
SessionMagnifier: A Simple Approach to Secure and
Convenient Kiosk Browsing

Chuan Yue
The College of William and Mary

Williamsburg, VA 23187, USA
cyue@cs.wm.edu

Haining Wang
The College of William and Mary

Williamsburg, VA 23187, USA
hnw@cs.wm.edu

ABSTRACT
Many people use public computers to browse the Web and
perform important online activities. However, public com-
puters are usually far less trustworthy than peoples’ own
computers because they are more vulnerable to various se-
curity attacks. In this paper, we propose SessionMagnifier,
a simple approach to secure and convenient kiosk brows-
ing. The key idea of SessionMagnifier is to enable an ex-
tended browser on a mobile device and a regular browser on
a public computer to collaboratively support a Web session.
This approach simply requires a SessionMagnifier browser
extension to be installed on a trusted mobile device. A user
can securely perform sensitive interactions on the mobile de-
vice and conveniently perform other browsing interactions
on the public computer. We implemented SessionMagnifier
for Mozilla’s Fennec browser and evaluated it on a Nokia
N810 Internet Tablet. Our evaluation and analysis demon-
strate that SessionMagnifier is simple, secure, and usable.

Author Keywords
Web browsing, kiosk, mobile device, security, usability, Ajax.

ACM Classification Keywords
H.4.3 Information Systems Applications: Communications
Applications—Information browsers; H.5.2 Information In-
terfaces and Presentation: User Interfaces—User-centered
design; K.6.5 Management of Computing and Information
Systems: Security and Protection—Authentication, Invasive
software, Unauthorized access.

General Terms
Design, Experimentation, Human Factors, Security.

INTRODUCTION
Web browsing has become such an integral part of our ev-
eryday lives that we use browsers to perform many impor-
tant tasks such as banking, shopping, and bill-paying. To
facilitate ubiquitous Web access, many kiosk environments
such as cafés, airport lounges, and hotel business centers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, Florida, USA.
Copyright 2009 ACM 978-1-60558-431-7/09/09...$10.00

provide people with Internet-connected public computers.
These public computers often have high-speed network con-
nections. They are also convenient to use since they nor-
mally have full-size keyboards and large displays. People
who do not own a computer or carry a laptop with them fre-
quently use these public computers to browse the Web.

Unfortunately, public computers are usually far less trust-
worthy than peoples’ own computers. By “trustworthy”, we
mean that it is less likely that malware or spyware has been
installed on a computer to log user input, steal account in-
formation, and even secretly hijack a secure (HTTPS) Web
browsing session to make fraudulent transactions. Public
computers are used by many people to run different appli-
cations and visit various websites; consequently, it is very
likely for them to be infected with malware or spyware. Sim-
ply searching “public computer security” online, we can find
numerous articles suggesting that people should not use pub-
lic computers to perform sensitive activities. For example,
Microsoft suggests that to be really safe, a user should not
enter any sensitive information into a public computer [22].

To secure kiosk computing environments, researchers have
proposed a number of solutions [3, 4, 5, 6, 7, 8, 9, 10, 11,
13, 14, 15, 17]. Most of these solutions use a trusted mo-
bile device such as a PDA (Personal Digital Assistant) or a
mobile phone to enhance the security of kiosk computing
environments, and we refer to them as PDA-based solutions.
Mobile devices are favored by PDA-based solutions because
(1) they are more portable than desktop and laptop comput-
ers, and (2) they are generally more trustworthy than public
computers. Nevertheless, using small user interfaces on mo-
bile handheld devices is inherently difficult [16].

Many of these PDA-based solutions focus on specific objec-
tives such as securing application or data access [10, 15], se-
curing user authentication or input [3, 7, 9, 11, 17], and veri-
fying software integrity [5], so they cannot be easily adopted
to secure an entire Web browsing session. Some solutions do
have the objective of securing an entire kiosk browsing ses-
sion [6, 8, 13, 14], but they suffer from a few drawbacks that
limit their practical use.

In this paper, we propose SessionMagnifier, a simple ap-
proach to secure and convenient kiosk browsing. Session-
Magnifier also relies on a trusted mobile device and is a
PDA-based solution. However, our position is that with the
support of a trusted mobile device (referred to as PDA), a

125

solution to the problem of securing Web browsing on an
untrusted public computer (referred to as PC) should, in
essence, strive to synthesize the usability advantages of a
PC and the security advantages of a PDA. Otherwise, a user
can simply take the security risks of only using a PC, or a
user can simply tolerate the inconvenience of only using a
PDA with its small keyboard and display. Note that we use
the term PDA to represent either a mobile phone or a PDA
in this paper, and we expect people to eventually use our so-
lution on mobile phones which are more popular than PDAs.

SessionMagnifier is designed as a browser extension, and
the key idea is to enable an extended browser on a PDA and
a regular browser on a PC to collaboratively support a Web
session. After a user types in the address of a website and
initiates a Web session from the PDA, the extended browser
on the PDA accurately synchronizes a modified copy of its
latest webpage document to a regular browser on the PC.
The copied webpage document is modified to achieve accu-
rate webpage rendering on the PC browser, to track a user’s
interaction with the same webpage on the PC browser, and
to prevent sensitive information from leaking to the PC.

This solution is simple and practical because a user only
needs to carry a trusted mobile device and install a Session-
Magnifier extension to the device’s Web browser – no third-
party proxy is needed, no installation or configuration on an
untrusted computer is needed, no Web server modification is
needed, and no extra cryptographic key exchange is needed.
SessionMagnifier provides a strong security guarantee be-
cause end-to-end security is directly established between a
trusted mobile device and a remote Web server; meanwhile,
simple and explicit communication interfaces are defined to
enforce strong isolation between a PDA and a PC. Session-
Magnifier enables a user to fully take advantage of the con-
venience of using a PC. This is because only very sensitive
interactions such as entering username and password need to
be directly performed from the PDA while all other brows-
ing interactions can be conveniently performed from the PC.

We implemented SessionMagnifier for Mozilla’s Fennec mo-
bile browser [23]. We installed Fennec and SessionMagni-
fier on a Nokia N810 Internet Tablet and conducted evalua-
tions on usability, performance, and feasibility. Our evalua-
tion and analysis demonstrate that the proposed simple solu-
tion can be practically used to support secure and convenient
Web browsing on untrusted public computers.

