
IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 1

Whispers in the Hyper-space: High-bandwidth and
Reliable Covert Channel Attacks inside the Cloud

Zhenyu Wu, Member, IEEE, Zhang Xu, and Haining Wang, Senior Member, IEEE

Abstract—Privacy and information security in general are
major concerns that impede enterprise adaptation of shared
or public cloud computing. Specifically, the concern of virtual
machine (VM) physical co-residency stems from the threat that
hostile tenants can leverage various forms of side channels (such
as cache covert channels) to exfiltrate sensitive information of
victims on the same physical system. However, on virtualized
x86 systems, covert channel attacks have not yet proven to be
practical, and thus the threat is widely considered a “potential
risk”. In this paper, we present a novel covert channel attack that
is capable of high-bandwidth and reliable data transmission in
the cloud. We first study the application of existing cache channel
techniques in a virtualized environment, and uncover their major
insufficiency and difficulties. We then overcome these obstacles
by (1) redesigning a pure timing-based data transmission scheme,
and (2) exploiting the memory bus as a high-bandwidth covert
channel medium. We further design and implement a robust
communication protocol, and demonstrate realistic covert chan-
nel attacks on various virtualized x86 systems. Our experimental
results show that covert channels do pose serious threats to
information security in the cloud. Finally, we discuss our insights
on covert channel mitigation in virtualized environments.

Index Terms—Cloud, Covert channel, Network security.

I. INTRODUCTION

Cloud vendors today are known to utilize virtualization

heavily for consolidating workload and reducing management

and operation cost. However, due to the relinquished control

from data owners, data in the cloud is more susceptible to

leakage by operator errors or theft attacks. Cloud vendors

and users have used a number of defense mechanisms to

prevent data leakage, ranging from network isolation to data

encryption. Despite the efforts being paid on information

safeguarding, there remain potential risks of data leakage,

namely the covert channels in the cloud [1–5].

Covert channels exploit imperfections in the isolation of

shared resources between two unrelated entities, and enable

communications between them via unintended channels, by-

passing mandatory auditing and access controls placed on

standard communication channels. Unlike a seemingly similar

threat, side channel attacks [1, 6] that extrapolate information

by observing an unknowing sender, covert channels transfer

data between two collaborating parities. However, the addi-

tional requirement of an insider does not significantly reduce

the usefulness of covert channels in data theft attacks. Data

theft attacks using covert channels can be launched in two

Zhenyu Wu is with NEC Laboratories America Inc., Princeton, NJ, USA
Zhang Xu and Haining Wang are with the Department of Computer Science,

College of William and Mary, Williamsburg, VA, USA

steps, namely infiltration and exfiltration. In the infiltration

step, attackers may apply multiple infiltration attacks (such as

buffer overflow [7], VM image pollution [8, 9], and various

social engineering techniques [10, 11]) to place “insiders” in a

victim and harvest secret information. In the exfiltration step,

secret information is transported to the attacker via a covert

channel, without leaving a trace on any security surveillance

systems (e.g., firewalls, intrusion detection systems, network

traffic logs, etc.)
While previous research has shown that on a non-virtualized

system, covert channels can be constructed using a variety of

shared media [12–16], to date there is no known practical

(i.e., high speed) exploit of covert channels on virtualized x86

systems. Exposing cloud computing to the threat of covert

channel attacks, Ristenpart et al. [2] have implemented an L2

cache channel in Amazon EC2 [2], achieving a bandwidth of

0.2 bps (bits-per-second), far less than the one bps “accept-

able” threshold suggested by the Trusted Computer System

Evaluation Criteria (TCSEC, a.k.a. the “Orange Book”) [17].

A subsequent measurement study of cache covert channels [4]

has achieved slightly improved speeds—a theoretical channel

capacity of 1.77 bps1. Given such low reported channel capac-

ities from previous research, it is widely believed that covert

channel attacks could only do very limited harm in the cloud

environment. Coupled with the fact that the cloud vendors

impose non-trivial extra service charges for providing physical

isolation, one might be tempted to disregard the concerns of

covert channels as purely precautionary, and choose the lower

cost solutions instead.
In this paper, we show that the threat of covert channel

attacks in the cloud is real and practical. We first study

existing cache covert channel techniques and their applications

in a virtualized environment. We reveal that these techniques

are rendered ineffective by virtualization, due to three major

insufficiency and difficulties, namely, addressing uncertainty,

scheduling uncertainty, and cache physical limitations. We

tackle the addressing and scheduling uncertainty problems by

designing a pure timing-based data transmission scheme with

relaxed dependencies on precise cache line addressing and

scheduling patterns. Then, we overcome the cache physical

limitations by discovering a high-bandwidth memory bus

covert channel, exploiting the atomic instructions and their

induced cache–memory bus interactions on x86 platforms. Un-

like cache channels, which are limited to a physical processor

1This value is derived from the results presented in the original paper—a
bandwidth of 3.20 bps with an error rate of 9.28%, by assuming a binary
symmetric channel.

0000–0000/00$00.00 c© 2013 IEEE

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 2

or a silicon package, the memory bus channel works system-

wide, across physical processors, making it a very powerful

channel for cross–VM covert data transmission.
We further demonstrate the real world exploitability of

the memory bus covert channel by designing a robust data

transmission protocol and launching realistic attacks on our

testbed server as well as in the Amazon EC2 cloud. We

observe that the memory bus covert channel can achieve (1)

a bandwidth of over 700 bps with extremely low error rate

in a laboratory setup, and (2) a real world transmission rate

of over 100 bps in the Amazon EC2 cloud. Our experimental

results show that, contrary to previous research and common

beliefs, covert channels are able to achieve high bandwidth and

reliable transmission on today’s x86 virtualization platforms.
The remainder of this paper is structured as follows. Sec-

tion II surveys related work on covert channels. Section III

describes our analysis of the reasons that existing cache covert

channels are impractical in the cloud. Section IV details our

exploration of building high-speed, reliable covert channels in

a virtualized environment. Section V presents our evaluation of

launching covert channel attacks using realistic setups. Section

VI provides a renewed view of the threats of covert channels in

the cloud, and discusses plausible mitigation avenues. Section

VII concludes this paper.

II. RELATED WORK

Covert channel is a well known type of security attack in

multi-user computer systems. Originated in 1972 by Lampson

[12], the threats of covert channels are prevalently present in

systems with shared resources, such as file system objects [12],

virtual memory [15], network stacks and channels [13, 14, 18],

processor caches [1, 16], input devices [19], etc. [17, 20].
Compared to other covert channel media, the processor

cache is more attractive for exploitation, because its high

operation speed could yield high channel bandwidth and the

low level placement in the system hierarchy can bypass many

high level isolation mechanisms. Thus, cache-based covert

channels have attracted serious attention in recent studies.
Percival [16] introduced a technique to construct inter-

process high bandwidth covert channels using the L1 and L2

caches, and demonstrated a cryptographic key leakage attack

through the L1 cache side channel. Wang and Lee [1] deepened

the study of processor cache covert channels, and pointed out

that the insufficiency of software isolation in virtualization

could lead to cache-based cross–VM covert channel attacks.

Ristenpart et al. [2] further exposed cloud computing to covert

channel attacks by demonstrating the feasibility of launching

VM co-residency attacks, and creating an L2 cache covert

channel in the Amazon EC2 cloud. Zhang et al. [21] presented

a cross-VM side channel attack using a combination of support

vector machine (SVM) and hidden Markov model (HMM),

extracting cryptographic keys by inferring cypher operations

from cache timing observations. Xu et al. [4] conducted a

follow up measurement study of [2] on L2 cache covert chan-

nels in a virtualized environment. Based on their measurement

results, they concluded that the harm of data exfiltration from

cache covert channels is quite limited due to low achievable

channel capacity.

In response to the discovery of cache covert channel attacks,

a series of architectural solutions have been proposed to limit

cache channels, including RPcache [1], PLcache [22], and

Newcache [23]. RPcache and Newcache employ randomiza-

tion to prevent data transmission by establishing a location-

based coding scheme. PLcache, however, is based on enforcing

resource isolation by cache partitioning.

