
Detecting VoIP Floods Using
the Hellinger Distance

Hemant Sengar, Student Member, IEEE, Haining Wang, Member, IEEE,

Duminda Wijesekera, Senior Member, IEEE, and

Sushil Jajodia, Senior Member, IEEE

Abstract—Voice over IP (VoIP), also known as Internet telephony, is gaining market share rapidly and now competes favorably as

one of the visible applications of the Internet. Nevertheless, being an application running over the TCP/IP suite, it is susceptible to

flooding attacks. If flooded, as a time-sensitive service, VoIP may show noticeable service degradation and even encounter

sudden service disruptions. Because multiple protocols are involved in a VoIP service and most of them are susceptible to flooding,

an effective solution must be able to detect and overcome hybrid floods. As a solution, we offer the VoIP Flooding Detection

System (vFDS)—an online statistical anomaly detection framework that generates alerts based on abnormal variations in a selected

hybrid collection of traffic flows. It does so by viewing collections of related packet streams as evolving probability distributions and

measuring abnormal variations in their relationships based on the Hellinger distance—a measure of variability between two probability

distributions. Experimental results show that vFDS is fast and accurate in detecting flooding attacks, without noticeably increasing call

setup times or introducing jitter into the voice streams.

Index Terms—VoIP, flooding attacks, Hellinger distance.

Ç

1 INTRODUCTION

IP telephony, commonly known as Voice over IP (VoIP),
provides a viable alternative to Public Switched Tele-

phones (PSTNs). As its deployment spreads, VoIP is likely to
become a prime target of attacks, of which flooding lists high,
perhaps due to its simplicity and the abundance of tool
support. Since VoIP is a time-sensitive service, flooding can
easily deteriorate the perceived quality of voice services
(QoS), and even cripple down the devices in the path from
caller to callee, such as IP telephones, SIP proxy servers, and
softswitches.

Unlike the majority of Internet services, nonproprietary
VoIP services use many protocols to control calls and deliver
audio streams, such as the Session Initiation Protocol (SIP) [26]
for call setup and teardown and the Real-time Transport
Protocol (RTP) [28] to deliver voice packets, etc. Because
packet floods can be generated for any combination of
protocols used for VoIP, a defense mechanism that can detect
hybrid (or polymorphic) packet floods is desired. Also, due
to the time-sensitive nature of the application, such a
mechanism must not introduce noticeable timing delays to
transaction-like control flow or jitters to audio streams.

As a solution, we propose a statistical abnormal behavior
detection mechanism called VoIP Flooding Detection System

(vFDS), which is suitable for detecting hybrid packet floods.
vFDS is based on the simple observation that despite
the burstiness of packet-level Internet traffic (including VoIP
traffic), transaction-like control traffic generated by the VoIP
protocol suite still maintains the inherent attribute correla-
tions. In general, vFDS learns and quantitatively tracks such
relationships among chosen attributes of VoIP packet
streams, and raises an alarm for observed significant
deviations, which alert an onset of a flooding attack.

In order to quantify the correlations between chosen
attributes, vFDS views such packet streams as unfolding
data belonging to some sample space of a probability
distribution and uses the Hellinger distance (HD) [23]—a
metric that quantifies the deviation between two probability
measures. Compared to other distance measures, the
selection of HD is due to the following three reasons: 1) it
is not computationally intensive, 2) it does have a natural
lower and upper bounds of 0 and 1, respectively, and 3) it is
based on the proportion of the protocol attributes. We
validate the effectiveness of vFDS using Internet and VoIP
traffic traces. Our experimental results demonstrate that
vFDS can achieve high detection accuracy with a short
detection time while introducing no perceivable delay to
call setup times and perceptible jitter to audio streams,
utilized by a host of SIP-controlled VoIP protocols.

Previous protocol-behavior-based solutions [25], [35],
[36] are limited in their capabilities, mainly because they
have been custom-crafted for a specific protocol and
accordingly track selected protocol attribute pairs specific
to that protocol. For example, Reynolds and Ghosal’s [25]
ALAS and TLAS used the difference between {INVITE,

200 OK} and {SYN, ACK} attribute pairs for detecting
INVITE and SYN flooding attacks, respectively (that is,
request for opening connections in SIP and TCP that do not
complete). Wang et al. [35] used the {SYN, FIN} pair for

794 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

. H. Sengar, D. Wijesekera, and S. Jajodia are with the Center for Secure
Information Systems, George Mason University, 4400 University Drive,
Fairfax, VA 22030. E-mail: {hsengar, dwijesek, jajodia}@gmu.edu.

. H. Wang is with the Department of Computer Science, College of William
and Mary, PO Box 8795, Williamsburg, VA 23187.
E-mail: hnw@cs.wm.edu.

Manuscript received 10 May 2007; revised 31 Aug. 2007; accepted 18 Sept.
2007; published online 27 Sept. 2007.
Recommended for acceptance by A. Boukerche.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-05-0149.
Digital Object Identifier no. 10.1109/TPDS.2007.70786.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

SYN flooding attack detection. These solutions—being
custom crafted for each individual pair of packets—are
not sufficiently generic for detecting mixed traffic floods
with many such pairs such as ({INVITE, 200 OK}) and
({SYN, FIN}). Consequently, they cannot detect poly-
morphic flooding attacks launched with hybrid traffic
streams.

Another potential detection mechanism, namely, bench-
marking correct protocol behavior on IP telephony, does not
work either, because many observed RTP-based voice
streams do not show patterns at the packet level. Moreover,
research shows that modeling phone call arrivals as a
random process with a deterministic time-varying arrival
rate is not possible [9], [18].

The remainder of this paper is structured as follows:
Section 2 briefly describes the background of this study.
Section 3 presents the threat model. Section 4 describes the
system design of vFDS. Section 5 profiles normal protocol
behaviors and discusses the inherent correlation among
protocol attributes. Section 6 shows how to compute HD for
different traffic streams. Section 7 evaluates the perfor-
mance of vFDS. Section 8 discusses the impact of vFDS
upon the quality of VoIP services. Section 9 surveys related
work, and Section 10 concludes the paper.

2 BACKGROUND

2.1 SIP-Based IP Telephony

SIP [26], running as the standard signaling protocol for
VoIP at the application layer, is used to set up, modify, and
tear down multimedia sessions between two or more
participants. Sometimes referred to as the SS7 of future
telephony [17], it transmits the message body in clear text.
SIP call control uses the Session Description Protocol (SDP)
[14] for describing multimedia sessions.

2.1.1 SIP Architectural Components

SIP-based telecommunication architectures have two kinds
of elements: end devices, referred to as user agents (UAs),
and SIP servers. Irrespective of being a software or hardware
phones, UAs combine two subentities: the connection
requester referred as the UA client (UAC) and the connec-
tion request receiver referred to as the UA server (UAS).
Consequently, during a SIP session, both UAs switches back
and forth between the UAC and UAS functionalities. RFC
3261 [26] describes four types of SIP-implementation-
dependent logical servers: Location Servers, Redirect Servers,
Registrar Severs, and Proxy Servers.