RELATED WORK
Balfanz and Felten [1] introduced a splitting-trust paradigm
to divide an application between a small trusted mobile de-
vice and a bigger, more powerful, but possibly untrusted
computer. SessionMagnifier is inspired by this paradigm;
however, we do not split a browser but instead enable an
extended browser on a trusted mobile device and a regular
browser on an untrusted computer to collaboratively support
a Web session. The splitting-trust paradigm has also inspired
many other kiosk computing solutions that rely on a trusted
mobile device. We classify these solutions into four cate-
gories based on their different objectives.

Securing Application or Data Access
Oprea et al. [10] proposed a three-party secure remote ter-
minal architecture to enable users to access their sensitive
home computing environment via a trusted mobile device
and an untrusted terminal. This three-party architecture is
based on a thin-client VNC (Virtual Network Computing)
remote display system [12], in which a VNC server can up-
date the framebuffer displayed on a VNC client. Sharp et
al. [15] proposed a VNC-based thin-client architecture to
support secure access to unmodified applications. This ar-
chitecture is similar to the three-party architecture [10], but
it provides additional mechanisms to obfuscate the content
displayed on an untrusted display. These VNC-based se-
cure application or data access solutions work at the frame-
buffer level with high overhead, so they cannot be naturally
adopted to support smooth Web interactions. In addition,
trusted VNC servers must be deployed in these solutions.

Securing User Authentication or Input
Parno et al. [11] built a Phoolproof phishing prevention sys-
tem that uses a trusted mobile device to perform mutual au-
thentication between a user and a website. Mannan and
Oorschot [7] proposed the MP-Auth protocol, in which a
trusted mobile device turns a long-term password into a one-
time password via the public key of an intended server; there-
fore, a user’s long-term password will not be revealed to
phishing sites or untrusted computers. McCune et al. [9] pro-
posed a BitE framework that leverages the features of TPM
(Trusted Platform Module) to establish an encrypted input
tunnel from a trusted mobile device to an application running
on a TPM-equipped untrusted computer. Clarke et al. [3] and
Wu et al. [17] designed protocols that rely on both a trusted
third-party proxy and a trusted mobile device to secure au-
thentication on untrusted computers. In addition, Florencio
and Herley [4] proposed approaches to secure password in-
put on untrusted computers without using mobile devices.
All these solutions focus on securing user authentication or
input, so they are not directly applicable for securing Web
browsing sessions.

Verifying Software Integrity
Garriss et al. [5] built a system that uses a mobile device
to establish trust in a kiosk computing environment. This
system employs both a TPM module equipped on a kiosk
computer and an integrity attestation server of the kiosk, and
it focuses on verifying the identity and integrity of software
loaded on a public computer before revealing sensitive in-
formation to the computer. However, our SessionMagnifier
focuses on securing Web browsing sessions on potentially
untrusted public computers.

Securing Web Browsing Sessions
A few kiosk computing solutions share the same objective
with our SessionMagnifier: securing Web browsing sessions.
Ross et al. [13] proposed a composable secure proxy archi-
tecture to provide secure multi-modal access to Web services
from any device. A similar proxy-based architecture called
Delegate [6] was proposed to enable users to access Web
services from untrusted computers. In these solutions, es-
sentially it is the browser on an untrusted computer that ac-

126

cesses remote Web servers; meanwhile, secure proxies per-
form content and control filtering functionalities. Two main
obstacles impede the adoption of these proxy-based solu-
tions. First, secure third-party proxies must be widely de-
ployed, well managed, and fully trusted by users. Second,
to secure Web browsing, a proxy must use very complicated
and comprehensive rules to validate requests, remove sensi-
tive content, maintain user information, and manage session
information such as HTTP cookies.

Margolin et al. [8] introduced a Guardian framework that
uses a PDA as a proxy for all interactions between an un-
trusted computer and remote Web servers. This framework
eliminates the requirement of using secure third-party prox-
ies by moving their content and control filtering functional-
ities to a PDA. However, since it is still the browser on the
untrusted computer that accesses remote Web servers, this
solution does not reduce the inherent complexity of proxy-
based solutions. Our SessionMagnifier directly uses the Web
browser on a trusted mobile device to access remote Web
servers, so it provides strong security assurances and greatly
reduces the complexity of content and control filtering.

Recently, Sharp et al. [14] proposed a split-trust browsing
architecture to explore splitting trust at the HTML level for
Web applications. However, this architecture has three draw-
backs that limit its practical application. First, its critical
component the RDC (Remote Device Communication) agent
must be installed on an untrusted computer. Second, its
end-to-end security between a trusted mobile device and a
remote Web server depends on an extra authentication and
key-exchange process coordinated by the RDC agent. Third,
it assumes that either Web applications are explicitly written
or secure HTML-rewriting proxies are used to support split-
trust browsing. In contrast, our SessionMagnifier is much
simpler and more practically applicable – nothing needs to
be installed or configured on an untrusted computer, end-to-
end security between a trusted mobile device and a remote
Web server is ensured by existing HTTPS connections, no
third-party proxy is needed, and no modification needs to be
made to existing Web applications.

DESIGN
In this section, we first use a motivating example to illus-
trate the use of SessionMagnifier in a kiosk browsing envi-
ronment. We then define the threat model and assumptions
under which SessionMagnifier operates. Finally, we present
the architecture design of SessionMagnifier.

A Motivating Example
Alice goes on a trip without carrying her laptop, but she
wants to bid an item at eBay.com. During the last hours of
the bidding, she needs to check the latest bidding status and
make appropriate adjustments as necessary. Alice takes a
PDA (or a mobile phone) with her, but she feels uncomfort-
able to continuously use the small keyboard and display of
the PDA. She finds a public computer in an Internet café, but
she has concerns about the security and privacy of using this
public computer to log into her online accounts. Figure 1
illustrates such a kiosk browsing environment, and the prob-

User

Local Area Network (LAN)

PDA

PC

LAN

Connection

Internet Connection

Web Server

Figure 1. Kiosk browsing environment.

lem here is how Alice can securely and conveniently sign
into her online accounts and make transactions.

Fortunately, Alice can use a simple SessionMagnifier exten-
sion installed on the PDA browser to solve the problem. Al-
ice first uses the PDA to connect to the Internet and signs into
her eBay account from the PDA browser. The Internet con-
nection is established either directly via Wi-Fi or indirectly
via a USB-based or Bluetooth-based virtual network adapter
of the public computer. Next, Alice turns on the Session-
Magnifier extension installed on the PDA browser. She then
types a URL address displayed by SessionMagnifier into the
address bar of a regular PC browser and enables the connec-
tion between the PDA browser and the PC browser.