One drawback of hardware-based solutions is their high

adaptation cost and latency. With the goal of offering im-

mediately deployable protection, HomeAlone [3] pro-actively

detects the co-residence of unfriendly VMs. Leveraging the

knowledge of existing cache covert channel techniques [2, 16],

HomeAlone infers the presence of a malicious VM by acting

like a covert channel receiver and observing cache timing

anomalies caused by another receiver’s activities. STEALTH-

MEM [24] presents a hypervisor based side-channel defense

framework, which reserves for each guest VM a small amount

of memory that guarantees to always stay in the processor

cache. Enlightened guest operating systems and applications

can store sensitive information, such as cryptographic keys

or cipher functions, in the cache-resident storage, and thus

become immune to cache channel attacks.

The industry has taken a more pragmatic approach to

mitigating covert channel threats. The Amazon EC2 cloud

provides a featured service called dedicated instances [25],

which ensures VMs belonging to each tenant of this service

do not share physical hardware with any other cloud tenants’

VMs. This service effectively eliminates various covert chan-

nels induced by the shared platform hardware, including cache

covert channel. However, in order to enjoy this service, the

cloud users have to pay a significant price premium2.

Of historical interest, the study of covert channels in vir-

tualized systems is far from a brand new research topic—

legacy research that pioneered this field dates back over 30

years. During the development of the VAX security kernel,

a significant amount of effort has been paid to limit covert

channels within the Virtual Machine Monitor (VMM). Hu

[26, 27] and Gray [28, 29] have published a series of follow

up research on mitigating cache channels and bus contention

channels, using timing noise injection and lattice scheduling

techniques. However, this research field has lost its momentum

until recently, probably due to the cancellation of the VAX

security kernel project, as well as the lack of ubiquity of

virtualized systems in the past.

III. STRUGGLES OF THE CLASSIC CACHE CHANNELS

Existing cache covert channels (namely, the classic cache

channels) employ variants of Percival’s technique, which uses

a hybrid timing and storage scheme to transmit information

over a shared processor cache, as described in Algorithm 1.

The classic cache channels work very well on hyper-

threaded systems, achieving transmission rates as high as

hundreds of kilobytes per second [16]. However, when applied

2As of August 2012, each dedicated instance incurs a 23.5% higher per-hour
cost than regular usage. In addition, there is a $10 fee per hour/user/region.
Thus, for a user of 20 small instances, the overall cost of using dedicated
instances is 6.12 times more than that of using regular instances.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 3

Algorithm 1 Classic Cache Channel Protocol

Cache[N]: A shared processor cache, conceptually divided into N regions;
Cache[N]: Each cache region can be put in one of two states, cached or flushed.
DSend[N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:

(Wait for receiver to initialize the cache)

for i := 0 to N − 1 do
{Put Cache[i] into the cached state}
Access memory maps to Cache[i];

end for

for i := 0 to N − 1 do
if DSend[i] = 1 then

{Put Cache[i] into the flushed state}
Access memory maps to Cache[i];

end if
end for

(Wait for sender to prepare the cache)

(Wait for receiver to read the cache)

for i := 0 to N − 1 do
Timed access memory maps to Cache[i];
{Detect the state of Cache[i] by latency}
if AccessT ime > Threshold then

DRecv [i] := 1; {Cache[i] is flushed}
else

DRecv [i] := 0; {Cache[i] is cached}
end if

end for

TABLE I
EXPERIMENTAL SYSTEM CONFIGURATIONS

System A System B

CPU Core2 Q8400, 2.66GHz, 2 * Xeon E5520, 2.26GHz,
Caches: (size, set-associativity) Caches: (size, set-associativity)
Caches: L1D – 32KB, 8-way Caches: L1D – 32KB, 8-way
Caches: L2 – 2MB, 8-way Caches: L2 – 256KB, 8-way

Caches: L3 – 8MB, 16-way

Memory DDR2 DIMM, 1621MHz DDR3 FBDIMM, 2153MHz

TABLE II
CACHE LATENCIES VS. ACCESS PATTERN LENGTHS

System A (L2 Associative Set Size = 256KB)

Accesses 1–6/7 8–24/32/64 More than 64

Latency 8 cycles (const.) +8 cyc./access +48 cyc./access

System B (L2 Associative Set Size = 32KB)

Accesses 1–18 19–64 More than 96

Latency 4 cycles (const.) +2 cyc./access +33 cyc./access

in today’s virtualized environments, the achievable rates drop

drastically, to only low single-digit bits per second [2, 4]. The

multiple orders of magnitude reduction in channel capacity

clearly indicates that the classic cache channel techniques

are no longer suitable for cross–VM data transmission. In

particular, we found that on virtualized platforms, the data

transmission scheme of a classic cache channel suffers three

major obstacles—addressing uncertainty, scheduling uncer-

tainty, and cache physical limitation.

A. Addressing Uncertainty

Classic cache channels modulate data by the states of cache

regions, and hence a key factor affecting channel bandwidth

is the number of regions a cache being divided. From infor-

mation theory’s perspective, a specific cache region pattern is

equivalent to a transmitted symbol. And the number of regions

in a cache thus corresponds to the number of symbols in the

alphabet set. The higher symbol count in an alphabet set, the

more information can be passed per symbol.

On hyper-threaded Pentium 4 systems, for which classic

cache channels are originally designed, the sender and receiver

are executed on the same processor core, using the L1 cache

as the transmission medium. The L1 cache on the Pentium

4 processor is addressed purely by virtual memory addresses,

a technique called VIVT (virtually indexed, virtually tagged).

With a VIVT cache, two processes can impact the same set of

associative cache lines by performing memory operations with

respect to the same virtual addresses in their address spaces,

as illustrated in Figure 1(a). This property enables processes

to precisely control the status of the cache lines, and thus

allows for fine division of the L1 cache, such as 32 regions in

Percival’s cache channel [16].

However, on today’s production virtualization systems,

hyper-threading is commonly disabled for security reasons

(i.e., eliminating hyper-threading induced covert channels).

Therefore, the sender and receiver could only communicate

by interleaving their executions. This scheduling pattern makes

VIVT L1 caches unusable for covert communication because

their contents are completely flushed at each context switch.

Higher level caches (e.g., the L2 cache) as well as L1 caches

in modern processors (e.g., Intel Nehalem) involve physical

memory addresses in their cache line addressing (i.e., PIPT,

physically indexed physically tagged, or VIPT, virtually in-

dexed physically tagged), so that contents are preserved across

context switches. These caches can be leveraged by classic

cache channels.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 4

�

� �

�

�

�

����������

�

��������	�

�

L1 Cache

(VIVT)

(a)
�

VM 211VM 1

L2 Cache

(VIPT / PIPT)

�

Host

Physical

Address

Host

Physical

Address

�

���������� Guest

Physical

Address

��������	�Guest

Physical

Address

(b)

Fig. 1. Memory Address to Cache Line Mappings for a VIVT L1 cache, and an L2 cache on virtualized systems

We demonstrate the effect of physical addressing by con-

ducting experiments on two testbed systems with configu-

rations shown in Table I. We first calculate the associative

block sizes of the L2 caches by dividing the total cache

capacities over their corresponding set-associativity counts.

Then we measure the latencies of a repeating sequence of

random memory accesses, with each access spaced multiple

associative blocks apart. The repeating sequence length starts

at one, and is incremented by one for each measurement.

As shown in Table II, both systems sustain small memory

access latencies with up to 64 random accesses. However, if

their L2 caches were VIVT, we would have observed large

access latency increases beyond 8 random accesses, since these

caches are 8-way set associative.

In comparison with the VIVT L1 caches, the usability of

VIPT/PIPT caches for classic cache channel transmission is

much reduced. This is because a normal (i.e., unprivileged)

process only has knowledge of its own virtual address space,

which is usually mapped to non-linear physical address spaces.