2.1.2 SIP Messages and Operations

Influenced by two widely used Internet protocols, namely,
the Hypertext Transfer Protocol (HTTP) [12] and the Simple
Mail Transfer Protocol (SMTP) [19], SIP messages consisting
of request-response pairs are exchanged for a call setup. The
SIP request are also called methods, and there are six of
them (INVITE, ACK, BYE, CANCEL, REGISTER, and
OPTIONS) described in [26]. Other methods are proposed
as the extensions of the original six methods. For each
request of a UAC, SIP server (or UAS) generates a SIP
response. Each response message is identified by a numeric
status code.

Fig. 1 shows a typical message flow for a call setup
between UAC UA-A and UAS UA-B. Assuming that the

two UAs belong to different domains with their own proxy

servers, UA-A’s proxy server uses its Domain Name Service

to locate a proxy server for UA-B. After obtaining the

IP address of UA-B’s proxy server, UA-A’s proxy server

sends an INVITE request to the latter with UA-B’s name. In

response, UA-B’s proxy server consults a location service

database to find out the current location of UA-B and

forwards the INVITE request to the UA-server residing

on UA-B’s SIP phone. Exchanging INVITE, 200 OK, and

ACK messages completes the three-way handshake and

establishes a SIP session. Then, an SDP compliant set of

parameters is exchanged in SIP message bodies and finally

establishes an RTP stream to exchange audio data.
SIP proxy servers have no media capabilities and only

facilitate the two end points (that is, IP telephones) to

discover and contact each other through SIP signaling. Once

the end points have been located, the media flows directly

between UAs without going through proxies using a path

independent of the one used by SIP signals.
At the end of the call, one party hangs up, resulting in

that party’s agent sending a BYE message to terminate

the session and receiving a 200 OK response from its

counterpart. This example shows the basic functionality of

SIP, described in more detail in RFC 3261 [26].

2.2 Placing the vFDS in an Enterprise IP Telephone
Network

Current enterprise VoIP networks consist of a network

interior and a demilitarized zone (DMZ), as shown in Fig. 2.

The DMZ may contain many servers, including a SIP proxy

server. Under the assumption that most VoIP attacks come

from outside the enterprise network, because of the need to

inspect all VoIP traffic flowing through the enterprise

(including the DMZ), vFDS is strategically located between

the edge router and the firewall, as shown in Fig. 2. This

placement of vFDS also obviates the need for flood

detection mechanisms at individual SIP entities. In a

practical deployment, vFDS can be transparently interposed

at either an edge router or a firewall and be implemented as

a loadable module of the router or the firewall.

SENGAR ET AL.: DETECTING VOIP FLOODS USING THE HELLINGER DISTANCE 795

Fig. 1. SIP call setup example.

Note that vFDS is complementary to the existing
VoIP cryptographic security mechanisms. Since vFDS is in
the proximity to the SIP proxy server, the inspection of the
SIP header should not be a problem. Moreover, although
the voice stream is encrypted from end to end, we only
count the number of RTP packets and do not examine
its contents.

3 THE THREAT MODEL

As stated, an enterprise VoIP service may receive hybrid
packet floods for many protocols, but our analysis is
focused on (SYN)-, (INVITE)-, and RTP-related floods,
belonging to transport and applications layers carrying call
control and audio packets.

3.1 Transport-Layer Floods

The transport layer carries SIP signals over TCP, SCTP, or
UDP, while RTP-based media streams over UDP. Conse-
quently, the effect on SIP-based VoIP due to transport-level
floods is indirect. Although both TCP and UDP are
susceptible to flooding attacks, being stateless, UDP is less
vulnerable to floods than TCP. However, SIP’s reliability
mechanism used in UDP transportation makes it suscep-
tible to UDP floods too.

At the transport layer, there are numerous protection
devices from many different vendors. Most of these
protection mechanisms are based on rate-limiting solutions
and maintaining the flow-level (source-destination) relation-
ship. These data-centric solutions are prone to DoS attacks
and are not scalable to voice carrier networks. It is important
to note that between the source (caller) and the destination
(callee), only few signaling messages are exchanged.
Compared with a brute-force UDP flooding attack, it is
much easier for an attacker to succeed a SIP flooding attack
with much less effort (that is, by generating much less
flooding SIP traffic to knock down a SIP proxy). That is the
major reason why we still need SIP-level detection at the
application layer.

3.2 Application-Layer Floods

As mentioned, SIP and RTP are the application-level
protocols we consider. SIP entities are susceptible to
two kinds of flooding attacks: The first directs bogus traffic
to exhaust resources, and the second exploits protocol
vulnerabilities. Being transactional due to having (request,
response) pairs, SIP agents have to maintain a transactional
state until the transaction completes or the receiving agent
times out. For example, a SIP proxy can optionally maintain
an INVITE transaction state up to 3 minutes [26]. Similarly,

when a UAS conditionally accepts an INVITE request, it can

generate an 2XX response and wait for an ACK while

maintaining its state. Additionally, unlike PSTN, IP phones

can generate simultaneous multiple call requests, such as

four using the ZIP 4�4 phone by Zultys Technologies [39]

and nine using the Alti-IP 600 phone by AltiGen

Communications [3], making it easy to create INVITE

request floods with few phones. Thus, stateful proxies and

UASs can be easily flooded.
RTP delivers live media streams between callers and

callees. An RTP flooding attack exploits the vulnerabilities

of the media path to deteriorate the perceived voice

quality. This attack is created by sending a barrage of

fabricated RTP packets without following any media

encoding scheme, with the objective of exhausting the

available bandwidth and sometimes making IP phones

dysfunctional.

4 THE VFDS DESIGN

In general, vFDS detects anomalies in collections of packet

streams, going through a cyclic behavior consisting of

two phases: the training and testing phases. As shown in

Fig. 3, during the training phase, the training data set

consisting of the attribute set is collected over n sampling

periods of duration 4t over a normal traffic stream. This

initial training data set is assumed to be devoid of any

attacks and acts as a base for comparing with the next

ðnþ 1Þth periods of the testing data set. Using the soon-to-

be-described HD, we measure the distance between these

two data sets. If the measured distance exceeds a threshold,

an alarm is raised; otherwise, the testing data set is

included in the immediately preceding ðn� 1Þ sampled

traffic data to derive a new training data set. This moving

window mechanism helps the training data set to adapt

with the dynamics of network traffic. In order for this

design to work, the following three parameters are

computed online:

1. The probabilistic distribution for training data. This is
computed as the ratio of packets that satisfy the
feature to the total number of packets received
during the training phase. Section 5 describes the
details of how these are computed for TCP, SIP,
and RTP.