Starting from this point, SessionMagnifier synchronizes new
webpage content from the PDA browser to the PC browser,
and Alice can conveniently view and interact with the same
webpage using the PC browser. Her interactions initiated
from the PC browser will be sent back to SessionMagnifier
and then securely sent out to eBay.com. Alice can verify
and confirm any important interactions initiated from the PC
browser, and she can also use an “Auto On” toolbar button to
bypass this verification and confirmation step for less impor-
tant interactions. Meanwhile, using a “Sync On” toolbar but-
ton, Alice can switch on or off the synchronization on each
specific webpage so that she can input and view sensitive in-
formation only on the PDA browser. Alice may continue the
bidding process until she wins or loses the auction.

Threat Model and Assumptions
In a kiosk browsing environment, attackers are interested in
stealing a user’s sensitive information such as username and
password to commit identity theft. They are also interested
in hijacking a user’s browsing session to generate fraudu-
lent transactions. More specifically, attackers may use the
following five types of attacks to achieve their goals.

• input stealing – acquire sensitive input information by
using software or hardware keyloggers.

• output stealing – acquire sensitive output information by
using screen or window capture software.

• session information stealing – acquire sensitive session
information such as HTTP cookies and session IDs through
malware or spyware.

• session hijacking – (secretly) control a session and make
fraudulent transactions through malware.

• network attacks – perform the above stealing and hijack-
ing attacks at the network-level.

127

We define the capabilities of an attacker at two different lev-
els: host-level and network-level. With host-level capabili-
ties, an attacker can install malicious hardware and software
on a public computer and perform the first four types of at-
tacks listed above. With network-level capabilities, an at-
tacker can eavesdrop or tamper with network messages to
perform passive or active network attacks.

We consider three typical types of Web sessions: pure HTTPS
sessions, pure HTTP sessions, and hybrid sessions. In a pure
HTTPS session, a Web server uses SSL/TLS cryptographic
protocols to protect all important interactions with an au-
thenticated user, and a user can also authenticate the Web
server by inspecting its certificate. In a pure HTTP session,
a Web server does not provide any transport layer security
protection. In a hybrid session, a Web server uses SSL/TLS
cryptographic protocols to protect the user authentication
process, but it uses both HTTP and HTTPS to serve an au-
thenticated user. Pure HTTPS sessions are supported by
high-security institutions such as banks and credit card com-
panies. Hybrid sessions are used by service providers such
as Yahoo Mail. Pure HTTP sessions are used by websites
that provide less sensitive services. For pure HTTPS ses-
sions, we grant an attacker both the host-level and network-
level capabilities. For hybrid and pure HTTP sessions, we
only grant an attacker the host-level capabilities.

Like previous studies, we assume that a user’s mobile device
is a priori secure. In our design, the simple and explicit com-
munication interfaces between a PDA and a PC further pro-
tect the security of the PDA. Given the prevalence of phish-
ing attacks, we also assume that a user is security conscious
and is able to discern phishing through, for example, inspect-
ing a Web server’s certificate validated by the PDA browser.

Architecture Design
Figure 2 illustrates the high-level architecture of Session-
Magnifier. A user simply installs the SessionMagnifier ex-
tension on a PDA browser; nothing needs to be installed
or configured on a regular PC browser, and no third-party
proxy is required. At the network layer, the PC can access
the PDA via TCP connections. At the application layer, the
regular PC browser communicates with the extended PDA
browser using the HTTP protocol. A user directly uses the
PDA browser to establish a Web session with a remote Web
server. The SessionMagnifier extension is responsible for
synchronizing the latest HTML webpage document from the
PDA browser to the PC browser, and it is also responsible
for accepting interactions initiated from the PC browser and
securely performing these interactions on the PDA browser.

The simple architecture of SessionMagnifier leverages two
important features of modern Web browsers: end-user ex-
tensibility [18, 19] and Ajax (Asynchronous JavaScript and
XML) technology [20]. End-user extensibility allows the
SessionMagnifier browser extension to maximize its capa-
bilities and seamlessly integrate its functionalities with mod-
ern browsers. Ajax technology enables a regular PC browser
to periodically send HTTP requests to SessionMagnifier and
maintain the communication with the PDA browser. End-

Regular PC BrowserExtended PDA Browser

SessionMagnifier Initial Webpage

head

body

Initial

Webpage
Connection

Control

Request Processing

TCP Connection

HTTP Requests

HTTP Responses

Ajax-SnippetRequest Authentication

Regular

Webpage

head

body

Response Generation

Figure 2. SessionMagnifier high-level architecture.

user extensibility is well supported by popular browsers such
as Firefox [18] and Internet Explorer [19], and Ajax technol-
ogy has received wide acceptance among all popular Web
browsers [20]. Therefore, SessionMagnifier can be practi-
cally implemented and deployed on popular Web browsers.

In a kiosk browsing environment, establishing TCP connec-
tions between a PDA and a PC is feasible, and having Inter-
net access for a PDA is also feasible. Using Wi-Fi, a user can
easily establish both types of network connections. If Wi-Fi
is not available, a user can use USB or Bluetooth to enable
TCP connections between a PDA and a PC; meanwhile, us-
ing various Internet access over USB or Internet access over
Bluetooth techniques (e.g., Microsoft ActiveSync), a user
can also easily obtain Internet access for a PDA. Therefore,
SessionMagnifier can be practically used in kiosks.

The SessionMagnifier extension consists of four main com-
ponents: connection control, request authentication, request
processing, and response generation. In addition, it also
contains an initial webpage, which is an HTML file to be
sent to a regular PC browser. We still use the previous moti-
vating example to describe the roles played by the four com-
ponents and the initial webpage in a kiosk browsing session.

Connection Control
When Alice turns on the SessionMagnifier extension installed
on the PDA browser, the connection control component starts
to work. This component uses a server socket to listen for
new incoming connections from a PC. The server socket is
TCP-based so that connections can be directly made from
a regular PC browser. After the server socket binds to the
IP address (e.g., 192.168.1.3, assigned by the kiosk LAN
network) and a TCP port (e.g., 3000) of the PDA, the con-
nection control component will display the URL address of
SessionMagnifier (e.g., http://192.168.1.3:3000) to Alice.