As a result, normal processes cannot be completely certain

of the cache line that a memory access would affect due to

address translation. Server virtualization has further compli-

cated the addressing uncertainty by adding another layer of

indirection to memory addressing. As illustrated in Figure

1(b), even the “physical memory” of a guest VM is virtualized,

and access to it must be further translated. As a result, it is

very difficult, if not impossible, for a process in a guest VM

(especially for a full virtualization VM) to discover the actual

physical memory addresses of a memory region.

Due to the addressing uncertainty, for classic covert chan-

nels on virtualized systems, the number of cache regions is

reduced to a minimum of only two [2, 4].

B. Scheduling Uncertainty

Classic cache channel data transmission depends on a cache

pattern “round-trip”—the receiver completely resets the cache

and correctly passes it to the sender; and the sender completely

prepares the cache pattern and correctly passes it back to the

receiver. Therefore, to successfully transmit one cache pattern,

the sender and receiver must be strictly round-robin scheduled.

However, without special scheduling arrangements (i.e., col-

lusion) from the hypervisor, such idealistic scheduling rarely

happens. On production virtualized systems, the physical

processors are usually heavily multi-subscribed in order to

increase utilization. In other words, each physical processing

core serves more than one virtual processor from different

VMs. As a result, there exist many scheduling patterns that

prevent successful cache pattern “round-trip”, such as:

∗ Channel not cleared for send: The receiver is de-

scheduled before it finishes resetting the cache.

∗ Channel invalidated for send: The receiver finishes reset-

ting the cache, but another unrelated VM is scheduled to

run immediately after.

∗ Sending incomplete: The sender is de-scheduled before it

finishes preparing the cache.

∗ Symbol destroyed: The sender finishes preparing the

cache, but another unrelated VM is scheduled to run

immediately after.

∗ Receiving incomplete: The receiver is de-scheduled before

it finishes reading the cache.

∗ Channel access collision: The sender and receiver are

executed in parallel on processor cores that share cache.

Xu et al. [4] have clearly illustrated the problem of

scheduling uncertainty in two of their measurements. First,

in a laboratory setup, the error rate of their covert channel

increases from near 1% to 20–30% after adding just one non-

participating VM with moderate workload. Second, in the

Amazon EC2 cloud, they have discovered that only 10.5% of

the cache measurements at the receiver side are valid for data

transmission, due to the fact that the hypervisor’s scheduling

is different from the idealistic scheduling.

C. Cache Physical Limitation

Besides the two uncertainties, classic cache channels also

face an insurmountable limitation—the necessity of a shared

and stable cache.

If the sender and receiver of classic cache channels are exe-

cuted on processor cores that do not share any cache, obviously

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 5

Algorithm 2 Timing-based Cache Channel Protocol

CLines: Several sets of associative cache lines picked by both the sender and the receiver;
CLines: These cache lines can be put in one of two states, cached or flushed.
DSend[N], DReceive[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:
for i := 0 to N − 1 do

if DSend[i] = 1 then
for an amount of time do

{Put CLines into the flushed state}
Access memory maps to CLines;

end for
else

{Leave CLines in the cached state}
Sleep of an amount of time;

end if
end for

for i := 0 to N − 1 do
for an amount of time do

Timed access memory maps to CLines;
end for
{Detect the state of CLines by latency}
if Mean(AccessT ime) > Threshold then

DReceive[i] := 1; {CLines is flushed}
else

DReceive[i] := 0; {CLines is cached}
end if

end for

no communication could be established. On a multi-processor

system, it is quite common to have processor cores that do

not share any cache, since there is usually no shared cache

between different physical processors. And sometimes even

processor cores residing on the same physical processor do

not share any cache, such as the Intel Core2 Quad processor,

which contains two dual-core silicon packages with no shared

cache in between.

Even if the sender and receiver could share a cache, external

interferences can destabilize the shared cache. Modern multi-

core processors often include a large last-level cache (LLC)

shared between all processor cores. To facilitate a simpler

cache coherence protocol, the LLC usually employs an in-

clusive principle, which requires that all data contained in

the lower level caches must also exist in the LLC. In other

words, when a cache line is evicted from the LLC, it must

also be evicted from all the lower level caches. Thus, any non-

participating processes executing on those processor cores that

share the LLC with the sender and receiver can interfere with

the communication by indirectly evicting the data in the cache

used for the covert channel. The more cores on a processor,

the higher the interference.

Overall, virtualization induced changes to cache operations

and process scheduling render the data transmission scheme

of classic cache channels obsolete. First, the effectiveness of

data modulation is severely reduced by addressing uncertainty.

Second, the critical procedures of signal generation, delivery,

and detection are frequently interrupted by less-than-ideal

scheduling patterns. And finally, the fundamental requirement

of stably shared cache is hard to satisfy as processors are

having more cores.

IV. COVERT CHANNEL IN THE HYPER-SPACE

In this section, we present our techniques to tackle the exist-

ing difficulties and develop a high-bandwidth, reliable covert

channel on virtualized x86 systems. We first describe our re-

designed, pure timing-based data transmission scheme, which

overcomes the negative effects of addressing and scheduling

uncertainties with a simplified design. After that, we detail

our findings of a powerful covert channel medium, exploiting

the atomic instructions and their induced cache–memory bus

interactions on x86 platforms. And finally, we specify our

designs of a high error-tolerance transmission protocol for

cross–VM covert channels.

A. Redesigning Data Transmission

We first question the reasoning behind using cache state

patterns for data modulation. Originally, Percival [16] designed

this transmission scheme mainly for the use of side channel

cryptographic key stealing on a hyper-threaded processor. In

this specific usage context, the critical information of memory

access patterns are reflected by the states of cache regions.

Therefore, cache region-based data modulation is an important

source of information. However, in a virtualized environment,

the regions of the cache no longer carry useful information

due to addressing uncertainty, making cache region-based data

modulation a great source of interference.
We therefore redesign a data transmission scheme for the

virtualized environment. Instead of using the cache region-

based encoding scheme, we modulate data based on the state

of cache lines over time, resulting in a pure timing-based

transmission protocol, as described in Algorithm 2.
Besides removing cache region-based data modulation, the

new transmission scheme also features a significant change

in the scheduling requirement, i.e., signal generation and

detection are performed instantaneously, instead of being in-

terleaved. In other words, data are transmitted while the sender

and receiver run in parallel. This requirement is more lenient

than strict round-robin scheduling, especially with the trend of

increasing number of cores on a physical processor, making

two VMs more likely to run in parallel than interleaved.
We conduct a simple raw bandwidth estimation experiment

to demonstrate the effectiveness of the new cache covert

channel. In this experiment, interleaved bits of zeros and ones

are transmitted, and the raw bandwidth of the channel can

thus be estimated by manually counting the number of bits

transmitted over a period of time.
We build the cache covert channel on our testbed System

A. Based on our experimental observations in Section III-A,

we select CLines as a set of 64 cache lines mapped by

memory addresses following the pattern M+X ·256K , where

M is a small constant and X is a random positive integer.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 6

�

� �

�

��

���

���

���

���

���

���

� �� ��� ��� ���

�
��
�
��
��
�
��
	
�

��
	
��

����	��������������������������

Fig. 2. Timing-based Cache Channel Bandwidth Test

The sender puts these cache lines into the flushed state by

accessing a sequence of CLines-mapping memory addresses.

The receiver times the access latency of another sequence

of CLines-mapping memory addresses. The length of the

receivers access sequence should be smaller than, but not too

far away from the cache line set size, for example, 48.

As shown in Figure 2, the x-value of each sample point is

the observed memory access latency by the receiver, and the

trend line is created by plotting the moving average of two

samples. According to the measurement results, 39 bits can

be transmitted over a period of 200 micro-seconds, yielding a

raw bandwidth of over 190.4 kilobits per second, about five

orders of magnitude higher than the previously studied cross–

VM cache covert channels.