2. The probabilistic distribution for testing data. This is
computed as averages during the time window
immediately following the training period, again as
a ratio of packets satisfying the chosen feature to the
total number of packets, whereas the deviation of
the two probability distributions are computed using
the (soon-to-be-described) HD.

796 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Fig. 2. Enterprise IP telephony network.

Fig. 3. Relationship between training and testing periods.

3. The threshold of deviation to distinguish normal
behavior from the abnormal behavior. This is used to
compute a dynamic threshold as the computation
progresses through cycles of training and testing
phases, using Jacobson’s fast deviation computing
algorithm [16].

4.1 Hellinger Distance

Hellinger distance presents an intrinsic way to estimate the
distances between probability measures independent of the
parameters. It is closely related to the total variation distance

[23] but with several advantages. To explain this, let IP
and QQ be two probability distributions on a finite sample
space �, where IP and QQ on � are N-tuples ðp1; p2; . . . ; pNÞ
and ðq1; q2; . . . ; qNÞ, respectively, satisfying (in)equalities
p� � 0, q� � 0,

P
� p� ¼ 1, and

P
� q� ¼ 1. Then, the HD

between IP and QQ is defined as

d2
HðIP;QQÞ ¼

1

2

XN

�¼1

ð ffiffiffiffiffip�p � ffiffiffiffiffi
q�
p Þ2:

The HD satisfies the inequality 0 � d2
H � 1, and d2

H ¼ 0

when IP ¼ QQ. Disjoint IP and QQ shows the maximum

distance of one. Sometimes, the factor 1
2 is not used in the

above equation. A related notion is the affinity between

probability measures, which is defined as

AðIP;QQÞ ¼ 1� d2
HðIP;QQÞ ¼

XN

�¼1

ffiffiffiffiffiffiffiffiffiffi
p�q�
p

:

The affinity between two probability measures IP and QQ

is one (that is, A ¼ 1) if they are equal and zero if the
measures are totally different. Further details on HD can be
found in [23] and [11].

4.1.1 Measuring Protocol Deviations Using the Hellinger

Distance

In order to detect protocol violations, depending upon the
protocol to be observed and a collection of potential attacks
that can launched against it, we select and track the
distribution of a (small) set of attributes. Suppose we
choose N attributes of a protocol, which satisfy p�, q� � 0,P

� p� ¼ 1, and
P

� q� ¼ 1. Here, � represents an attribute in
the chosen set of N attributes. Probability measure IP is
defined over the training data set, whereas probability
measure QQ is defined over the testing data set. Both IP and
QQ are hypothesized to be an array of the normalized
frequencies of all N attributes.

4.2 Detection Threshold

Normal attribute behaviors also change with time, although
the strong attribute correlation makes the fluctuation of its
dynamics much less than that of traffic behaviors. To
accurately keep track of the normal attribute behaviors, we
use a dynamic threshold for detection. Such a dynamic
setting of threshold will make an attack harder to evade. We
employ the stochastic gradient algorithm to compute the
dynamic threshold based on the HD observed during the
previous training period. Our threshold is an instance of
Jacobson’s Fast algorithm for RTT mean and variation [16]. Fast

estimators for average a and mean deviation �, given
measurement m, can be computed as

Err ¼ mn � an�1; ð1Þ

an �an�1 þ g:Err; ð2Þ

�n ��n�1 þ h:ðjErrj � �n�1Þ; ð3Þ

where mn is the current sample of the HD, an�1 and an are
the previous and current smoothened Hellinger distances,
respectively, and �n�1 and �n represent the previous and
current mean deviations. To make the computation effi-
cient, g and h are chosen to be negative exponents of two.

Here, we use the values g ¼ 1
23 and h ¼ 1

22 , as previous

research suggested [31, Chapter 21]. Although the original g
and h are used in the context of RTT measurement, the
underlying principles of both cases are the same: based on
the past and present values, we attempt to predict the
future values. The smoothened HD an is based on the
observed HD m, which is measured between the probability
measures IP and QQ. During the testing periods, we derive
the estimated threshold HD ðHDthresh:Þ using the smooth-
ened HD (2) and the mean deviation (3):

HDthresh:
nþ1 ¼ X � an|fflfflffl{zfflfflffl}þ � � �n|fflffl{zfflffl} : ð4Þ

The purpose of the multiplication factors X and � is to
get a safe margin for the setting of the threshold value, so
that vFDS avoids any false alarms without degrading its
detection sensitivity. The first factor in (4), which largely
depends upon the observed HDs, should be large enough to
make the first part of (4) higher than the maximum
observed HD, whereas the second factor is tied with
the variations of these observed Hellinger values. These
two factors are adjustable parameters and can be properly
tuned during the training period.

5 PROFILING NORMAL PROTOCOL BEHAVIORS

We use real Internet traces and the VoIP traces obtained
from our testbed to experimentally profile normal protocol
behaviors.

5.1 Benchmarking TCP Behavior

To study the TCP attribute behaviors, we choose two sets of
traces representing real-life Internet traffic at the exchange
points that connect stub networks to the Internet. The
collection times of the two sets of traces are deliberately
chosen to be 10 years apart, to demonstrate the invariant
nature of the TCP attribute behaviors, irrespective of
changing Internet traffic. The first set of traces (with
bidirectional traffic) were gathered from the Front Range
GigaPOP (FRGP) [21], where one trace (FRGP-1) was
originally collected on Saturday, October 1, 2005, and the
other (bidirectional) trace (FRGP-2) was collected on
Tuesday, November 1, 2005. We intend to have FRGP-1
and FRGP-2 to be one month apart to further demonstrate
the existence of the inherent correlation among protocol
attributes. The second set of trace is the collection of
1 hour’s worth of Wide Area Network (WAN) traffic
between the Digital Equipment Corporation (DEC) [8] and the

SENGAR ET AL.: DETECTING VOIP FLOODS USING THE HELLINGER DISTANCE 797

rest of the Internet. The trace ran from 22:00 to 23:00 on
Wednesday, March 8, 1995. Both these traces are bidirec-
tional. We parse the traces and extract SYN, SYN-ACK, FIN,
and RST packets from the TCP streams.

Fig. 4 illustrates the behaviors of the SYN, SYN-ACK,
FIN, and RST attributes of the TCP streams in FRGP-1,
FRGP-2, and DEC, respectively. In the normal TCP
handshake process, for each SYN request from the client,
there is one SYN-ACK response from the server. However,
Fig. 4, does not show an exact one-to-one mapping between
SYN and SYN-ACK. The curve of SYN is clearly above that of
SYN-ACK. Some plausible reasons for this observed dis-
crepancy are SYN losses and consequent retransmissions
thereof, perhaps due to a dead or heavily overloaded server
that does not generate SYN-ACKs in return. Also, under
normal conditions, a TCP connection starts with a SYN

packet and is torn down by the two exchanging FIN

packets, due to the back and forth exchange between the
client and the server during connection termination.
However, our observations in Fig. 4 shows that the FIN

curve lies above the SYN curve but not always at twice the
height of the SYN-ACK curve. This discrepancy can be
attributed to the fact that not every observed SYN-ACK

leads to an established TCP connection, and also, an RST

packet can terminate an established TCP connection with-
out generating any FIN packets.