Establishing the connection from a PC browser to the PDA
browser is just like visiting a regular website. Alice simply
types the URL address of SessionMagnifier into the address
bar of the regular PC browser and sends out an initial HTTP
request. When the connection control component of Ses-
sionMagnifier receives this initial HTTP request, it displays
the source IP address of the request in a dialog box and asks
Alice to confirm this connection. This confirmation dialog
box is employed to help Alice make sure that the initial con-
nection request does come from her PC.

128

If Alice accepts this initial connection request, the connec-
tion control component will read the initial webpage and
send it to the PC browser. In an analogy, the initial webpage
of SessionMagnifier is like the homepage of a regular web-
site. The body of the initial webpage is very simple. It pro-
vides a simple form to ask Alice to submit a one-time pass-
word. The head of the initial page mainly contains Ajax-
Snippet, which is a set of XHR (XMLHttpRequest) [20]
related objects and functions. After the initial webpage is
loaded on the PC browser, Ajax-Snippet will periodically
send out “POST” type XHR polling requests to the connec-
tion control component of SessionMagnifier. Ajax-Snippet
sends an XHR polling request and the connection control
component returns a response; therefore, all further commu-
nication between the PC browser and the PDA browser can
be automatically carried out.

If Ajax-Snippet receives a response message that contains a
new webpage document, it will smoothly update the head
and body of the initial webpage to keep the webpage con-
tent on the PC browser synchronized with that on the PDA
browser. Meanwhile, Ajax-Snippet always resides in the
head of the current webpage on the PC browser to maintain
the communication with the PDA browser. Ajax-Snippet
uses “POST” type XHR polling requests so that any inter-
action information such as link clicking or form filling on
the PC browser can be directly piggybacked onto an XHR
polling request and sent to the PDA browser.

Request Authentication
The one-time password mentioned above is generated and
stored by SessionMagnifier on the PDA browser. On the PC
browser, the same password submitted by Alice will not be
transmitted to the PDA; it is just stored and used by Ajax-
Snippet to compute the HMAC (keyed-Hash Message Au-
thentication Code) for each XHR polling request. Before
sending an XHR polling request, Ajax-Snippet computes an
HMAC for the header and content of the request and appends
the HMAC as an additional parameter of the request URI.

When the connection control component of SessionMagni-
fier receives an XHR polling request, it will forward the
request to the request authentication component. The re-
quest authentication component will then compute a new
HMAC for the received request (discarding the additional
HMAC parameter) and compare the computed HMAC with
the HMAC embedded in the request URI. If the two HMACs
are identical, the XHR polling request is regarded as valid
and is further forwarded to the request processing compo-
nent. We use such a request authentication mechanism to
protect the browsing session on the PDA and to ensure that
SessionMagnifier only processes the requests sent from Al-
ice’s PC browser.

Request Processing
When the request processing component receives a valid XHR
polling request, it will perform two tasks: new content check-
ing and interaction information merging. The former is to
check whether new webpage document on the PDA browser
needs to be synchronized to the PC browser. The later is

to check whether a user’s interaction information on the PC
browser needs to be merged to the PDA browser.

SessionMagnifier keeps a timestamp for the latest webpage
document on the PDA browser. A timestamp used by Ses-
sionMagnifier is the number of milliseconds since midnight
of January 1st, 1970. Whenever a new webpage document is
synchronized to the PC browser, the timestamp of the doc-
ument is also sent to Ajax-Snippet using the same response
message. Whenever Ajax-Snippet sends an XHR polling re-
quest to SessionMagnifier, it carries back the timestamp of
the current webpage document on the PC browser using the
same request message.

The request processing component compares the two times-
tamp values to determine whether the webpage document on
the PC browser is outdated. If the timestamp of the webpage
document on the PC browser is older than that on the PDA
browser, the request processing component informs the re-
sponse generation component to synchronize the new web-
page document on the PDA browser to the PC browser. Oth-
erwise, it simply informs the response generation component
to send back an empty response message to Ajax-Snippet.

The request processing component also examines the con-
tent of this “POST ” type XHR polling request to see whether
any interaction information is carried back from the PC browser.
If new interaction information is carried in the XHR polling
request, the request processing component will further ex-
ecute the following four steps to merge the interaction in-
formation to the PDA browser. First, it will accurately re-
flect the interaction information (e.g., form filling informa-
tion) to the corresponding webpage elements on the PDA
browser. Second, it will highlight these webpage elements
and scroll them into the view window of the PDA browser.
Third, it will display a modal dialog box to ask Alice to
verify the highlighted webpage elements. Finally, if Al-
ice confirms that the interaction information reflected on the
PDA browser is what she did on the PC browser, the request
processing component will actually perform the interaction
(e.g., submitting a form) on the PDA browser; otherwise, the
request processing component will undo the changes made
in the first two steps and ignore the interaction information
carried in this XHR polling request. By only performing
confirmed interaction information on the PDA browser, the
request processing component assures a user that important
interaction information is not tampered with or injected by
attackers.

Response Generation
The response generation component is the most critical com-
ponent of SessionMagnifier, and it poses three main design
challenges: (1) how to enable high-quality webpage docu-
ment synchronization from the PDA browser to the PC browser,
(2) how to enable accurate user interaction on the PC browser,
and (3) how to prevent sensitive information from leaking
out of the PDA. When a new webpage document is loaded on
the PDA browser, the response generation component uses
the procedure shown in Figure 3 to generate a response mes-
sage for the PC browser. This procedure consists of four

129

Extended PDA Browser

SessionMagnifier

XML-format

Response

Message

Latest
Webpage

Document

head

tagged body

Modified
Webpage

Document

head

modified

tagged body

Cloned
Webpage

Document

head

tagged body
1

2 3 4

tagging1 2 cloning modifying3 4 generating

Figure 3. Response generation procedure.

main steps: tagging, cloning, modifying, and generating. We
now detail these four steps to explain how we addressed the
design challenges of the response generation component.

(1) Tagging: In the tagging step, the response generation
component adds id attributes to the interested actionable el-
ements of the latest webpage document on the PDA browser.
We define interested actionable elements as the elements on
which keyboard or mouse interactions will trigger the load-
ing of a new webpage document. For example, links, forms,
and clickable input elements outside of the forms are all re-
garded as interested actionable elements.

Tagging allows SessionMagnifier to simply use unique ele-
ment identifiers to accurately track interested actionable ele-
ments on both the PC browser and the PDA browser. By di-
rectly tagging the webpage document on the PDA browser,
the response generation component saves memory space and
avoids the complexity of using any additional mapping mech-
anisms. Note that the response generation component only
tags those interested actionable elements that do not have an
id attribute, so it will not affect the behavior of the webpage
document on the PDA browser.