Having resolved the negative effects of addressing and

scheduling uncertainties and achieved a high raw bandwidth,

our new cache covert channel, however, still performs poorly

on systems with non-participating workloads. We discover

that the sender and receiver have difficulty in establishing a

stable communication channel. And the cause of instability is

that the hypervisor frequently migrates the virtual processors

across physical processor cores, which is also observed by

Xu et al. [4]. The outgrowth of this behavior is that the

sender and receiver frequently reside on processor cores that

do not share any cache, making our cache channel run into the

insurmountable cache physical limitation just like the classic

cache channels.

B. (Re)Discovering the Bus-contention Channel

The prevalence of virtual processor core migration handi-

caps cache channels in cross–VM covert communication. In

order to reliably establish covert channels across processor

cores that do not share any cache, a commonly shared and

exploitable resource is needed as the communication medium.

And the memory bus comes into our sight as we extend our

scope beyond the processor cache.

1) Background: Interconnecting the processors and the

system main memory, the memory bus is responsible for

delivering data between these components. Because contention

on the memory bus results in a system-wide observable effect

of increased memory access latency, a covert channel can

be created by programmatically triggering contention on the

memory bus. Such a covert channel is called a bus-contention

channel.

The bus contention channels have long been studied as

a potential security threat for virtual machines on the VAX

VMM, on which a number of techniques have been developed

[26, 28, 29] to effectively mitigate this threat. However, the

x86 platforms we use today are significantly different from the

VAX systems, and we suspect similar exploits can be found by

probing previously unexplored techniques. Unsurprisingly, by

carefully examining the memory related operations of the x86

platform, we have discovered a bus-contention exploit using

atomic instructions with exotic operands.

Atomic instructions are special x86 memory manipulation

instructions, designed to facilitate multi-processor synchro-

nization, such as implementing mutexes and semaphores—the

fundamental building blocks for parallel computation. Memory

operations performed by atomic instructions (namely, atomic

memory operations) are guaranteed to complete uninterrupted,

because accesses to the affected memory regions by other

processors or devices are temporarily blocked from execution.

2) Analysis: Atomic memory operations, by their design,

generate system-wide observable contentions in the target

memory regions they operate on. And this particular feature

of atomic memory operations caught our attention. Ideally,

contention generated by an atomic memory operation is well

bounded, and is only evident when the affected memory region

is accessed in parallel. Thus, atomic memory operations are

not exploitable for cross–VM covert channels, because VMs

normally do not implicitly share physical memory. However,

we have found out that the hardware implementations of

atomic memory operations do not match the idealistic speci-

fication, and memory contentions caused by atomic memory

operations could propagate much further than expected.

Early generations (before Pentium Pro) of x86 processors

implement atomic memory operations by using bus lock, a

dedicated hardware signal that provides exclusive access of

the memory bus to the device who asserts it. While provid-

ing a very convenient means to implement atomic memory

operations, the sledgehammer-like approach of locking the

memory bus results in system-wide memory contention. In

addition to being exploitable for covert channels, the bus-

locking implementation of atomic memory operations also

causes performance and scalability problems.

Modern generations (before Intel Nehalem and AMD

K8/K10) of x86 processors improve the implementation of

atomic memory operations by significantly reducing the like-

lihood of memory bus locking. In particular, when an atomic

operation is performed on a memory region that can be

entirely cached by a cache line, which is a very common case,

the corresponding cache line is locked, without locking the

memory bus [30]. However, atomic memory operations can

still be exploited for covert channels, because the triggering

conditions for bus-locking are not eliminated. Specifically,

when atomic operations are performed on memory regions

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 7

Algorithm 3 Timing-based Memory Bus Channel Protocol

MExotic: An exotic configuration of a memory region that spans two cache lines.
DSend[N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations: Receiver Operations:
for i := 0 to N − 1 do

if DSend[i] = 1 then
for an amount of time do

{Put memory bus into contended state}
Perform atomic operation with MExotic;

end for
else

{Leave memory bus in contention-free state}
Sleep of an amount of time;

end if
end for

for i := 0 to N − 1 do
for an amount of time do

Timed uncached memory access;
end for
{Detect the state of memory bus by latency}
if Mean(AccessT ime) > Threshold then

DRecv [i] := 1; {Bus is contended}
else

DRecv [i] := 0; {Bus is contention-free}
end if

end for

�

� �

�

���

����

����

����

����

����

� ��� ��� ��� 	�� ����

�
��
�
��
��
�
��
	
�

��
	
��

����	��������������������������

(a) Intel Core2, Hyper-V, Windows Guest VMs

�

� �

�

���

����

����

����

����

����

����

����

� ��� ��� ��� 	�� ����

�
��
�
��
��
�
��
	
�

��
	
��

����	��������������������������

(b) Intel Xeon (Nehalem), Xen, Linux Guest VMs

Fig. 3. Timing-based Memory Bus Channel Bandwidth Tests

with an exotic3 configuration—unaligned addresses that span

two cache lines, atomicity cannot be ensured by cache line

locking, and bus lock signals are thus asserted.

Remarkable architecture evolutions have taken place in the

latest generations (Intel Nehalem and AMD K8/K10) of x86

processors, one of which is the removal of the shared memory

bus. On these platforms, instead of having a unified central

memory storage for the entire system, the main memory is

divided into several pieces, each assigned to a processor as

its local storage. While each processor has direct access to

its local memory, it can also access memory assigned to

other processors via a high-speed inter-processor link. This

non-uniform memory access (NUMA) design eliminates the

bottleneck of a single shared memory bus, and thus greatly im-

proves processor and memory scalability. As a side effect, the

removal of the shared memory bus has seemingly invalidated

memory bus covert channel techniques at their foundation.

Interestingly, however, the exploit of atomic memory operation

continues to work on the newer platforms, and the reason for

this requires a bit more in-depth explanation.

On the latest x86 platforms, normal atomic memory oper-

ations (i.e., operating on memory regions that can be cached

by a single cache line) are handled by the cache line locking

mechanism similar to that of the previous generation proces-

sors. However, for exotic atomic memory operations (i.e., op-

3The word “exotic” here only means that it is very rare to encounter such
an unaligned memory access in modern programs, due to automatic data field
alignments by the compilers. However, manually generating such an access
pattern is very easy.

erating on cache-line-crossing memory regions), because there

is no shared memory bus to lock, the atomicity is achieved by

a set of much more complex operations: all processors must

coordinate and completely flush in-flight memory transactions

that are previously issued. In a sense, exotic atomic memory

operations are handled on the newer platform by “emulating”

the bus locking behavior of the older platforms. As a result,

the effect of memory access delay is still observable, despite

the absence of the shared memory bus.

3) Verification: With the memory bus exploit, we can easily

build a memory bus covert channel by adapting our timing-

based cache transmission scheme with minor modifications, as

shown in Algorithm 3.

Compared with Algorithm 2, there are only two differences

in the memory bus channel protocol. First, we substitute the

set of cache lines (CLines) with the memory bus as the

transmission medium. Similar to the cache lines, the memory

bus can also be put in two states, contended and contention-

free, depending on whether exotic atomic memory operations

are performed. Second, instead of trying to evict contents of

the selected cache lines, the sender changes the memory bus

status by performing exotic atomic memory operations. And

correspondingly, the receiver must make uncached memory

accesses to detect contentions.

We demonstrate the effectiveness of the memory bus chan-

nel by performing bandwidth estimation experiments, similar

to the one in Section IV-A, on our testbed systems running

different generations of platforms, hypervisors and guest VMs.

Specifically, System A uses an older shared memory bus

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 8

platform and runs Hyper-V with Windows guest VMs, while

System B utilizes the newer platform without a shared memory

bus and runs Xen with Linux guest VMs. As Figure 3 shows,

the x-value of each sample point is the observed memory

access latency by the receiver, and the trend lines are created

by plotting the moving average of two samples. According

to the measurement results, on both systems, 39 bits can be

transmitted over a period of 1 millisecond, yielding a raw

bandwidth of over 38 kilobits per second. Although an order

of magnitude lower in bandwidth than our cache channel,

the memory bus channel enjoys its unique advantage of

working across different physical processors. And notably, the

same covert channel implementation works on both systems,

regardless of the guest operating systems, hypervisors, and

hardware platform generations.