5.2 Benchmarking SIP Behavior

In order to study the attribute behaviors of VoIP traffic, we
build a testbed including SIP proxy servers and SIP-based

soft-phones. The testbed consists of four PCs (500-MHz
Pentium III CPU with 128 Mbytes of RAM) equipped with
Linux operating system acting as SIP clients, SIP servers,
and routers. Fig. 5 illustrates the layout of the testbed, in
which we generate VoIP traffic and evaluate the perfor-
mance of vFDS. Enterprise networks A and B are simulated
by two different PCs equipped with SIP traffic generators
playing the role of multiple UACs attempting to call UASs
in the enterprise network C.

The average call generation rate is 50 calls per second,
with the lowest call rate being 25 calls per second and the
peak call rate being 70 calls per second. The talking time is set
to 60 seconds. The voice codec algorithm used is
G.711 (50 packets per second (PPS)). The WAN emulator
NISTNet [5] connects networks A and B to network C using
multiple 100-Mbps Ethernet links. NISTNet runs on a
Linux router where the packet delay distribution, conges-
tion, loss, and bandwidth are configurable. We set the
Internet delay to 50 ms and the packet loss rate to 0.42 percent
in our experiments. We use the Network Time Protocol
(NTP) to synchronize the time of clients with that of the
NISTNET server. SIP signaling messages are carried by UDP.
SIP timer T1 plays a significant role in packet retransmission.
We set T1 to 500 ms, which is recommended by the
SIP standard considering the normal end-to-end delay over
the Internet. The experimental run lasted an hour.

Fig. 6 plots the observed SIP attribute behaviors at the
SIP proxy server of the enterprise network C. As shown in
Fig. 6, the 200 OK

1 and ACK curves closely overlap with
each other, whereas there are occasional small gaps
between them. During the 1-hour run, we observe
3,545 200 OK and 790 BYE retransmissions. In addition,
there are 109 time outs. Because of these time outs and
retransmissions, the strict one-to-one mapping between
INVITE and other SIP messages such as 200 OK, ACK, and
BYE is violated. However, strong positive correlations
between INVITE, 200 OK (in three-way handshake), ACK,
and BYE messages are shown in Fig. 6.

5.3 Benchmarking RTP Behavior

Compared to TCP and SIP, RTP does not have an inherent
transactional behavior to observe in the form of message or
packet pairs. At the application layer, we can only observe the

798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

1. Here, the 200 OK messages are those in the three-way handshake
phase only.

Fig. 4. TCP attribute behaviors in various traces. (a) FRGP-1. (b) FRGP-2. (c) DEC.

Fig. 5. Layout of the SIP-based VoIP testbed.

number of RTP packets received per time unit. Based on those
RTP packets passing by, we define two attributes, ntheoretical
and nobserved, for a virtual RTP stream and an observable RTP
stream, respectively. The caller’s media stream attribute
ntheoretical provides a base for comparison withnobserved (that is,
the observed number of packets in a real RTP stream), where
both attributes represent the number of packets in a given
time interval. At the application layer, vFDS computes the
value of nobserved by counting the number of incoming
RTP packets for each voice stream that is identified by the
destination (IP address, port number) combination. To
determine the value of ntheoretical, we need to incorporate the
communication between the SIP and RTP state machines [30].
Because it monitors all packets for each call, vFDS can fulfill
this requirement. The call control (SIP) and media delivery
(RTP) protocols are synchronized by exchanging the syn-
chronization messages for critical events in the established
sessions. Media attributes such as the format, the encoding
algorithm, and the sampling rate that are included in the
SIP message body are accessible to the RTP state machine via
the SIP state machine. Note that the renegotiations through
INVITE messages are also taken into account. Suppose that
the media information for a caller is

hv:media format ¼ audio; v:media encoding ¼PCMU

ðthat is G:711Þ; v:sampling rate ¼ 8;000i:

Then, the number of packets per second without enabling
voice activity detection is 50, and the voice payload size is
160 bytes with the codec sample interval of 10 ms. Thus, the
value of the ntheoretical attribute for this particular media
stream is 50 PPS.

Inside the enterprise network, all these individual media
attributes for the callers can be integrated together as shown
in the following equation, instead of keeping track of the
ntheoretical attribute for each caller’s RTP stream individually:

ntheoretical ¼
XN

i¼1

nitheoretical:

In the equation above, there are nitheoretical packets in
virtual stream i among N total number of open virtual

streams during the 4t time period. That models N active
calls, each with its own incoming RTP stream and each
stream with its own negotiated media encoding scheme.

In order to observe the RTP attribute distribution, we
assume that UACs use G.711 (that is, ntheoretical ¼ 50 PPS)
codec algorithm. Fig. 7 shows one instance of the simulated
RTP stream trace with 3 percent duplicate (that is, excess)
packets. In this example, we have considered only one
incoming media RTP stream, but it could be generalized to
include any number of RTP streams.

5.4 Inherent Attribute Correlation

As seen, collected traces do not show the ideal one-to-one
mapping between protocol attributes. The observed dis-
crepancy is due to prevailing network conditions such as
packet droppings and retransmissions. However, in spite of
traffic diversity, at any instant of time, the strong correla-
tions between protocol attributes are clearly held in traces.
The distances between attributes (that is, intrinsic correla-
tion) do not vary much with the change of time and have an
observable correlation with the total number of packets.

6 COMPUTING HELLINGER DISTANCES

We analyze traffic and classify packets, first, at the transport
layer and, then, at the application layer. The data sampling
duration at both protocol layers are set to 4t, which
determines both the detection resolution of flooding attacks
and the computational overhead of vFDS.

6.1 Data Sampling

Most TCP connections last for 12 to 19 seconds [34],
whereas IP phone calls last much longer: 50 percent of
calls complete around 1 minute, and 10 percent of calls
last even longer than 10 minutes [33]. Consequently, in
order to correlate a SYN with the FIN(RST) of the same
connection and an INVITE with the corresponding BYE,
the sampling window size needs to be 19 seconds and
1 minute, respectively. Fortunately, our detection mechan-
ism is not sensitive to individual per-flow state information
and is based only on the correlation between aggregated
SYNs to the corresponding FINs(RSTs) and the
aggregated INVITEs to the corresponding BYE(CANCEL)

messages. In our detection scheme, we set the sampling
period to 10 seconds to achieve high detection resolution
and relatively low CPU overhead. In addition to the
sampling period4t, the HD also depends upon the training
period ðn � 4tÞ. A longer training period provides a more
accurate distance, whereas a shorter training period adapts

SENGAR ET AL.: DETECTING VOIP FLOODS USING THE HELLINGER DISTANCE 799

Fig. 6. SIP attribute behaviors.