(2) Cloning: In the cloning step, the response generation
component uses the standard cloneNode DOM (Document
Object Model) method to clone a complete copy of the above
tagged webpage document. Using a cloned webpage docu-
ment has two advantages. One is that standard DOM meth-
ods can still be handily used to modify the webpage. The
other is that any further modification is only made to this
cloned copy without polluting the webpage document on the
PDA browser.

(3) Modifying: In the modifying step, the response gen-
eration component makes three main modifications to the
cloned webpage document: URL address modification, event
handler modification, and sensitive information filtering.

In general, each HTML webpage document has a set of as-
sociated supplementary objects such as stylesheets, images,
and scripts. After loading a webpage document synchro-
nized from the PDA browser, the PC browser must also down-
load the associated supplementary objects in order to ac-
curately render the webpage. To support the downloading
of supplementary objects, the response generation compo-
nent changes all the relative URL addresses contained in the
cloned webpage document to the absolute URL addresses of

the original Web servers. Without such a modification, the
PC browser will send all relative URL requests to the PDA
browser because it actually always connects to the Session-
Magnifier browser extension on the PDA browser.

To track Alice’s interaction with the same webpage on the
PC browser, the response generation component must change
the event handlers of those interested actionable elements.
For form elements, the response generation component changes
their onsubmit event handlers by adding a call to a specific
JavaScript function residing in Ajax-Snippet. Therefore, later
on when Alice submits a form on the PC browser, the id at-
tribute value and element values of the form will be passed
to Ajax-Snippet and then sent back to SessionMagnifier via
an XHR polling request. In a similar way, the response gen-
eration component changes onclick event handlers of links
and other clickable input elements outside of the forms to
track click interactions performed on the PC browser.

Filtering sensitive information is much simpler in Session-
Magnifier than in existing solutions [6, 8, 13, 14]. The main
reason is that SessionMagnifier only synchronizes webpage
documents to the PC browser, and no session control in-
formation such as HTTP cookies will be leaked to the PC.
Therefore, the response generation component only needs to
filter out sensitive information contained in a webpage doc-
ument itself. To achieve this goal, the response generation
component mainly uses the following two strategies.

One is to remove any possibly sensitive information that is
useless to the interaction and display of the webpage on the
PC browser. For example, webpages often contain sensitive
information such as session IDs in their URL links and form
action attributes. The response generation component sim-
ply sets all form action attribute values to empty, and it also
sets all link href attribute values to empty. Note that tracking
form submitting and link clicking is enabled by the above
event handler modifications; therefore, the original action
and href attribute values are useless to the interaction of a
webpage on the PC browser.

The second strategy is to obfuscate personalized sensitive
information. The basic idea is to replace user-specified sen-
sitive information with information that is meaningless to
attackers. For example, many websites display username
information on their webpages for a logged-in user. Pre-
venting the leakage of username information is important
for protecting against attacks such as phishing and password
guessing. SessionMagnifier maintains a rule table, in which
simple filtering rules are defined by a user to specify which
information should be obfuscated for each specific website.
These rules could be defined for stable values (e.g., user-
name), and they could also be defined for dynamic values
(e.g., online banking balance) if the corresponding HTML
elements of those values have stable IDs. The response gen-
eration component simply applies the rules to remove sensi-
tive information contained in the cloned webpage document.

(4) Generating: In the last step, the response generation
component extracts information from the modified webpage

130

document and generates an XML-format response message.
The response message is in XML-format so that later Ajax-
Snippet can accurately extract structured response informa-
tion from the responseXML attribute of an XHR object. The
modified webpage document is an HTML document, but
an XHR object expects to receive a valid XML document.
Since HTML webpages are often malformed, directly send-
ing a modified webpage document to Ajax-Snippet will of-
ten result in parsing errors. Therefore, the response gener-
ation component will extract essential head and body infor-
mation from a modified webpage document, encapsulate the
extracted information in an XML-format response message,
and finally send out the response message to Ajax-Snippet.

Initial Webpage
We mentioned that after the initial webpage is loaded on the
PC browser, Ajax-Snippet will always keep itself within the
head of the current webpage on the PC browser and period-
ically send out “POST” type XHR polling requests to com-
municate with SessionMagnifier.

Whenever Ajax-Snippet receives an XML-format response
message that contains a new webpage document, it will first
use the head information contained in the response mes-
sage to replace the head of the current webpage on the PC
browser. To support proper rendering on different browsers
such as Internet Explorer and Firefox, Ajax-Snippet detects
the type of the PC browser and performs this replacement
for each top-level child of the head element. Ajax-Snippet
will then use the body information contained in the response
message to replace the body of the current webpage on the
PC browser. By combining the structural advantages of us-
ing DOM methods and the simplicity advantages of using
the innerHTML property of HTML elements, Ajax-Snippet
can smoothly and accurately keep the webpage content on
the PC browser synchronized with that on the PDA browser.

Meanwhile, whenever Alice interacts with an interested ac-
tionable element of the synchronized webpage on the PC
browser, a call to a specific JavaScript function is made to
extract the interaction information. The extracted informa-
tion will be carried in the content of the next XHR polling
request and synchronized to SessionMagnifier.

IMPLEMENTATION
The SessionMagnifier browser extension is designed to be
implementable on different Web browsers. Indeed, only the
connection control component is browser-specific; the re-
quest authentication, request processing, and response gen-
eration components and the initial webpage can all be imple-
mented using standard JavaScript and HTML that are sup-
ported by modern Web browsers.

We implemented a full-fledged SessionMagnifier browser
extension for Mozilla’s Fennec browser [23], which is the
mobile version of Firefox and is currently in alpha release.
Similar to Firefox, Fennec provides full support for add-ons
and rich Internet applications. Our SessionMagnifier exten-
sion for Fennec is purely written in JavaScript and HTML.
Due to the space limit, we only briefly describe the imple-

mentation of the connection control component that is spe-
cific to Fennec, and delineate the webpage content and inter-
action synchronization capabilities of SessionMagnifier in
our current implementation.