C. Whispering into the Hyper-space

We have demonstrated that the memory bus channel is

capable of achieving high speed data transmission on virtu-

alized systems. However, the preliminary protocol described

in Algorithm 3 is prone to errors and failures in a realis-

tic environment, because the memory bus is a very noisy

channel, especially on virtualized systems running many non-

participating workloads.

Figure 4 presents a realistic memory bus channel sample,

taken using a pair of physically co-resident VMs in the Ama-

zon EC2 cloud. From this figure, we can observe that both the

“contention free” and “contended” signals are subject to fre-

quent interferences. The “contention free” signals are intermit-

tently disrupted by workloads of other non-participating VMs,

causing the memory access latency to moderately raise above

the baseline. In contrast, the “contended” signals experience

much heavier interferences, which originate from two sources:

scheduling and non-participating workloads. The scheduling

interference is responsible for the periodic drop of memory

access latency. In particular, context switches temporarily

de-schedule the sender process from execution, and thereby

briefly relieving memory bus contention. The non-participating

workloads executed in parallel with the sender process worsen

memory bus contention and cause the spikes in the figure,

while non-participating workloads executed concurrently with

the sender process reduce memory bus contention, and result

in the dips in the figure. All these interferences can degrade

the signal quality in the channel, and make what the receiver

observes different from what the sender intends to generate,

which leads to bit-flip errors.

Besides the observable interferences shown in Figure 4,

there are also unobservable interferences, i.e., the scheduling

interferences to the receiver, which can cause an entirely

different phenomenon. When the receiver is de-scheduled from

execution, there is no observer in the channel, and thus all data

being sent is lost. And to make matters worse, the receiver

could not determine the amount of information being lost,

because the sender may also be de-scheduled during that time.

As a result, the receiver suffers from random erasure errors.

Therefore, three important issues need to be addressed

by the communication protocol in order to ensure reliable

�

� �

�

���

����

����

����

����

����

��� ��� �	� �
� ���

�
��
�
��
��
�
��
	
�

��
	
��

����	��������������������������

��������������������������������

���������������������������

Fig. 4. Memory Bus Channel Quality Sample in EC2

cross–VM communication: clock synchronization, receiving

confirmation, and error correction.

Clock Synchronization: Since the sender and receiver be-

long to two independent VMs, scheduling differences between

them tend to make the data transmission and detection proce-

dures de-synchronized, which can cause a significant problem

to pure timing-based data modulation. We overcome clock de-

synchronization by using self-clocking coding—a commonly

used technique in telecommunications. Here we choose to

transmit data bits using differential Manchester encoding, a

standard network coding scheme [31].

Receiving Confirmation: The random erasure errors caused

by receiver de-scheduling can make the transmitted data

very discontinuous, significantly reducing its usefulness. To

alleviate this problem, it is very important for the sender to

be aware of whether the data it sent out has been received.

We avoid using message based “send-and-ack”, a commonly

employed mechanism for solving this problem, because this

mechanism requires the receiver to actively send data back

to the sender, reversing the roles of sending and receiving,

and thus subjects the acknowledgment sender (i.e., the data

receiver) to the same problem. Instead, we leverage the

system-wide effect of memory bus contention to achieve

simultaneous data transmission and receiving confirmation.

In particular, the sender infers the presence of receiver by

observing increased memory access latencies generated by the

receiver. The corresponding changes to the data transmission

protocol include:

1. Instead of making uncached memory accesses, the re-

ceiver performs exotic atomic memory operations, just

like the sender transmitting a one bit.

2. Instead of sleeping when transmitting a zero bit, the

sender performs uncached memory accesses. In addition,

the sender always times its memory accesses.

3. While the receiver is in execution, the sender should

always observe high memory access latencies; otherwise,

the sender can assume the data has been partially lost, and

retry at a later time.

Error Correction: Due to interfering system workload and

scheduling variations, bit-flip errors are expected to be com-

mon. Similar to resolving the receiving confirmation problem,

we again avoid using acknowledgment-based mechanisms.

Assuming only a one-way communication channel, we re-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 9

Algorithm 4 Reliable Timing-based Memory Bus Channel Protocol

MExoticS , MExoticR: Exotic memory regions for the sender and the receiver, respectively.
DSend, DRecv: Data to transmit and receive, respectively.

Sender Prepares DSend by: Receiver Recovers DRecv by:

{DMSend[]: Segmented encoded data to send}

RSSend := ReedSolomonEncode(DSend);
FDSend[] := Break RSSend into segments;
DMSend[] := DiffManchesterEncode(FDSend[]);

{DMRecv []: Segmented encoded data received}

FDRecv [] := DiffManchesterDecode(DMRecv []);
RSRecv := Concatenate FDRecv [];
DRecv := ReedSolomonDecode(RSRecv);

Sending Encoded Data in a Frame: Receiving Encoded Data in a Frame:

{Data: A segment of encoded data to send}
{FrmHead, FrmFoot: Unique bit patterns
{signifying start and end of frame, respectively}

Result := SendBits(FrmHead);
if Result is not Aborted then

Result := SendBits(Data);
if Result is not Aborted then

{Ignore error in sending footer}
SendBits(FrmFoot);
return Succeed;

end if
end if
return Retry;

{Data: A segment of encoded data to receive}

Wait for frame header;
Result := RecvBits(Data);
if Result is Aborted then

return Retry;
end if
Result := Match frame footer;
if Result is not Matched then

{Clock synchronization error, discard Data}
return Erased;

else
return Succeed;

end if

Sending a Block of Bits: Receiving a Block of Bits:

{Block: A block of bits to send}
{Base1, Base0: Mean contention-free access
{time for sending bit 1 and 0, respectively}

for each Bit in Block do
if Bit = 1 then

for an amount of time do
Timed atomic operation with MExoticS ;

end for
Latency := Mean(AccessT ime)−Base1;

else
for an amount of time do

Timed uncached memory access;
end for
Latency := Mean(AccessT ime)−Base0;

end if
if Latency < Threshold then

{Receiver not running, abort}
return Aborted;

end if
end for
return Succeed;

{Block: a block of bits to receive}

for each Bit in Block do
for an amount of time do

Timed atomic operation with MExoticR;
end for
{Detect the state of memory by latency}
if Mean(AccessT ime) > Threshold then

Bit := 1; {Bus is contended}
else

Bit := 0; {Bus is contention-free}
end if
{Detect sender de-schedule}
if too many consecutive 0 or 1 bits then

{Sender not running}
Sleep for some time;
{Sleep makes sender abort, then we abort}
return Aborted;

end if
end for
return Succeed;

solve the error correction problems by applying forward error

correction (FEC) to the original data, before applying self-

clocking coding. More specifically, we use the Reed-Solomon

coding [32], a widely applied block FEC code with strong

multi-bit error correction performance.

In addition, we strengthen the communication protocol’s

resilience to clock drifting and scheduling interruption by

employing data framing. We break the data into segments of

fixed-length bits, and frame each segment with a start-and-

stop pattern. The benefits of data framing are twofold. First,

when the sender detects transmission interruption, instead of

retransmitting the whole piece of data, only the affected data

frame is retried. Second, some data will inevitably be lost

during transmission. With data framing, the receiver can easily

localize the erasure errors and handle them well through the

Reed-Solomon coding.

The finalized protocol with all the improvements in place

is presented in Algorithm 4.

V. EVALUATION

We evaluate the exploitability of memory bus covert chan-

nels by implementing the reliable Cross–VM communication

protocol, and demonstrate covert channel attacks on our in-

house testbed server, as well as on the Amazon EC2 cloud.