Fig. 7. RTP attribute behaviors.

quicker to the changing dynamics of network traffic. To
balance the accuracy and responsiveness, we set the
training period to 120 seconds (that is, n ¼ 12 samples) in
all of the traces and obtained the results in Fig. 8.

6.2 Computing the Hellinger Distance for TCP

In this experiment, we choose four attributes SYN, SYN-ACK,
FIN, and RSTactive belonging to TCP packets and apply the
threshold filter in [35] to filter out RSTpassive from observed
RSTs. Henceforth, we do not distinguish between RST and
RSTactive packets.

Now, suppose that there are NSYN, NSYN�ACK, NFIN,
and NRST packets during the training period (that is, in
n � 4t time). IP is an array of the normalized frequencies of
pSYN, pSYN�ACK, pFIN, and pRST over the training data set,
and QQ is an array of the normalized frequencies of qSYN,
qSYN�ACK, qFIN, and qRST of the same attributes observed
over the testing period (that is, at the ðnþ 1Þth sampling
duration), defined as follows:

p� ¼N�=NTotal;

where � 2 fSYN; SYN� ACK; FIN; RSTg; and

NTotal ¼ ðNSYN þNSYN�ACK þNFIN þNRSTÞ;
q� ¼N 0�=N 0Total;

where � 2 fSYN; SYN� ACK; FIN; RSTg and

N 0Total ¼ ðN 0SYN þN 0SYN�ACK þN 0FIN þN 0RSTÞ:

The HD between IP and QQ at the end of ðnþ 1Þth
sampling period is computed as follows:

HD1 ¼ð
ffiffiffiffiffiffiffiffiffiffi
pSYN
p � ffiffiffiffiffiffiffiffiffiffi

qSYN
p Þ2 þ ð ffipSYN�ACK

p � ffi
qSYN�ACK
p Þ2

þ ð ffiffiffiffiffiffiffiffiffipFIN
p � ffiffiffiffiffiffiffiffiffi

qFIN
p Þ2 þ ð ffiffiffiffiffiffiffiffiffiffipRST

p � ffiffiffiffiffiffiffiffiffiffi
qRST
p Þ2:

Fig. 8 shows the plot of HD for the DEC trace taking all
four attributes at the same time. Throughout the 1-hour
duration, the TCP attribute behavior of the DEC trace
shows a remarkable similarity with time, given the fact
that an HD of zero (that is, HD ¼ 0:0) represents the same
probability measures. The DEC trace sample has an
average low distance of 0.007 and a maximum distance
of 0.064.

6.3 Computing the Hellinger Distance for SIP

We choose to experiment with SIP attributes INVITE,

200 OK, ACK, and BYE. Here, the probability measure IP

is an array of the normalized frequencies of pINVITE,

p200 OK, pACK, and pBYE over the training data set.

Similarly, QQ is an array of qINVITE, q200 OK, qACK, and

qBYE during the chosen testing period. All other details

are similar to the previous example. To calculate the HD

between IP and QQ, we use

HD ¼ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipINVITE
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qINVITE
p Þ2 þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffip200 OK

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q200 OK
p Þ2

þ ð ffiffiffiffiffiffiffiffiffiffiffipACK
p � ffiffiffiffiffiffiffiffiffiffi

qACK
p Þ2 þ ð ffiffiffiffiffiffiffiffiffiffipBYE

p � ffiffiffiffiffiffiffiffiffiffi
qBYE
p Þ2:

Fig. 9 shows the HD for the SIP attribute set of {INVITE,

200 OK, ACK, BYE}. The maximum distance observed is

8 � 10�3, and the average distance for the entire run is

0:9 � 10�3. Such a low value of HD indicates the closeness

between the training and observed traffic behaviors.

6.4 Computing the Hellinger Distance for RTP

In this experiment, we choose RTP and its derived

attributes ntheoretical and nobserved. The probability measure

IP at time t ¼ 0 is

ptheo: ¼ntheoretical=ðntheoretical þ nobservedÞ;
pobs: ¼nobserved=ðntheoretical þ nobservedÞ;

where both ntheoretical and nobserved are initialized to 50 PPS,

thus giving the values of ptheo: ¼ pobs: ¼ 1=2. IP remains

constant for the subsequent sampling periods, except when

it is changed by a SIP re-INVITE message (that is, change

of media encoding scheme). The QQ for each testing period

4t is calculated as

qtheo: ¼ntheoretical � 4t=ðntheoretical � 4tþ nobservedÞ;
qobs: ¼nobserved=ðntheoretical � 4tþ nobservedÞ:

nobserved is the actual number of RTP packets observed for

a particular voice stream during the 4t time period. At the

800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Fig. 8. HD of TCP attributes. Fig. 9. HD of SIP attributes.

end of the first sampling period, the HD for the caller’s
media stream is computed as

HD1 ¼ ð
ffiffiffiffiffiffiffiffiffiffi
ptheo:
p � ffiffiffiffiffiffiffiffiffiffi

qtheo:
p Þ2 þ ð ffiffiffiffiffiffiffiffiffipobs:

p � ffiffiffiffiffiffiffiffi
qobs:
p Þ2:

For the subsequent testing periods, the HD is computed
by changing only the values of qtheo: and qobs: for that
particular 4t. Fig. 10 shows the observed HDs for an
RTP stream trace with 3 percent duplicate packets, showing
observed distances in the order of ’ 10�4.

7 DETECTION ACCURACY AND TIME OF THE VFDS

In this section, we evaluate detection accuracy and response
times of vFDS. Note that with the proper setting of
threshold values, there will be no false alarm (that is, false
positive) under normal conditions. We define the detection
probability as the percentage of the successful identified
attack instances over the total launched attacks.

7.1 Detecting SYN Flooding Attacks

We use a proprietary SYN flooder program to generate
SYN flood attack traffic as done so in the previous
experiment reported in [7]. The quoted experiment showed
that a minimum of 500 SYNs per second is required to
overwhelm a server.

Our detection mechanism is designed to work with a
lower bound of flooding attacks of 500 SYNs per second.
We have used the DEC trace as the normal background
traffic (see Fig. 4). The flooding traffic of various rates
(50-500 SYNs per second) is mixed with the above normal
background traffic. The flooding duration in all the
experiments is assumed to be 30 seconds with the starting
time randomly distributed between 10-55 minutes. In our
SYN flooding experiments, it has been empirically observed
that the setting X ¼ 10 and � ¼ 1 is sufficient to capture all
significant deviations in protocol attribute behaviors. The
simulation results for different flooding rates are listed in
Table 1.

