 293–304, Honolulu, HI, 2002.

[20] Q. Luo, J. Naughton, and W. Xue. Form-based proxy
caching for database-backed web sites: keywords and
functions. The VLDB Journal, 17:489–513, 2008.

[21] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of
web caching architectures: hierarchical and distributed
caching. In IEEE/ACM Transactions on Networking,
9(4):404–418, 2001.

[22] A. Stassopoulou and M. D. Dikaiakos. Crawler
detection: A bayesian approach. In ICISP’06, Cap
Esterel, France, 2006.

[23] A. Stassopoulou and M. D. Dikaiakos. Web robot
detection: A probabilistic reasoning approach. In
Computer Networks, 53:265–278, 2009.

[24] J. Wang. A survey of web caching schemes for the
internet. In ACM Computer Communication Review,
29:5, 36–46, 1999.

[25] I.-W. T. Yeim-Kuan Chang and Y.-R. Lin. Caching
personalized and database-related dynamic web pages.
In International Journal of High Performance
Computing and Networking, 6(3/4), 2010.

[26] K. Yokota, T. Asaka, and T. Takahashi. A load
reduction system to mitigate flash crowds on web
server. In International Symposium on Autonomous
Decentralized Systems ’11, Kobe, Japan, 2011.

WWW 2012 – Session: Web Performance April 16–20, 2012, Lyon, France

180