A. In-house Experiments

We launch covert channel attacks on our testbed System

B, which is equipped with the latest generation x86 platform

(i.e., with no shared memory bus). The experimental setup is

simple and realistic. We create two Linux VMs, namely VM-1

and VM-2, each with a single virtual processor and 512 MB

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 10

�

� �

���

���

���

���

��	

��

���

��� �� ����� ������

�
��
�
��

��
��
�
�
	

�
��
	
�
�
��

��������	����

����

�����

�����

�����

�

��

��

���

���

���

���

��	
 �� ���� �
����

�
��
�
��
�
�
��

	��
��������

����

�����

�����

�����

Fig. 5. Effects of Non-participating Workload on Bandwidth and Error Rate

of memory. The covert channel sender runs as an unprivileged

user program on VM-1, while the covert channel receiver runs

on VM-2, also as an unprivileged user program.

We first conduct a quick profiling to determine the optimal

data frame size and error correction strength. And we find out

that a data frame size of 32 bits (including an 8 bit preamble),

and a ratio of 4 parity symbols (bytes) per 4 data bytes works

well. Effectively, each data frame transmits 8 bits of preamble,

12 bits of data, and 12 bits of parity, yielding an efficiency of

37.5%. In order to minimize the impact of burst errors, such

as multiple frame losses, we group 48 data and parity bytes,

and randomly distribute them across 16 data frames using a

linear congruential generator (LCG).

We then assess the capacity (i.e., bandwidth and error

rate) of the covert channel by performing a series of data

transmissions using these parameters. For each transmission,

a one kilobyte data block is sent from the sender to the

receiver. With 50 repeated transmissions, we observe a stable

transmission rate of 746.8±10.1 bps. Data errors are observed,

but at a very low rate of 0.09%.

We further evaluate the impact of covert channel perfor-

mance by interfering workload, in particular, the workload on

the memory sub-system, from non-participating VMs (“other

VMs” for short). We define four levels of interferences,

idle, L1, L2/L3, and Memory, listed in ascending order by

the weight of impact to the memory sub-system. The idle

interference is generated by spawning other VMs and leaving

them idle. The L1 interference is generated by running in the

other VMs a program with a tight infinite loop, which only

stresses the processor L1 cache due to the very small amount

of memory involved in execution. Both L2/L3 and Memory

interferences are generated by running cachebench [33],

a processor cache and memory benchmarking utility: for the

L2/L3 interference, the amount of memory access is limited

to the size of the processor L3 cache; and for the Memory

interference, the amount of memory access is set to be slightly

larger than the size of the processor L3 cache.

As shown in Figure 5, we measure the bandwidth and error

rate of the covert channel when it is subjected to each level

of interferences generated by up to eight non-participating

VMs. We observe that the covert channel is very resilient

to idle, L1, and L2/L3 interferences. More specifically, while

these interferences do exert negative impacts on the covert

channel (i.e., decreased bandwidths and increased error rates),

the effects are minimal—except for the moderate decrease

of bandwidth with eight VMs running L2/L3 workload, the

bandwidth and error rate reductions in all other cases are

negligible. The robustness against cache-based interferences

is well expected, since the processor cache is not used as

a medium for this covert channel. However, when subjected

to Memory interferences, the covert channel performances

degrades significantly with more than four VMs running non-

participating workload. Especially, with eight VMs, no data

could be transmitted without uncorrectable error (i.e., the error

rate approaches 50% and the transmission rate drops to near

zero). This dramatic reduction of performance is also well

expected, because the memory benchmark program inflicts

extreme workload on the memory bus, and thereby rendering

this medium unusable for the covert channel. Because normal

applications would rarely generate such an intense memory

workload for an extended period of time, the memory bus

covert channel is still practical in the real world.

B. Amazon EC2 Experiments

We prepare the Amazon EC2 experiments by spawn-

ing physically co-hosted Linux VMs. Following instructions

presented in [2, 4], we uncover several pairs of phys-

ically co-hosted VM instances. Information disclosed in

/proc/cpuinfo shows that the host servers use the shared-

memory-bus platform, one generation older than our testbed

server used in the previous experiment.

Similar to our in-house experiments, we first conduct a

quick profiling to determine the optimal data frame size and

error correction strength. Compared to our in-house system

profiles, memory bus channels on Amazon EC2 VMs have a

higher tendency of clock de-synchronization. We compensate

for this deficiency by reducing the data frame size to 24 bits.

The error correction strength of 4 parity symbols per 4 data

bytes still works well. And the overall transmission efficiency

thus becomes 33.3%.

We again perform a series of data transmissions and

measure the bandwidth and error rates. For small EC2 in-

stances, our covert channel achieve a stable performance of

300.32 ± 38.79 bps, with an error rate of 0.50%. However,

for micro EC2 instances, we observe more interesting results.

As illustrated in Figure 6, the covert channel performance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 11

�

� �

�����

���	�

�	�
��

��

�

	��

	
�

���

�
�

���

�

�

	��

	
�

���

�
�

���

�
�

���

�
�

��

��� �������� �����

�
��
�
��
�
�
��

	
��

��

�
�
�

��
�
��
��
�
�
��

�������� ����������

Fig. 6. Memory Bus Channel Performances on EC2 Micro Instances

�

�

��

���

���

���

���

���

��� ��� ��� 	��
�� ��� ����

�
��
�
��

��
��
�
�
	

�
��
	
�
�
��

��������	��������	������

��������	

����

�����

��������	

����	

������

Fig. 7. Reliable Transmission with Adaptive Rates on EC2 Micro Instances

exhibits three distinct stages as the experiments progress.

During the initial 12–15 rounds of experiments, we measure

a transmission rate of 343.5 ± 66.1 bps, with an error rate

of 0.39%. As we continue to repeat the measurements, the

covert channel performance degrades. For the next 5–8 rounds

of experiments, the bandwidth slightly reduces, and the error

rate slightly increases. And finally, if we continue with the

experiments, the covert channel performance becomes very

bad. While the bandwidth is still comparable to that of the

best performance, the error rate becomes unacceptably high.

By repeating this experiment, we uncover that the three-

staged behavior can be repeatedly observed after leaving both

VMs idle for a long period of time (e.g., 20 minutes to one

hour). We believe, according to the Amazon EC2 documen-

tation [34], the cause of this behavior can be explained by

the CPU level limiting for micro instance VMs4. During our

initial transmissions, both the sender and receiver VMs are

allowed to run at full speed, and thus they are very likely

to execute in parallel, resulting in good channel performance.

And then, either the sender VM or receiver VM depletes its

allotted processor resource, and is throttled back, causing the

channel performance to degrade. Soon after that, the other

VM also consumes its quota and is throttled back. As a

result, the communication channel is heavily interrupted due

to this “unfriendly” scheduling pattern, which injects errors

and random erasure beyond the correction capability of the

FEC mechanism.

Because our communication protocol is designed to han-

dle very unreliable channels, we further investigate how to

maintain covert channel reliability when one or both parties

are being throttled back. We are able to find a working

solution by tuning only two parameters. First, we increase

the ratio of parity bits to 4 parity symbols per 2 data bytes.

Although it reduces transmission efficiency by 11.1%, the

error correction capability of our FEC is increased by 33.3%.

Second, we reduce the transmission symbol rate by about 20%.

By lengthening the duration of the receiving confirmation, we

effectively increase the probability of discovering scheduling

interruptions. After the parameter adjustments, we are able to

achieve a transmission rate of 107.9± 39.9 bps, with an error

4Each EC2 micro instance is only allowed to use a small amount of CPU
resource in a certain period of time. When a VM occupies a processor for a
prolonged time span, it uses up all of its “processor quota”, and the VM is
put through a “throttled back” period, during which it is only allowed a small
fraction of a processor’s resource.

rate of 0.75%, even through periods in which both the sender

and the receivers are throttled back.

Figure 7 depicts the adjusted communication protocol in

action. During the first period of full speed running, the

transmission rate can be as high as over 250 bps. However,

when throttle back starts, the sender responds to frequent trans-

mission failures with increased retries, allowing the receiver

continue to receive and decode data without uncorrectable

error. And correspondingly, the transmission rate drops to

below 50 bps. Finally, when the harsh scheduling condition is

alleviated, the transmission rate is automatically restored. The

capability of adaptively adjusting transmission rates according

to channel conditions evidences the versatility of our reliable

communication protocol.