Fig. 11 shows the estimated threshold HD (with X ¼ 10
and � ¼ 1) along with the observed HD for the DEC trace.

The measured distances for the DEC trace is always smaller
than the estimated threshold. An alert flag is raised only
when the observed HD of a particular testing period
becomes higher than that of the estimated threshold HD
in that period. Fig. 11 also shows how the observed HD
dramatically changed with the introduction of SYN flooding
traffic of 500 SYNs per second. The flooding traffic starts at
26.833 minutes, and in the subsequent testing period of
27 minutes, the measured HD shoots up to 0.668, easily
crossing the threshold value and subsequently raising
an alert.

7.2 Detecting SIP Flooding Attacks

In this experiment, we defend a SIP proxy server against
INVITE flooding attacks. The iSoftTech SIP Proxy Server [2]
running on a Linux PC (Pentium 3, 1 GHz) and the CISCO SIP
Proxy Server [1]—two popular commercial products—are
expected to handle 100 calls per second. Thus, there is no
doubt that SIP proxy servers are susceptible to an INVITE

flooding attack at the rate of 500 INVITEs per second.
In the INVITE flooding detection experiments, the SIP

traffic generated in our testbed is used as the normal
background traffic and is mixed with the flooding traffic
varying from 50 to 500 INVITEs per second. Our intent is to
verify that with the appropriate setting of the threshold value,
vFDS not only identifies the flooding attack of 500 INVITEs
per second with an accuracy of 100 percent but also detects
those flooding attacks with much lower flooding rates. The
flooding duration of each experiment is set to 30 seconds,
and the starting time of a flooding attack is randomly

SENGAR ET AL.: DETECTING VOIP FLOODS USING THE HELLINGER DISTANCE 801

Fig. 10. HD of RTP attributes.

TABLE 1
SYN Flooding Detection Performance of vFDS
ðn ¼ 10;4t ¼ 10 seconds; X ¼ 10; � ¼ 1Þ

Fig. 11. Observed and threshold HDs (DEC).

distributed between 10 to 55 minutes. The experimental
results for different flooding rates are listed in Table 2.

The HD plotted in Fig. 9 shows a maximum observed
distance of 8 � 10�3 and an average distance of 0:9 � 10�3.
Therefore, by setting the threshold distance with X ¼ 20
and � ¼ 1, any significant deviation in the SIP traffic is
detected without raising a false alarm.

Fig. 12 illustrates the dynamics of the estimated thresh-
old HD and the observed HD. Because the spikes of the
observed HD are much smaller than those of the estimated
threshold distance, no false alarm is raised. Injecting attack
traffic consisting of 500 INVITEs per second starting at time
29.833 minutes causes the sudden surge of the observed HD
during the next testing period, reaching 0.3597. Because the
observed HD during the attack period is much higher than
the average threshold distance of 0.02, an alert flag is raised.

7.3 Detecting RTP Flooding Attacks

Our attack traffic for RTP floods are generated as similar as
the experiment performed by Qovia Inc. [24], where SIP-
based Siemens Optiplus 600 phones with a G.711 codec
perform well at 500 RTP PPS with a packet size of 200 bytes,
but as the RTP packet rate increases to 2,500 PPS, the voice
quality significantly deteriorates, and subsequently, the
connection breaks. Consequently, we assume that UACs
use G.711 (that is, 50 PPS) codec algorithm with an RTP
traffic rate of 500 PPS or more to create an RTP flood.

As described in Section 5.3, for incoming voice streams
i � N , we use two media attributes nitheoretical and niobserved
for each stream. Then, we compute the total number of
expected incoming RTP packets to be

PN
i¼1 n

i
theoretical, and

consider any significant deviation from this expected value
to be an RTP attack.

In order to detect RTP floods, we compute another
attribute nithreshold, an upper bound for the tolerable number
of RTP packets per second. Thus, the tolerable upper bound
for the total number of RTP packets is

PN
i¼1 n

i
threshold. After

that, we use the HD method to quantify the difference
between these two sums of attributes experimentally and
set the threshold as a static value based on the quantified
result, as opposed to the dynamic threshold computation
used earlier, because RTP streams are stable and only
depend upon the codec and its rates.

As an illustrative example, we consider a voice stream i
with attributes nitheoretical and nithreshold. The value of nitheoretical
is determined by the media encoding scheme used for the
voice stream. To detect the flooding rate of 100 PPS, the
value of nithreshold is set to 100. For the G.711 codec algorithm,
the nitheoretical attribute is 50 PPS. Therefore, the threshold of
HD is computed as

HDi
thresh: ¼ð

ffiffiffiffiffiffiffiffi
1=2

p
� ffiffiffiffiffiffiffiffiffiffi

qtheo:
p Þ2 þ ð

ffiffiffiffiffiffiffiffi
1=2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

qthresh:
p Þ2

¼ 0:029; where

qtheo: ¼nitheoretical=ðnitheoretical þ nithresholdÞ;
qthresh: ¼nithreshold=ðnitheoretical þ nithresholdÞ:

Fig. 13 plots the observed and threshold HDs for the
voice stream. The flooding traffic of 500 PPS is injected into
the voice stream 29 seconds from the start of the stream and
lasts for 5 seconds. As seen in the figure, the measured
distances (with 4t ¼ 1 second) of the RTP stream under
flooding attack are 10 times higher than the threshold
distance, and hence, an alarm is raised.

7.4 Detection Time

Now, we discuss how quickly an attack can be detected
from its beginning. In the previous SYN and INVITE

flooding detection experiments, 84 percent of them have
detection times between 13-18 seconds, and for the
remaining 16 percent of the experiments, their detection
times are 10 seconds. In both set of experiments, our
testing period (that is, 4t) is fixed at 10 seconds. In the

802 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

TABLE 2
SIP INVITE Flooding Detection Performance of vFDS

ðn ¼ 10;4t ¼ 10 seconds; X ¼ 20; � ¼ 1Þ

Fig. 12. Observed and threshold HDs (SIP).

Fig. 13. Observed and threshold HDs (RTP).

RTP flooding attacks, the testing period is 1 second. The

observed attack detection delay is also ’ 1 second. Overall,

vFDS can quickly detect the various flooding attacks, and

the detection time varies between 1-2 testing periods.

8 IMPACT OF THE VFDS ON THE QUALITY OF A

VOIP SERVICE

In traditional telephony, performance requirements are

generally expressed as cross-switching times or message

transfer times, assuming that the voice quality is acceptable.

However, because VoIP is an application running on the

TCP/IP stack, we need to consider the effect of monitoring

on the voice quality as well, of which jitter is the most

prominent attribute.