We implemented the connection control component of Ses-
sionMagnifier as a server socket object of Mozilla’s nsIS-
erverSocket interface. For this server socket object, we cre-
ated a socket listener object of Mozilla’s nsIServerSocketLis-
tener interface to asynchronously accept incoming TCP con-
nections, and we also associated a data listener object of
Mozilla’s nsIStreamListener interface to a connected socket
transport to asynchronously accept HTTP requests. In a Fen-
nec browser extension, these objects can be easily created
and manipulated using JavaScript code to realize the func-
tionality of the connection control component.

For webpage content synchronization, SessionMagnifier sup-
ports various webpages including dynamic webpages (e.g.,
Google Maps) that use Ajax, CSS, or other DHTML tech-
niques. SessionMagnifier detects dynamic webpage changes
on a PDA browser and synchronizes the new content to a PC
browser. In principle, any type of webpage content could
be synchronized by SessionMagnifier. However, the cur-
rent version of SessionMagnifier cannot properly synchro-
nize some webpages such as Gmail webpages due to the
unfinished implementation on iframe elements. For interac-
tion synchronization, our current implementation supports
interactions on those interested actionable elements as de-
fined in our design. However, SessionMagnifier can also
easily synchronize any other interactions (e.g., those altering
document elements without calling for new data) as long as
their corresponding HTML elements support event handlers
(which could be onsubmit, onclick, or any other handlers).
We will provide support for other necessary interactions in
our future implementation.

SECURITY ANALYSIS
The security assurances provided by SessionMagnifier can
be attributed to three factors: using a trusted PDA, accessing
a remote Web server directly from a PDA browser, and en-
forcing strong isolation between a PDA and a PC. We now
analyze the security of SessionMagnifier based on the threat
model and assumptions defined in our design. We must em-
phasize that SessionMagnifier aims to enhance the security
of using an untrusted public computer for Web browsing,
but it does not attempt to secure a kiosk environment itself.
In other words, the security upper-bound of using Session-
Magnifier is equivalent to that of using a user’s own laptop
computer in a kiosk environment.

Using a trusted PDA, SessionMagnifier is robust against in-
put stealing attacks and output stealing attacks. A user sim-
ply enters sensitive information such as username and pass-
word on the PDA browser, so the keyloggers installed on
the PC cannot acquire sensitive input information. Mean-
while, user-specified information is obfuscated by the re-
sponse generation component of SessionMagnifier, so it is
very hard for screen or window capture software installed on
the PC to acquire sensitive output information. The ability

131

of SessionMagnifier to provide these two types of security
assurances is the same as that of other solutions to securing
kiosk browsing sessions [6, 8, 13, 14].

Accessing a remote Web server directly from the PDA browser
is a unique feature of SessionMagnifier because other solu-
tions [6, 8, 13, 14] all use the browser on an untrusted com-
puter to establish a Web session with a remote Web server.
Besides, SessionMagnifier enforces a strong isolation be-
tween a PDA and a PC by only allowing HTTP communica-
tions. Combining these two factors, SessionMagnifier pro-
vides high security assurances to protect against other three
types of attacks: session information stealing attacks, ses-
sion hijacking attacks, and network attacks.

SessionMagnifier is robust against session information steal-
ing attacks. Since SessionMagnifier only synchronizes the
content of a modified HTML document from the PDA browser
to the PC browser, session information such as HTTP cook-
ies will never be leaked to the PC. Meanwhile, since all use-
less values such as form action attribute values and link href
attribute values are simply set to empty by the response gen-
eration component of SessionMagnifier, no session IDs con-
tained in these values will be revealed to the PC. Preventing
the leakage of HTTP cookies and session IDs is important
because an attacker can use them to further steal other sen-
sitive user data or hijack browsing sessions. Unfortunately,
this type of security assurance is not considered in [14], and
it is considered in [6, 8, 13] by employing very complex fil-
tering rules and mapping mechanisms.

SessionMagnifier is robust against session hijacking attacks.
Since a Web session is established between the PDA browser
and a remote Web server, malware installed on the PC can-
not directly seize the control of a session to make fraudu-
lent transactions. The only possible way for an attacker to
hijack a session is to tamper with or inject interaction in-
formation in an XHR polling request. SessionMagnifier de-
fends against such attacks by using its request processing
component to accurately reflect interaction information on
the PDA browser and only perform user-confirmed interac-
tions. Protection against session hijacking is also considered
in [6, 8, 13, 14]. However, because these solutions use the
PC browser to establish a Web session with a remote Web
server, they must perform very complex request validations
but still cannot achieve the same security level as that of Ses-
sionMagnifier.

In terms of network attacks, SessionMagnifier ensures end-
to-end security between a trusted mobile device and a re-
mote Web server by directly using existing HTTPS connec-
tions. For pure HTTPS sessions, SessionMagnifier is robust
against network attacks. For hybrid sessions, SessionMagni-
fier is robust against network attacks for HTTPS webpages.
For pure HTTP sessions, there is no strong incentive to de-
fend against network attacks because in general Web servers
that do not use SSL/TLS only provide less sensitive ser-
vices. Existing solutions [6, 8, 13, 14] provide similar secu-
rity guarantees against network attacks as provided by Ses-
sionMagnifier; however, they often necessitate an additional

SSL/TLS connection or encryption channel still mainly be-
cause they use the PC browser to establish a Web session
with a remote Web server.

EVALUATION
In this section, we focus on evaluating the usability of Ses-
sionMagnifier. We also briefly present the performance and
feasibility evaluation results.

Usability Evaluation
Our primary goal is to measure whether using SessionMag-
nifier is more convenient than merely using a PDA browser.
To achieve this goal, we conducted a usability study based
on a real eBay bidding scenario.

Participants
Twenty-two adults, 11 females and 11 males, participated
in our user study. They were voluntary students and faculty
members recruited from eight degree programs of two uni-
versities. Nineteen participants were between ages of 18 and
30, and three participants were over 30 years old. We did not
screen participants based on experiences using different Web
browsers, using mobile devices, or using eBay services.

Scenario and Procedure
We presented such a scenario to each participant: “Suppose
you want to bid a book titled ‘Xbox 360 games in a nutshell’
at eBay.com. You visit www.ebay.com and sign into an eBay
testing account. You search the book using its title and find
the item. You place a higher bid by adding one dollar and
get confirmation that you are currently the highest bidder.
Finally, you sign out of eBay.”. Note that the book item was
added to eBay using a seller’s account created by us, and the
eBay testing account was also created by us.