VI. DISCUSSION

In this section, we first show a break down of impact to

cover channel performance from our communication protocol

features. Then, we reassess the threat of covert channel attacks

based on our experimental results. Finally, we discuss possible

means to mitigate the covert channel attacks in virtualized

environments.

A. Performance Impact

Our communication protocol design consists of three main

features, clock synchronization, receiving confirmation, and

error correction. Each feature contributes differently to the

covert channel performance.

Clock synchronization plays a fundamental role in the

communication protocol, without which we could not reliably

transmit meaningful length of data. The bandwidth cost of

clock synchronization is simple to derive. With differential

Manchester encoding, each bit requires a transition edge to

encode, and thus reduces the usable bandwidth by 50%.

Receiving confirmation ensures the information transmitted

by the sender reaches the receiver. We observe the bandwidth

impact of receiving confirmation in our EC2 small instance

experiment. On average, the sender re-transmits 5.27 times

when sending each data frame: 4.11 re-transmissions occur on

the preamble byte, and 1.26 re-transmissions occur on the first

data byte. As a result, approximately 6.63 bytes of information

are invalidated for every successful transmission of 3 bytes,

yielding an empirical efficiency of 31.15%.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 12

Error correction serves as a final measure to ensure the

correctness of transmitted data. While the encoding efficient

analysis of error correction is provided in Section V, we

report its empirical contribution to channel reliability in our

EC2 small instance experiment. We observe that on average

one error correction is invoked for every 3.11 block of data,

yielding a raw error rate of 32.15%. Compared with the data

error rate of 0.5% after the error correction, the error correction

has recovered 98.44% of the errors.

B. Damage Assessment

We extrapolate the threat of the memory bus covert channel

from three different aspects—achievable attacks, mitigation

difficulties, and cross-platform applicability.

1) Achievable Attacks: Due to their very low channel ca-

pacities [2, 4], previous studies conclude that covert channels

can only cause very limited harms in a virtualized environ-

ment. However, the experimental results of our covert channel

lead us to a different conclusion that covert channels indeed

pose realistic and serious threats to information security in the

cloud.

With over 100 bits-per-second high speed and reliable

transmission, covert channel attacks can be applied to a wide

range of mass-data theft attacks. For example, a hundred byte

credit card data entry can be silently stolen in less than 30

seconds; and a thousand byte private key file can be secretly

transmitted under 3 minutes. Working continuously, over 1 MB

of data, equivalent to tens of thousands of credit card entries

or hundreds of private key files, can be trafficked every 24

hours.

2) Mitigation Difficulties: In addition to high channel ca-

pacity, the memory bus covert channel has two other intriguing

properties which make it difficult to be detected or prevented:

◦ Stealthiness: Because processor cache is not used as

channel medium, the memory bus covert channel incurs

negligible impact on cache performance, making it totally

transparent to cache based covert channel detection, such

as HomeAlone [3].

◦ “Future proof”: Our in-house experiment shows that even

on a platform that is one generation ahead of Amazon

EC2’s systems, the memory bus covert channel continues

to perform very well.

3) Cross-platform Applicability: Due to hardware availabil-

ity, we have only evaluated memory bus covert channels on

the Intel x86 platforms. On one hand, we make an intuitive

inference that similar covert channels can also be established

on the AMD x86 platforms, since they share compatible

specifications on atomic instructions with the Intel x86 plat-

forms. On the other hand, the atomic instruction exploits may

not be applicable on platforms that use alternative semantics

to guarantee operation atomicity. For example, MIPS and

several other platforms use the load-linked/store-conditional

paradigm, which does not result in high memory bus con-

tention as atomic instructions do.

C. Mitigation Techniques

The realistic threat of covert channel attacks calls for effec-

tive and practical countermeasures. We discuss several plausi-

ble mitigation approaches from three different perspectives—

tenants, cloud providers, and device manufactures.
1) Tenant Mitigation: Mitigating covert channels on the

tenant side enjoys the advantages of trust and deployment

flexibility. With the implementation of mitigation techniques

inside tenant owned VMs, the tenant has the confidence of

covert channel security, regardless whether the cloud provider

addresses this issue.
However, due to the lack of lower level (hypervisor and/or

hardware) support, the available options are very limited, and

the best choice is performance anomaly detection. Although

not affecting the cache performances, memory bus covert

channels do cause memory performance degradation. There-

fore, an approach similar to that of HomeAlone [3] could

be taken. In particular, the defender continuously monitors

memory access latencies, and asserts alarms if significant

anomalies are detected. However, since memory accesses incur

much higher cost and non-determinism than cache probing,

this approach may suffer from high performance overhead and

high false positive rate.
2) Cloud Provider Mitigation: Compared to their tenants,

cloud providers are much more resourceful. They control not

only the hypervisor and hardware platform on a single system,

but also the entire network and systems in a data center. As

a result, cloud providers can tackle covert channels through

either preventative or detective countermeasures.
The preventative approaches, e.g., the dedicated instances

service provided by the Amazon EC2 cloud [25], thwart

covert channel attacks by eliminating the exploiting factors

of covert channels. While the significant extra service charge

of the dedicated instance service reduces its attractiveness, the

“no-sharing” guarantee may be too strong for covert channel

mitigation. We envision a low cost alternative solution that

allows tenants to share system resources in a controlled and

deterministic manner. For example, the cloud provider may

define a policy that each server might be shared by up to

two tenants, and each tenant could only have a predetermined

neighbor. Although this solution does not eliminate covert

channels, it makes attacking arbitrary tenants in the cloud very

difficult.
In addition to preventative countermeasures, cloud providers

can easily take the detective approach by implementing low

overhead detection mechanisms, because of their convenient

access to the hypervisor and platform hardware. For both

cache and memory bus covert channels, being able to generate

observable performance anomalies is the key to their success in

data transmission. However, modern processors have provided

a comprehensive set of mechanisms to monitor and discover

performance anomalies with very low overhead. Instead of

actively probing cache or accessing memory, cloud providers

can leverage the hypervisor to infer the presence of covert

channels, by keeping track of the increment rates of the cache

miss counters or memory bus lock counters [30]. Moreover,

when suspicious activities are detected, cloud providers can

gracefully resolve the potential threat by migrating suspicious

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 13

VMs onto physically isolated servers. Without penalizing

either the suspect or the potential victims, the negative effects

of false positives are minimized.
3) Device Manufacture Mitigation: The defense ap-

proaches of both tenant and cloud providers are only secondary

in comparison to mitigation by the device manufactures,

because the root causes of the covert channels are imperfect

isolation of the hardware resources.
The countermeasures at the device manufacture side are

mainly preventative, and they come in various forms of

resource isolation improvements. For example, instead of

handling exotic atomic memory operations in hardware and

causing system-wide performance degradation, the processor

may be redesigned to trap these rare situations for the op-

erating systems or hypervisors to handle, without disrupting

the entire system. A more general solution is to tag all

resource requests from guest VMs, enabling the hardware to

differentiate requests by their owner VMs, and thereby limiting

the scope of any performance impact.
While incurring high cost in hardware upgrades, the coun-

termeasures at the device manufacture side are transparent

to cloud providers and tenants, and can potentially yield the

lowest performance penalty and overall cost compared to other

mitigation approaches.