8.1 Call Setup Delay

Because the primary use of IP telephony is to satisfy

customers, any security mechanism that introduces long

connection delays may not be adopted by the service

providers. Consequently, the performance metric in which

we are most interested is the extra delays induced to call

setup times by the online placement of vFDS. The

implementation of vFDS is based on Netfilter [22]. Netfilter

provides a set of hooks in the Linux kernel’s network

protocol stack, allowing various modules to work with

network packets. In general, call setup delay is defined as

the interval between entering the last dialed digit and

receiving ringback [10]. In SIP-based VoIP systems, the call

setup time can be taken as the time interval between a caller

sending an INVITE message and receiving a 180 ringing

message back from the callee. Fig. 14 shows the call setup

delays with and without vFDS, respectively. It is evident

that even with a high load of VoIP calls at the server,

customers will not experience any noticeable call setup

delays.

8.2 Effect on the Voice Quality

The detection of RTP flooding is based on the counts of

RTP packets per second in a particular voice stream. The

detection mechanism has a negligible effect upon RTP delay

and jitter. Consequently, the voice quality perceived by the
subscribers remains unaffected.

9 RELATED WORK

The works by Wang et al. [35], [36] and Reynolds and
Ghosal [25] are the closest to our work. Wang et al.
proposed a flooding detection system (FDS) based on the
protocol behavior of TCP’s control packet pairs. Reynolds
and Ghosal proposed the Transport-Layer Attack Sensor
(TLAS) and Application-Layer Attack Sensor (ALAS) to
detect IP telephony flooding DoS attacks. At the
SIP application layer, ALAS uses the (INVITE, 200 OK)
pair to detect IP telephony call request flood attacks.
Although the (INVITE, 200 OK) pair is useful in detecting
flooding attacks that originated inside the enterprise
network, its usage for detecting flooding attacks that
originated from the outside of the enterprise network is
questionable. TLAS is based on the TCP behavior of (SYN,
ACK) pairs. We do not use ACK packets in flooding
detection, because it requires the state maintenance of a
TCP session and more processing power to distinguish
these ACKs for control packets from those ACKs for data
packets. Wu et al. [38] proposed SCIDIVE, a stateful cross-
protocol intrusion detection mechanism for VoIP.

There are many other commercial network security
products, which take a similar approach to validating the
observed traffic behavior against the expected traffic
behavior. Mazu Profiler [20] compares the current network
activity with a baseline to detect suspicious behaviors.
Arbor Peakflow [4] creates a baseline of network usage and
detects anomalies. Instead of working on the aggregated
traffic behaviors, these methods keep track of individual
flows. However, maintaining states for each individual flow
demands more memory and computational resources.

Recently, Chen [6] developed a VoIP DoS attack
detection system that maintains a state table for INVITE
and non-INVITE transactions. The author claimed that state
maintenance is a viable way to protect a SIP proxy server
from DDoS attacks. Besides the DDoS attacks, many other
VoIP security issues and threats have been discussed in [15]
and [27].

HD is well studied in statistics and probability. It is a
valuable metric in product measures and pointwise differ-
entiability in some asymptotic problems [23]. It is often used
in machine learning and many other applications, such as
regression, measuring ecological distances [37], viral email
propagation [32], and data swapping [13].

10 CONCLUSIONS AND FUTURE WORK

SYN, INVITE, and RTP packet floods pose a serious threat
to the IP telephony infrastructure. The multiprotocol-based
VoIP service needs a fast and generic detection mechanism
working across different protocol layers. We investigate the
protocol attribute behaviors and characterize the network
traffic with respect to the intrinsic correlation among
protocol attributes. Utilizing HD, we present an online
statistical flooding detection mechanism, called vFDS, in
which we measure the similarity (or dissimilarity) of the
correlation among protocol attributes at different times. The

SENGAR ET AL.: DETECTING VOIP FLOODS USING THE HELLINGER DISTANCE 803

Fig. 14. Call setup delay.

rationale behind our approach is that a deviation from

normal protocol behaviors can be measured and quantified.

We exploit the extent of the deviation for detecting

DoS attacks. We evaluate the effectiveness of vFDS using

Internet traces collected at exchange points of the Internet

and the VoIP traces generated on an experimental SIP-based

testbed.
Our experimental results show that vFDS can achieve high

detection accuracy with a short detection time of 1-2 testing

periods. In the future work, we plan to further improve the

detection sensitivity of vFDS against low-rate attacks that

span a longer period of time and conduct more exhaustive

performance evaluations using diverse VoIP traces.

ACKNOWLEDGMENTS

An earlier version of this paper [29] was presented in the

Proceedings of the 14th International Workshop on Quality of

Service (IWQoS ’06). This work was supported in part by the

US National Science Foundation under Grants CT-0627493

and CT-0627340. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect those of the National

Science Foundation.

REFERENCES

[1] “CISCO SIP Proxy Server,” SIP High Availability Overview,
www.cisco.com/univercd/cc/td/doc/product/software/
ios123/123cgcr/vvfax_c/callc_c/sip_c/sipha_c/hachap1.htm,
2005.

[2] “iSoftTech SIP Proxy Server,” Software Design Overview Template,
www.isofttech.com/downloads/SIP_3261_Proxy_Stack.pdf, 2005.

[3] AltiGen Communications, AltiGen Alti-IP 600H IP Telephone,
Product Overview—VoIP Phones, http://www.altigen.com/
analog-IP-telephone-sets.html, 2005.

[4] Arbor Networks, Arbor Peakflow and Netflow, Product Overview,
http://www.arbornetworks.com/downloads/, 2006.

[5] M. Carson and D. Santay, NIST Net Network Emulation
Package, Nist Net Web Site, http://snad.ncsl.nist.gov/itg/
nistnet/, June 1998.

[6] E. Chen, “Detecting Dos Attacks on Sip Systems,” Proc. IEEE
First Workshop VoIP Management and Security (VoIP MaSe ’06),
Apr. 2006.

[7] T. Darmohray and R. Oliver, “Hot Spares for DoS Attacks,” ;login:
The Magazine of Usenix and SAGE, vol. 25, no. 7, July 2000.

[8] DEC, “Digital Equipment Corporation Traces,” Hourly Traffic
Traces, 2005.

[9] A. Deslauriers, J. Pichitlamken, P. L’Ecuyer, and A.N. Avramidis,
“Markov Chain Models of a Telephone Call Center with Call
Blending,” technical report, GERAD and DIRO, Univ. of Montreal,
2003.

[10] T. Eyers and H. Schulzrinne, “Predicting Internet Telephony
Call Setup Delay,” Proc. First IP-Telephony Workshop (IPtel ’00),
Apr. 2000.

[11] M. Fannes and P. Spincemaille, The Mutual Affinity of Random
Measures, eprint arXiv:math-ph/0112034, Dec. 2001.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, Hypertext Transfer Protocol—HTTP1.1, IETF
RFC 2616, 1999.