We asked each participant to perform this eBay bidding sce-
nario using two procedures A and B. In procedure A, a par-
ticipant only uses a PDA; in procedure B, a participant uses
both a PDA and a PC. We used a Nokia N810 Internet Tablet
as the PDA, and we pre-installed a Fennec browser [23] and
our SessionMagnifier browser extension on it. In procedure
A, each participant used the Fennec browser (with Session-
Magnifier turned off) on the PDA to perform the bidding
scenario. In procedure B, each participant used the Fennec
browser (with SessionMagnifier turned on) on the PDA and a
regular browser on a PC to perform the bidding scenario. We
randomly assigned 11 participants to first perform procedure
A and the other 11 participants to first perform procedure B.
Before a test, we trained each participant on the use of the
PDA and the Fennec browser. We also explained the purpose
of SessionMagnifier, and it seems that all the participants un-
derstood the threats addressed by SessionMagnifier.

We presented the tasks of the two procedures to each partici-
pant. Procedure A has 10 tasks and procedure B has 18 tasks.
Each task is a specific browsing action such as clicking on
the “Sign in” link or typing “Xbox 360 games in a nutshell”
into the “Find” input field. Procedure B has more tasks be-
cause we asked each participant to verify and confirm all the
interaction information sent back to the PDA browser. For

132

The six questions common to both procedures A and B
(replacing the ‘X’ in the questions with ‘A’ or ‘B’)
Q1: Typing into input fields of a webpage in procedure X is easy
Q2: Clicking links of a webpage in procedure X is easy
Q3: Clicking buttons of a webpage in procedure X is easy
Q4: Scrolling a webpage in procedure X is easy
Q5: Viewing webpage content in procedure X is easy
Q6: Overall, performing procedure X is easy
The four questions specific to procedure B
QB1: Typing the URL address http://192.168.1.3:3000 of SessionMagni-
fier into the address bar of a PC browser in procedure B is easy
QB2: Clicking the “Sync On” toolbar button in procedure B is easy
QB3: Verifying a highlighted element (form, link, button) in procedure B
is easy
QB4: Confirming an action (form, link, button) using the dialog box in
procedure B is easy

Table 1. The 16 close-ended questions.

example, after the search (on “Xbox 360 games in a nut-
shell”) performed on the PC browser is reflected on Fennec,
SessionMagnifier highlights the border of the search form
with red color and displays a modal dialog box on the PDA.
Using this dialog box, a participant can either confirm this
form submission by clicking on the “OK” button or ignore
this form submission by clicking on the “Cancel” button.

Data Collection
We collected data through observation and questionnaire.
When a participant was performing the two procedures, we
observed the progress of the tasks. After a participant fin-
ished the two procedures, we asked the participant to answer
a five-point Likert-scale (Strongly disagree, Disagree, Nei-
ther agree nor disagree, Agree, Strongly Agree) [21] ques-
tionnaire. The questionnaire consists of 16 close-ended ques-
tions as listed in Table 1 (Q1 to Q6 were asked for both pro-
cedures). We also asked participants to write down open-
ended comments on using SessionMagnifier.

Results and Analysis
We observed that all the 22 participants successfully fin-
ished the two procedures. We converted the responses to
the Likert-scale questionnaire to numeric values (1=Strongly
disagree, 2=Disagree, 3=Neither agree nor disagree, 4=Agree,
5=Strongly Agree) and compared the responses to proce-
dures A and B using t-tests. Strictly speaking, since the
responses are ordinal data, they do not necessarily have in-
terval scales. However, in practice this type of analysis is
acceptable [2].

Figure 4 illustrates the mean ratings to questions Q1 to Q6
for the two procedures. We can see that for all the six ques-
tions the mean ratings to procedure B are much higher than
those to procedure A. The t-tests (with 95% confidence inter-
val) further reveal that the mean rating differences between
the two procedures are significant for each of the six ques-
tions. These results clearly indicate that SessionMagnifier
enables users to exploit the usability advantages of using the
large keyboard and display of a PC.

Using a similar method, we analyzed the responses to the
four questions specific to procedure B. The mean ratings to

Figure 4. Mean ratings to questions Q1 to Q6.

questions QB1 to QB4 are: 3.96, 4.09, 3.64, and 3.86, re-
spectively. One-sample t-test (with 95% confidence inter-
val) against the test value of three shows that the mean rat-
ings to these questions are higher than three with statistical
significance. These results indicate that performing the spe-
cific interactions introduced in procedure B is not difficult to
users.

We further analyzed participants’ open-ended comments on
using SessionMagnifier. We found that 14 participants clearly
mentioned that typing into input fields and viewing web-
pages are very convenient in procedure B. We also found
that nine participants mentioned that it would be better if
the number of verifying and confirming steps could be re-
duced. We should note that verification and confirmation are
necessary steps for important interactions, and they were or
should be considered in other splitting-trust based solutions.
Moreover, SessionMagnifier allows a user to bypass this ver-
ification and confirmation step using the “Auto On” toolbar
button. In procedure B, we disabled the “Auto On” feature
to measure the worst case usability, but we believe that a
user can actually be trained to use this feature to confidently
bypass less important interactions.

Performance and Feasibility Evaluation
In our performance evaluation, we mainly measured the speed
of SessionMagnifier in response generation (i.e., the pro-
cedure illustrated in Figure 3) and response transmission.
We used Fennec to visit five homepages. The page size
and response generation time (average of five runs) of these
homepages are listed in Table 2. We can see that the larger
and more complex the HTML page is, the more generation
time is needed. Response generation is not very efficient
for large webpages, but we believe that the main reason is
the poor memory management in the current alpha release
of Fennec. Using the Linux top command, we observed
that even without SessionMagnifier, Fennec requires over
107% of memory (128MB RAM) on Nokia N810 Internet
Tablet by just loading the google.com homepage; however,
the built-in browser on Nokia N810 only requires less than
78% of memory even when loading the amazon.com home-
page. We believe that increasing memory or an improved
Fennec can help reduce the response generation time of Ses-
sionMagnifier. In terms of the response transmission speed,
since the PDA and the PC are located in the same LAN,
the generated response message can normally be transmit-
ted from the PDA to the PC within a second.

133

Site Name Page Size (KB) Generation Time (second)
google.com 8.9 0.36
ebay.com 49.5 1.37
bestbuy.com 80.2 2.64
weather.com 148.7 2.71
amazon.com 201.1 3.03

Table 2. Page size and response generation time of five homepages.