VII. CONCLUSION AND FUTURE WORK

Covert channel attacks in the cloud have been proposed and

studied. However, the threats of covert channels tend to be

down-played or disregarded, due to the low achievable channel

capacities reported by previous research. In this paper, we

presented a novel construction of high-bandwidth and reliable

cross–VM covert channels on the virtualized x86 platform.
With a study on existing cache channel techniques, we

uncovered their application insufficiency and limitations in a

virtualized environment. We then addressed these obstacles by

designing a pure timing-based data transmission scheme, and

discovering the bus locking mechanism as a powerful covert

channel medium. Leveraging the memory bus covert channel,

we further designed a robust data transmission protocol. To

demonstrate the real-world exploitability of our proposed

covert channels, we launched attacks on our testbed system

and in the Amazon EC2 cloud. Our experimental results

show that, contrary to previous research and common beliefs,

covert channel attacks in a virtualized environment can achieve

high bandwidth and reliable transmission. Therefore, covert

channels pose formidable threats to information security in

the cloud, and they must be carefully analyzed and mitigated.
For the future work, we plan to explore various mitigation

techniques we have proposed. Especially, we view the coun-

termeasures at the cloud provider side a highly promising field

of research. Not only do cloud providers have control of rich

resources, they also have strong incentive to invest in covert

channel mitigation, because ensuring covert channel security

gives them a clear edge over their competitors.

REFERENCES

[1] Z. Wang and R. B. Lee, “Covert and side channels

due to processor architecture,” in Proceedings of the

22nd Annual Computer Security Applications Conference

(ACSAC’06), 2006, pp. 473–482.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

“Hey, you, get off of my cloud: exploring information

leakage in third-party compute clouds,” in Proceedings

of the 16th ACM conference on Computer and commu-

nications security (CCS’09), 2009, pp. 199–212.

[3] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Home-

Alone: Co-residency detection in the cloud via side-

channel analysis,” in Proceedings of the 2011 IEEE

Symposium on Security and Privacy (S&P’11), 2011, pp.

313–328.

[4] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen,

and R. Schlichting, “An exploration of L2 cache covert

channels in virtualized environments,” in Proceedings of

the 3rd ACM workshop on Cloud computing security

workshop (CCSW’11), 2011, pp. 29–40.

[5] D. G. Murray, S. H, and M. A. Fetterman, “Satori: En-

lightened page sharing,” in Proceedings of the USENIX

Annual Technical Conference (ATC’09), 2009, pp. 1–14.

[6] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Software

side channel attack on memory deduplication,” Poster

session, the 23rd ACM Symposium on Operating Sys-

tems Principles (SOSP’11), 2011.

[7] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,

P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang,

“StackGuard: automatic adaptive detection and preven-

tion of buffer-overflow attacks,” in Proceedings of the

7th conference on USENIX Security Symposium, 1998,

pp. 63–78.

[8] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning,

“Managing security of virtual machine images in a cloud

environment,” in Proceedings of the 2009 ACM workshop

on Cloud computing security (CCSW’09), 2009, pp. 91–

96.

[9] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R. Sadeghi,

and T. Schneider, “AmazonIA: when elasticity snaps

back,” in Proceedings of the 18th ACM conference on

Computer and communications security (CCS’11), 2011,

pp. 389–400.

[10] I. S. Winkler and B. Dealy, “Information security tech-

nology?...don’t rely on it: a case study in social engineer-

ing,” in Proceedings of the 5th conference on USENIX

UNIX Security Symposium, 1995, pp. 1–5.

[11] G. L. Orgill, G. W. Romney, M. G. Bailey, and P. M.

Orgill, “The urgency for effective user privacy-education

to counter social engineering attacks on secure computer

systems,” in Proceedings of the 5th conference on In-

formation technology education (CITC5’04), 2004, pp.

177–181.

[12] B. W. Lampson, “A note on the confinement problem,”

Communications of the ACM, vol. 16, pp. 613–615, 1973.

[13] C. H. Rowland, “Covert channels in the TCP/IP protocol

suite,” First Monday, vol. 2, 1997.

[14] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert tim-

ing channels: design and detection,” in Proceedings of the

11th ACM conference on Computer and communications

security (CCS’04), 2004, pp. 178–187.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE/ACM TRANSACTIONS ON NETWORKING, DECEMBER 2013 14

[15] T. V. Vleck, “Timing channels,” Poster session, IEEE

TCSP conference, 1990.

[16] C. Percival, “Cache missing for fun and profit,” in

Proceedings of the BSDCan 2005, 2005.

[17] Department of Defense, “TCSEC: Trusted computer sys-

tem evaluation criteria,” Technical Report 5200.28-STD,

U.S. Department of Defense, 1985.

[18] G. Shah and M. Blaze, “Covert channels through ex-

ternal interference,” in Proceedings of the 3rd USENIX

conference on Offensive technologies (WOOT’09), 2009,

pp. 1–7.

[19] G. Shah, A. Molina, and M. Blaze, “Keyboards and

covert channels,” in Proceedings of the 15th conference

on USENIX Security Symposium, 2006, pp. 59–75.

[20] F. G. G. Meade, “A guide to understanding covert chan-

nel analysis of trusted systems,” Manual NCSC-TG-030,

U.S. National Computer Security Center, 1993.

[21] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,

“Cross-VM side channels and their use to extract private

keys,” in Proceedings of the 2012 ACM conference on

Computer and communications security (CCS ’12), 2012,

pp. 305–316.

[22] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou,

“Hardware-software integrated approaches to defend

against software cache-based side channel attacks,” in

Proceedings of the IEEE 15th International Symposium

on High Performance Computer Architecture (HPCA’09),

2009, pp. 393–404.

[23] Z. Wang and R. B. Lee, “A novel cache architecture with

enhanced performance and security,” in Proceedings of

the 41st annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’41), 2008, pp. 83–93.

[24] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem:

system-level protection against cache-based side channel

attacks in the cloud,” in Proceedings of the 21st USENIX

conference on Security symposium (Security’12), 2012.

[25] Amazon Web Services, “Amazon EC2 dedicated in-

stances,” http://aws.amazon.com/dedicated-instances/.

[26] W. Hu, “Reducing timing charmers with fuzzy time,” in

Proceedings of the 1991 IEEE Symposium on Security

and Privacy (S&P’91), 1991, pp. 8–20.

[27] W.-M. Hu, “Lattice scheduling and covert channels,” in

Proceedings of the IEEE Symposium on Security and

Privacy (S&P’92), 1992, pp. 52–61.

[28] J. W. Gray III, “On introducing noise into the bus-

contention channel,” in Proceedings of the 1993 IEEE

Symposium on Security and Privacy (S&P’93), 1993, pp.

90–98.

[29] J. W. G. III, “Countermeasures and tradeoffs for a class

of covert timing channels,” Hong Kong University of

Science and Technology, Tech. Rep., 1994.

[30] Intel, “The Intel 64 and IA-32 architectures software

developer’s manual,” http://www.intel.com/products/

processor/manuals/.

[31] J. Winkler and J. Munn, “Standards and architecture for

token-ring local area networks,” in Proceedings of 1986

ACM Fall joint computer conference (ACM’86), 1986,

pp. 479–488.

[32] I. S. Reed and G. Solomon, “Polynomial codes over

certain finite fields,” Journal of the Society for Industrial

and Applied Mathematics, vol. 8, no. 2, pp. 300–304,

1960.

[33] P. J. Mucci, K. London, and P. J. Mucci, “The

CacheBench report,” Nichols Research Corporation,

Tech. Rep., 1998.

[34] Amazon Web Services, “Micro instances,”

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

concepts micro instances.html.

�

� �

Zhenyu Wu (M’12) received his Ph.D. degree in
Computer Science from the College of William and
Mary, Williamsburg, in 2012. He is a Research
Staff Member at NEC Laboratories America Inc.,
Princeton, NJ. His research focuses on enterprise
system security and mobile application security. His
research interests also lie in general system and net-
work security, including but not limited to malware
analysis, packet filters, and Internet chat and online
game security.

�

Zhang Xu is a Ph.D candidate at the College of
William and Mary. He received his B.S. in computer
science from Beihang University in 2010 and his
Masters degree in computer science from College
of William and Mary in 2012. His research interests
include cloud computing, system security and power
management of data centers.

Haining Wang received his Ph.D. in Computer
Science and Engineering from the University of
Michigan at Ann Arbor in 2003. He is an Associate
Professor of Computer Science at the College of
William and Mary, Williamsburg, VA. His research
interests lie in the areas of security, networking sys-
tems, and cloud computing. He is a senior member
of IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2304439

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