[13] S. Gomatam, A.F. Karr, C. Liu, and A.P. Sanil, “Data Swapping:
A Risk-Utility Framework and Web Service Implementation,”
Proc. Nat’l Conf. Digital Government Research (DG.O), 2003.

[14] M. Handley and V. Jacobson, SDP: Session Description Protocol,
IETF RFC 2327, 1998.

[15] A. Hoffmann, “Securing Large Scale VoIP Infrastructures,”
Proc. Third Ann. VoIP Security Workshop, June 2006.

[16] V. Jacobson and M.J. Karels, “Congestion Avoidance and
Control,” Proc. ACM SIGCOMM ’88, pp. 314-329, Aug. 1988.

[17] A.B. Johnston, SIP Understanding the Session Initiation Protocol,
second ed. Artech House, 2004.

[18] G. Jongbloed and G. Koole, “Managing Uncertainty in Call
Centers Using Poisson Mixtures,” Applied Stochastic Models in
Business and Industry, vol. 17, pp. 307-318, 2001.

[19] J. Klensin, Simple Mail Transfer Protocol, IETF RFC 2821, 2001.
[20] Mazu Networks, “Mazu Profiler,” Product Overview, http://

www.mazunetworks.com/resources/product-sheets/, 2006.
[21] NLANR, NLANR Network Traffic Traces, Front Range GigaPOP,

Daily traffic traces, http://pma.nlanr.net/Traces/, 2005.
[22] P. Russell, Netfilter/iptables, Firewall, http://www.netfilter.org/,

2005.
[23] D. Pollard, Asymptopia, first ed., book in progress, http://

www.stat.yale.edu/ pollard/, 2000.
[24] Qovia Inc., “Network Intrusion and QoS Impact in VoIP,” white

paper, http://www.qovia.com/, Aug. 2004.
[25] B. Reynolds and D. Ghosal, “Secure IP Telephony Using Multi-

Layered Protection,” Proc. Network and Distributed System Security
Symp. (NDSS ’03), Feb. 2003.

[26] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, SIP:
Session Initiation Protocol, IETF RFC 3261, 2002.

[27] H. Scholz, “Attacking VoIP Networks,” Proc. Third Ann. VoIP
Security Workshop, June 2006.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A
Transport Protocol for Real-Time Applications, IETF RFC 1889, 1996.

[29] H. Sengar, H. Wang, D. Wijesekera, and S. Jajodia, “Fast Detection
of Denial of Service Attacks on IP Telephony,” Proc. 14th Int’l
Workshop Quality of Service (IWQoS ’06), June 2006.

[30] H. Sengar, D. Wijesekera, H. Wang, and S. Jajodia, “VoIP Intrusion
Detection through Interacting Protocol State Machines,” Proc. Int’l
Conf. Dependable Systems and Networks (DSN ’06), June 2006.

[31] W. Stevens, TCP/IP Illustrated Volume-1, first ed. Addison-Wesley,
1994.

[32] S.J. Stolfo, W.-J. Li, S. Hershkop, K. Wang, C.-W. Hu, and
O. Nimeskern, “Detecting Viral Propagations Using Email
Behavior Profiles,” ACM Trans. Internet Technology, May 2004.

[33] Telecost, Telecost: On Call Durations, Product Overview, http://
www.telecost.co.uk/Products/OnCallDurations.htm, 2005.

[34] K. Thompson, G.J. Miller, and R. Wilder, “Wide-Area Internet
Traffic Patterns and Characteristics,” IEEE Network, vol. 11,
Nov./Dec. 1997.

[35] H. Wang, D. Zhang, and K.G. Shin, “Detecting SYN Flooding
Attacks,” Proc. IEEE INFOCOM ’02, June 2002.

[36] H. Wang, D. Zhang, and K.G. Shin, “SYN-Dog: Sniffing SYN
Flooding Sources,” Proc. 22nd Int’l Conf. Distributed Computing
Systems (ICDCS ’02), July 2002.

[37] “World Agroforestry Center,” Regression and Analysis of Variance,
Tutorial, http://www.worldagroforestry.org/, 2005.

[38] Y. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai, “SCIDIVE: A
Stateful and Cross Protocol Intrusion Detection Architecture for
Voice-over-IP Environments,” Proc. Int’l Dependable Systems and
Networks Conf. (DSN ’04), June 2004.

[39] Zultys Technologies, “Datasheet-ZIP 4X4,” Product Overview—
VoIP Phones, http://www.zultystechnologies.com, 2005.

Hemant Sengar received the BTech degree
from Indian Institute of Technology, Kanpur, and
the MS degree from George Mason University,
Fairfax, Virginia. He is a PhD candidate in the
Center for Secure Information Systems, Depart-
ment of Information and Software Engineering,
George Mason University. His current research
interests are in the area of IP telephony and
telecommunication networks security. He is a
student member of the IEEE.

804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 6, JUNE 2008

Haining Wang received the PhD degree in
computer science and engineering from the
University of Michigan, Ann Arbor, in 2003. He
is an assistant professor of computer science at
the College of William and Mary, Williamsburg,
Virginia. His research interests lie in the area of
networking, security, and distributed computing.
He is particularly interested in network security
and network quality of service (QoS) to support
secure and service-differentiated internetwork-

ing. He is a member of the IEEE.

Duminda Wijesekera received the doctorate in
Logic from Cornell University in 1990 and the
doctorate in computer science from the Univer-
sity of Minnesota in 1997. He is an associate
professor in the Department of Information and
Software Engineering, George Mason University
(GMU), Fairfax, Virginia. He holds courtesy
appointments at the Center for Secure Informa-
tion Systems (CSIS) and the Center for Com-
mand, Control and Coordination (C4I) at George

Mason University, and the Potomac Institute of Policy Studies, Arlington,
Virginia Prior to joining GMU, he was at Honeywell Military Avionics, Army
High Performance Research Center, University of Minnesota, and the
University of Wisconsin. During various times, his research interests have
been in security, multimedia, networks, secure signaling (telecoms,
railway, and SCADA), avionics, missile systems, Web, and theoretical
computer science. He is a senior member of the IEEE.

Sushil Jajodia is university professor and BDM
International professor of information technology
and the director of the Center for Secure
Information Systems at George Mason Univer-
sity, Fairfax, Virginia. He served as the chair of
the Department of Information and Software
Engineering from 1998 to 2002. His research
interests include information security, temporal
databases, and replicated databases. He has
authored six books, edited 27 books and

conference proceedings, and published more than 300 technical papers
in the refereed journals and conference proceedings. He is the founding
editor in chief of the Journal of Computer Security and is on the editorial
boards of IEE Proceedings on Information Security, International
Journal of Cooperative Information Systems, and International Journal
of Information and Computer Security. He is a senior member of the
IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SENGAR ET AL.: DETECTING VOIP FLOODS USING THE HELLINGER DISTANCE 805

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