In our feasibility evaluation, we mainly tested whether TCP
connections between a PDA and a PC can be established via
Wi-Fi in kiosk environments. We conducted experiments at
20 public places (seven hotels, seven restaurants, three li-
braries, two gyms, and one coffee shop) that offer free Wi-Fi
Internet access. Since some places do not provide public
computers, we used a laptop to act as a public PC. At each
place, we did not do any special configuration on either the
PDA (the Nokia N810 Internet Tablet) or the PC, but just
connected them to the same Wi-Fi access point to acquire
IP addresses. We observed that TCP connections between
the PDA and the PC are blocked (perhaps due to strict secu-
rity restrictions) at three hotels and two restaurants. At the
other fifteen places, the PC can connect to the PDA using a
TCP port (e.g. 3000), and we successfully performed Web
browsing using SessionMagnifier. These results indicate that
it is practical to use SessionMagnifier at many free Wi-Fi
hotspots. Meanwhile, as mentioned in the design section, a
kiosk environment that plans to enable SessionMagnifier can
also use USB or Bluetooth, in addition to Wi-Fi.

CONCLUSION
We presented SessionMagnifier, a simple approach to secure
and convenient kiosk browsing. SessionMagnifier strives to
synthesize the usability advantages of a public computer and
the security advantages of a mobile device. Since a Web ses-
sion is directly established between the PDA browser and a
remote Web server, SessionMagnifier provides a strong end-
to-end security guarantee and greatly reduces the complex-
ity of content and control filtering. Since a user can per-
form the majority of browsing interactions from the PC and
only perform very sensitive interactions from the PDA, Ses-
sionMagnifier enables a user to fully take advantage of the
convenience of using a PC. We presented the design of Ses-
sionMagnifier in detail and analyzed the security of Session-
Magnifier using a rigorous threat model. We implemented
SessionMagnifier for Mozilla’s Fennec browser and evalu-
ated its usability, performance, and feasibility. Our evalua-
tion and analysis demonstrate that SessionMagnifier is sim-
ple, secure, and usable.

In future work, we will enhance the implementation and
evaluation of SessionMagnifier. In particular, we will im-
prove our usability evaluation, for example, by gathering
information about participants’ experience with mobile de-
vices, by allowing participants to use our tool with only basic
instead of step-by-step instructions, by collecting data illus-
trating participants’ thoughts on security aspects of using our
tool, and by incorporating some security attack scenarios.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their valuable sugges-
tions and Tim Kindberg (our shepherd) for his great help in

improving this paper. This work was partially supported by
NSF grants CNS-0627339 and CNS-0627340, and a 2008
Arts & Sciences Graduate Research Grant awarded to the
first author by the College of William and Mary.

REFERENCES
1. D. Balfanz and E. W. Felten. Hand-held computers can be better smart

cards. In Proc. of the USENIX Security Symposium, 1999.

2. S. Chiasson, P. van Oorschot, and R. Biddle. A usability study and
critique of two password managers. In Proc. of the USENIX Security
Symposium, 2006.

3. D. E. Clarke, B. Gassend, T. Kotwal, M. Burnside, M. van Dijk,
S. Devadas, and R. L. Rivest. The untrusted computer problem and
camera-based authentication. In Proc. of the Pervasive Computing,
2002.

4. D. Florencio and C. Herley. Klassp: Entering passwords on a spyware
infected machine using a shared-secret proxy. In Proc. of the ACSAC,
2006.

5. S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang. Trustworthy and personalized computing on public kiosks.
In Proc. of the MobiSys, 2008.

6. R. C. Jammalamadaka, T. W. van der Horst, S. Mehrotra, K. E.
Seamons, and N. Venkasubramanian. Delegate: A proxy based
architecture for secure website access from an untrusted machine. In
Proc. of the ACSAC, 2006.

7. M. Mannan and P. C. van Oorschot. Using a personal device to
strengthen password authentication from an untrusted computer. In
Proc. of the Financial Cryptography, 2007.

8. N. B. Margolin, M. Wright, and B. N. Levine. Guardian: A framework
for privacy control in untrusted environments. Technical Report,
University of Massachusetts, Amherst, 2004.

9. J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the ether: a
framework for securing sensitive user input. In Proc. of the USENIX
Annual Technical Conference, 2006.

10. A. Oprea, D. Balfanz, G. Durfee, and D. K. Smetters. Securing a
remote terminal application with a mobile trusted device. In Proc. of
the ACSAC, 2004.

11. B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention. In
Proc. of the Financial Cryptography, 2006.

12. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual
network computing. IEEE Internet Computing, 2(1):33–38, 1998.

13. S. J. Ross, J. L. Hill, M. Y. Chen, A. D. Joseph, D. E. Culler, and E. A.
Brewer. A composable framework for secure multi-modal access to
internet services from post-pc devices. Mob. Netw. Appl.,
7(5):389–406, 2002.

14. R. Sharp, A. Madhavapeddy, R. Want, and T. Pering. Enhancing web
browsing security on public terminals using mobile composition. In
Proceeding of the MobiSys, 2008.

15. R. Sharp, J. Scott, and A. R. Beresford. Secure mobile computing via
public terminals. In Proc. of the Pervasive Computing, 2006.

16. R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J. Light.
The personal server: Changing the way we think about ubiquitous
computing. In Proc. of the Ubicomp, 2002.

17. M. Wu, S. Garfinkel, and R. Miller. Secure web authentication with
mobile phones. In Proc. of the DIMACS Workshop on Usable Privacy
and Security Software, 2004.

18. https://developer.mozilla.org/en/Extensions.

19. http://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx.

20. http://en.wikipedia.org/wiki/Ajax (programming).

21. http://en.wikipedia.org/wiki/Likert scale.

22. 5 safety tips for using a public computer.
http://www.microsoft.com/protect/yourself/mobile/publicpc.mspx.

23. Fennec. https://wiki.mozilla.org/Fennec.

134

	Introduction
	Related Work
	Securing Application or Data Access
	Securing User Authentication or Input
	Verifying Software Integrity
	Securing Web Browsing Sessions

	Design
	A Motivating Example
	Threat Model and Assumptions
	Architecture Design
	Connection Control
	Request Authentication
	Request Processing
	Response Generation
	Initial Webpage

	Implementation
	Security Analysis
	Evaluation
	Usability Evaluation
	Participants
	Scenario and Procedure
	Data Collection
	Results and Analysis

	Performance and Feasibility Evaluation

	Conclusion
	Acknowledgments
	REFERENCES

